Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/networkx/linalg/tests/test_bethehessian.py

42 lines
1.3 KiB
Python

import pytest
np = pytest.importorskip("numpy")
npt = pytest.importorskip("numpy.testing")
sp = pytest.importorskip("scipy")
import networkx as nx
from networkx.generators.degree_seq import havel_hakimi_graph
class TestBetheHessian:
@classmethod
def setup_class(cls):
deg = [3, 2, 2, 1, 0]
cls.G = havel_hakimi_graph(deg)
cls.P = nx.path_graph(3)
def test_bethe_hessian(self):
"Bethe Hessian matrix"
# fmt: off
H = np.array([[4, -2, 0],
[-2, 5, -2],
[0, -2, 4]])
# fmt: on
permutation = [2, 0, 1]
# Bethe Hessian gives expected form
npt.assert_equal(nx.bethe_hessian_matrix(self.P, r=2).todense(), H)
# nodelist is correctly implemented
npt.assert_equal(
nx.bethe_hessian_matrix(self.P, r=2, nodelist=permutation).todense(),
H[np.ix_(permutation, permutation)],
)
# Equal to Laplacian matrix when r=1
npt.assert_equal(
nx.bethe_hessian_matrix(self.G, r=1).todense(),
nx.laplacian_matrix(self.G).todense(),
)
# Correct default for the regularizer r
npt.assert_equal(
nx.bethe_hessian_matrix(self.G).todense(),
nx.bethe_hessian_matrix(self.G, r=1.25).todense(),
)