102 lines
3.3 KiB
Python
102 lines
3.3 KiB
Python
import numpy as np
|
|
from skimage._shared.testing import assert_almost_equal
|
|
from numpy import sqrt, ceil
|
|
|
|
from skimage import data
|
|
from skimage import img_as_float
|
|
from skimage.feature import daisy
|
|
from skimage._shared import testing
|
|
|
|
|
|
def test_daisy_color_image_unsupported_error():
|
|
img = np.zeros((20, 20, 3))
|
|
with testing.raises(ValueError):
|
|
daisy(img)
|
|
|
|
|
|
def test_daisy_desc_dims():
|
|
img = img_as_float(data.astronaut()[:128, :128].mean(axis=2))
|
|
rings = 2
|
|
histograms = 4
|
|
orientations = 3
|
|
descs = daisy(img, rings=rings, histograms=histograms,
|
|
orientations=orientations)
|
|
assert(descs.shape[2] == (rings * histograms + 1) * orientations)
|
|
|
|
rings = 4
|
|
histograms = 5
|
|
orientations = 13
|
|
descs = daisy(img, rings=rings, histograms=histograms,
|
|
orientations=orientations)
|
|
assert(descs.shape[2] == (rings * histograms + 1) * orientations)
|
|
|
|
|
|
def test_descs_shape():
|
|
img = img_as_float(data.astronaut()[:256, :256].mean(axis=2))
|
|
radius = 20
|
|
step = 8
|
|
descs = daisy(img, radius=radius, step=step)
|
|
assert(descs.shape[0] == ceil((img.shape[0] - radius * 2) / float(step)))
|
|
assert(descs.shape[1] == ceil((img.shape[1] - radius * 2) / float(step)))
|
|
|
|
img = img[:-1, :-2]
|
|
radius = 5
|
|
step = 3
|
|
descs = daisy(img, radius=radius, step=step)
|
|
assert(descs.shape[0] == ceil((img.shape[0] - radius * 2) / float(step)))
|
|
assert(descs.shape[1] == ceil((img.shape[1] - radius * 2) / float(step)))
|
|
|
|
|
|
def test_daisy_sigmas_and_radii():
|
|
img = img_as_float(data.astronaut()[:64, :64].mean(axis=2))
|
|
sigmas = [1, 2, 3]
|
|
radii = [1, 2]
|
|
daisy(img, sigmas=sigmas, ring_radii=radii)
|
|
|
|
|
|
def test_daisy_incompatible_sigmas_and_radii():
|
|
img = img_as_float(data.astronaut()[:64, :64].mean(axis=2))
|
|
sigmas = [1, 2]
|
|
radii = [1, 2]
|
|
with testing.raises(ValueError):
|
|
daisy(img, sigmas=sigmas, ring_radii=radii)
|
|
|
|
|
|
def test_daisy_normalization():
|
|
img = img_as_float(data.astronaut()[:64, :64].mean(axis=2))
|
|
|
|
descs = daisy(img, normalization='l1')
|
|
for i in range(descs.shape[0]):
|
|
for j in range(descs.shape[1]):
|
|
assert_almost_equal(np.sum(descs[i, j, :]), 1)
|
|
descs_ = daisy(img)
|
|
assert_almost_equal(descs, descs_)
|
|
|
|
descs = daisy(img, normalization='l2')
|
|
for i in range(descs.shape[0]):
|
|
for j in range(descs.shape[1]):
|
|
assert_almost_equal(sqrt(np.sum(descs[i, j, :] ** 2)), 1)
|
|
|
|
orientations = 8
|
|
descs = daisy(img, orientations=orientations, normalization='daisy')
|
|
desc_dims = descs.shape[2]
|
|
for i in range(descs.shape[0]):
|
|
for j in range(descs.shape[1]):
|
|
for k in range(0, desc_dims, orientations):
|
|
assert_almost_equal(sqrt(np.sum(
|
|
descs[i, j, k:k + orientations] ** 2)), 1)
|
|
|
|
img = np.zeros((50, 50))
|
|
descs = daisy(img, normalization='off')
|
|
for i in range(descs.shape[0]):
|
|
for j in range(descs.shape[1]):
|
|
assert_almost_equal(np.sum(descs[i, j, :]), 0)
|
|
|
|
with testing.raises(ValueError):
|
|
daisy(img, normalization='does_not_exist')
|
|
|
|
|
|
def test_daisy_visualization():
|
|
img = img_as_float(data.astronaut()[:32, :32].mean(axis=2))
|
|
descs, descs_img = daisy(img, visualize=True)
|
|
assert(descs_img.shape == (32, 32, 3))
|