117 lines
3.8 KiB
Python
117 lines
3.8 KiB
Python
import numpy as np
|
|
from skimage.measure import block_reduce
|
|
|
|
from skimage._shared import testing
|
|
from skimage._shared.testing import assert_equal
|
|
|
|
|
|
def test_block_reduce_sum():
|
|
image1 = np.arange(4 * 6).reshape(4, 6)
|
|
out1 = block_reduce(image1, (2, 3))
|
|
expected1 = np.array([[ 24, 42],
|
|
[ 96, 114]])
|
|
assert_equal(expected1, out1)
|
|
|
|
image2 = np.arange(5 * 8).reshape(5, 8)
|
|
out2 = block_reduce(image2, (3, 3))
|
|
expected2 = np.array([[ 81, 108, 87],
|
|
[174, 192, 138]])
|
|
assert_equal(expected2, out2)
|
|
|
|
|
|
def test_block_reduce_mean():
|
|
image1 = np.arange(4 * 6).reshape(4, 6)
|
|
out1 = block_reduce(image1, (2, 3), func=np.mean)
|
|
expected1 = np.array([[ 4., 7.],
|
|
[ 16., 19.]])
|
|
assert_equal(expected1, out1)
|
|
|
|
image2 = np.arange(5 * 8).reshape(5, 8)
|
|
out2 = block_reduce(image2, (4, 5), func=np.mean)
|
|
expected2 = np.array([[14. , 10.8],
|
|
[ 8.5, 5.7]])
|
|
assert_equal(expected2, out2)
|
|
|
|
|
|
def test_block_reduce_median():
|
|
image1 = np.arange(4 * 6).reshape(4, 6)
|
|
out1 = block_reduce(image1, (2, 3), func=np.median)
|
|
expected1 = np.array([[ 4., 7.],
|
|
[ 16., 19.]])
|
|
assert_equal(expected1, out1)
|
|
|
|
image2 = np.arange(5 * 8).reshape(5, 8)
|
|
out2 = block_reduce(image2, (4, 5), func=np.median)
|
|
expected2 = np.array([[ 14., 6.5],
|
|
[ 0., 0. ]])
|
|
assert_equal(expected2, out2)
|
|
|
|
image3 = np.array([[1, 5, 5, 5], [5, 5, 5, 1000]])
|
|
out3 = block_reduce(image3, (2, 4), func=np.median)
|
|
assert_equal(5, out3)
|
|
|
|
|
|
def test_block_reduce_min():
|
|
image1 = np.arange(4 * 6).reshape(4, 6)
|
|
out1 = block_reduce(image1, (2, 3), func=np.min)
|
|
expected1 = np.array([[ 0, 3],
|
|
[12, 15]])
|
|
assert_equal(expected1, out1)
|
|
|
|
image2 = np.arange(5 * 8).reshape(5, 8)
|
|
out2 = block_reduce(image2, (4, 5), func=np.min)
|
|
expected2 = np.array([[0, 0],
|
|
[0, 0]])
|
|
assert_equal(expected2, out2)
|
|
|
|
|
|
def test_block_reduce_max():
|
|
image1 = np.arange(4 * 6).reshape(4, 6)
|
|
out1 = block_reduce(image1, (2, 3), func=np.max)
|
|
expected1 = np.array([[ 8, 11],
|
|
[20, 23]])
|
|
assert_equal(expected1, out1)
|
|
|
|
image2 = np.arange(5 * 8).reshape(5, 8)
|
|
out2 = block_reduce(image2, (4, 5), func=np.max)
|
|
expected2 = np.array([[28, 31],
|
|
[36, 39]])
|
|
assert_equal(expected2, out2)
|
|
|
|
|
|
def test_invalid_block_size():
|
|
image = np.arange(4 * 6).reshape(4, 6)
|
|
|
|
with testing.raises(ValueError):
|
|
block_reduce(image, [1, 2, 3])
|
|
with testing.raises(ValueError):
|
|
block_reduce(image, [1, 0.5])
|
|
|
|
|
|
def test_func_kwargs_same_dtype():
|
|
image = np.array([[97, 123, 173, 227],
|
|
[217, 241, 221, 214],
|
|
[211, 11, 170, 53],
|
|
[214, 205, 101, 57]], dtype=np.uint8)
|
|
|
|
out = block_reduce(image, (2, 2), func=np.mean,
|
|
func_kwargs={'dtype': np.uint8})
|
|
expected = np.array([[41, 16], [32, 31]], dtype=np.uint8)
|
|
|
|
assert_equal(out, expected)
|
|
assert out.dtype == expected.dtype
|
|
|
|
|
|
def test_func_kwargs_different_dtype():
|
|
image = np.array([[0.45745366, 0.67479345, 0.20949775, 0.3147348],
|
|
[0.7209286, 0.88915504, 0.66153409, 0.07919526],
|
|
[0.04640037, 0.54008495, 0.34664343, 0.56152301],
|
|
[0.58085003, 0.80144708, 0.87844473, 0.29811511]],
|
|
dtype=np.float64)
|
|
|
|
out = block_reduce(image, (2, 2), func=np.mean,
|
|
func_kwargs={'dtype': np.float16})
|
|
expected = np.array([[0.6855, 0.3164], [0.4922, 0.521]], dtype=np.float16)
|
|
|
|
assert_equal(out, expected)
|
|
assert out.dtype == expected.dtype
|