Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/scipy/stats/_continuous_distns.py

8698 lines
262 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
#
# Author: Travis Oliphant 2002-2011 with contributions from
# SciPy Developers 2004-2011
#
import warnings
from collections.abc import Iterable
import ctypes
import numpy as np
from scipy._lib.doccer import (extend_notes_in_docstring,
replace_notes_in_docstring)
from scipy._lib._ccallback import LowLevelCallable
from scipy import optimize
from scipy import integrate
from scipy import interpolate
import scipy.special as sc
import scipy.special._ufuncs as scu
from scipy._lib._util import _lazyselect, _lazywhere
from . import _stats
from ._rvs_sampling import rvs_ratio_uniforms
from ._tukeylambda_stats import (tukeylambda_variance as _tlvar,
tukeylambda_kurtosis as _tlkurt)
from ._distn_infrastructure import (get_distribution_names, _kurtosis,
_ncx2_cdf, _ncx2_log_pdf, _ncx2_pdf,
rv_continuous, _skew, valarray,
_get_fixed_fit_value, _check_shape)
from ._ksstats import kolmogn, kolmognp, kolmogni
from ._constants import (_XMIN, _EULER, _ZETA3, _XMAX, _LOGXMAX,
_SQRT_2_OVER_PI, _LOG_SQRT_2_OVER_PI)
# In numpy 1.12 and above, np.power refuses to raise integers to negative
# powers, and `np.float_power` is a new replacement.
try:
float_power = np.float_power
except AttributeError:
float_power = np.power
def _remove_optimizer_parameters(kwds):
"""
Remove the optimizer-related keyword arguments 'loc', 'scale' and
'optimizer' from `kwds`. Then check that `kwds` is empty, and
raise `TypeError("Unknown arguments: %s." % kwds)` if it is not.
This function is used in the fit method of distributions that override
the default method and do not use the default optimization code.
`kwds` is modified in-place.
"""
kwds.pop('loc', None)
kwds.pop('scale', None)
kwds.pop('optimizer', None)
if kwds:
raise TypeError("Unknown arguments: %s." % kwds)
## Kolmogorov-Smirnov one-sided and two-sided test statistics
class ksone_gen(rv_continuous):
r"""Kolmogorov-Smirnov one-sided test statistic distribution.
This is the distribution of the one-sided Kolmogorov-Smirnov (KS)
statistics :math:`D_n^+` and :math:`D_n^-`
for a finite sample size ``n`` (the shape parameter).
%(before_notes)s
Notes
-----
:math:`D_n^+` and :math:`D_n^-` are given by
.. math::
D_n^+ &= \text{sup}_x (F_n(x) - F(x)),\\
D_n^- &= \text{sup}_x (F(x) - F_n(x)),\\
where :math:`F` is a continuous CDF and :math:`F_n` is an empirical CDF.
`ksone` describes the distribution under the null hypothesis of the KS test
that the empirical CDF corresponds to :math:`n` i.i.d. random variates
with CDF :math:`F`.
%(after_notes)s
See Also
--------
kstwobign, kstwo, kstest
References
----------
.. [1] Birnbaum, Z. W. and Tingey, F.H. "One-sided confidence contours
for probability distribution functions", The Annals of Mathematical
Statistics, 22(4), pp 592-596 (1951).
%(example)s
"""
def _pdf(self, x, n):
return -scu._smirnovp(n, x)
def _cdf(self, x, n):
return scu._smirnovc(n, x)
def _sf(self, x, n):
return sc.smirnov(n, x)
def _ppf(self, q, n):
return scu._smirnovci(n, q)
def _isf(self, q, n):
return sc.smirnovi(n, q)
ksone = ksone_gen(a=0.0, b=1.0, name='ksone')
class kstwo_gen(rv_continuous):
r"""Kolmogorov-Smirnov two-sided test statistic distribution.
This is the distribution of the two-sided Kolmogorov-Smirnov (KS)
statistic :math:`D_n` for a finite sample size ``n``
(the shape parameter).
%(before_notes)s
Notes
-----
:math:`D_n` is given by
.. math::
D_n &= \text{sup}_x |F_n(x) - F(x)|
where :math:`F` is a (continuous) CDF and :math:`F_n` is an empirical CDF.
`kstwo` describes the distribution under the null hypothesis of the KS test
that the empirical CDF corresponds to :math:`n` i.i.d. random variates
with CDF :math:`F`.
%(after_notes)s
See Also
--------
kstwobign, ksone, kstest
References
----------
.. [1] Simard, R., L'Ecuyer, P. "Computing the Two-Sided
Kolmogorov-Smirnov Distribution", Journal of Statistical Software,
Vol 39, 11, 1-18 (2011).
%(example)s
"""
def _get_support(self, n):
return (0.5/(n if not isinstance(n, Iterable) else np.asanyarray(n)),
1.0)
def _pdf(self, x, n):
return kolmognp(n, x)
def _cdf(self, x, n):
return kolmogn(n, x)
def _sf(self, x, n):
return kolmogn(n, x, cdf=False)
def _ppf(self, q, n):
return kolmogni(n, q, cdf=True)
def _isf(self, q, n):
return kolmogni(n, q, cdf=False)
# Use the pdf, (not the ppf) to compute moments
kstwo = kstwo_gen(momtype=0, a=0.0, b=1.0, name='kstwo')
class kstwobign_gen(rv_continuous):
r"""Limiting distribution of scaled Kolmogorov-Smirnov two-sided test statistic.
This is the asymptotic distribution of the two-sided Kolmogorov-Smirnov
statistic :math:`\sqrt{n} D_n` that measures the maximum absolute
distance of the theoretical (continuous) CDF from the empirical CDF.
(see `kstest`).
%(before_notes)s
Notes
-----
:math:`\sqrt{n} D_n` is given by
.. math::
D_n = \text{sup}_x |F_n(x) - F(x)|
where :math:`F` is a continuous CDF and :math:`F_n` is an empirical CDF.
`kstwobign` describes the asymptotic distribution (i.e. the limit of
:math:`\sqrt{n} D_n`) under the null hypothesis of the KS test that the
empirical CDF corresponds to i.i.d. random variates with CDF :math:`F`.
%(after_notes)s
See Also
--------
ksone, kstwo, kstest
References
----------
.. [1] Feller, W. "On the Kolmogorov-Smirnov Limit Theorems for Empirical
Distributions", Ann. Math. Statist. Vol 19, 177-189 (1948).
%(example)s
"""
def _pdf(self, x):
return -scu._kolmogp(x)
def _cdf(self, x):
return scu._kolmogc(x)
def _sf(self, x):
return sc.kolmogorov(x)
def _ppf(self, q):
return scu._kolmogci(q)
def _isf(self, q):
return sc.kolmogi(q)
kstwobign = kstwobign_gen(a=0.0, name='kstwobign')
## Normal distribution
# loc = mu, scale = std
# Keep these implementations out of the class definition so they can be reused
# by other distributions.
_norm_pdf_C = np.sqrt(2*np.pi)
_norm_pdf_logC = np.log(_norm_pdf_C)
def _norm_pdf(x):
return np.exp(-x**2/2.0) / _norm_pdf_C
def _norm_logpdf(x):
return -x**2 / 2.0 - _norm_pdf_logC
def _norm_cdf(x):
return sc.ndtr(x)
def _norm_logcdf(x):
return sc.log_ndtr(x)
def _norm_ppf(q):
return sc.ndtri(q)
def _norm_sf(x):
return _norm_cdf(-x)
def _norm_logsf(x):
return _norm_logcdf(-x)
def _norm_isf(q):
return -_norm_ppf(q)
class norm_gen(rv_continuous):
r"""A normal continuous random variable.
The location (``loc``) keyword specifies the mean.
The scale (``scale``) keyword specifies the standard deviation.
%(before_notes)s
Notes
-----
The probability density function for `norm` is:
.. math::
f(x) = \frac{\exp(-x^2/2)}{\sqrt{2\pi}}
for a real number :math:`x`.
%(after_notes)s
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return random_state.standard_normal(size)
def _pdf(self, x):
# norm.pdf(x) = exp(-x**2/2)/sqrt(2*pi)
return _norm_pdf(x)
def _logpdf(self, x):
return _norm_logpdf(x)
def _cdf(self, x):
return _norm_cdf(x)
def _logcdf(self, x):
return _norm_logcdf(x)
def _sf(self, x):
return _norm_sf(x)
def _logsf(self, x):
return _norm_logsf(x)
def _ppf(self, q):
return _norm_ppf(q)
def _isf(self, q):
return _norm_isf(q)
def _stats(self):
return 0.0, 1.0, 0.0, 0.0
def _entropy(self):
return 0.5*(np.log(2*np.pi)+1)
@replace_notes_in_docstring(rv_continuous, notes="""\
This function uses explicit formulas for the maximum likelihood
estimation of the normal distribution parameters, so the
`optimizer` argument is ignored.\n\n""")
def fit(self, data, **kwds):
floc = kwds.pop('floc', None)
fscale = kwds.pop('fscale', None)
_remove_optimizer_parameters(kwds)
if floc is not None and fscale is not None:
# This check is for consistency with `rv_continuous.fit`.
# Without this check, this function would just return the
# parameters that were given.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
data = np.asarray(data)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
if floc is None:
loc = data.mean()
else:
loc = floc
if fscale is None:
scale = np.sqrt(((data - loc)**2).mean())
else:
scale = fscale
return loc, scale
def _munp(self, n):
"""
@returns Moments of standard normal distribution for integer n >= 0
See eq. 16 of https://arxiv.org/abs/1209.4340v2
"""
if n % 2 == 0:
return sc.factorial2(n - 1)
else:
return 0.
norm = norm_gen(name='norm')
class alpha_gen(rv_continuous):
r"""An alpha continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `alpha` ([1]_, [2]_) is:
.. math::
f(x, a) = \frac{1}{x^2 \Phi(a) \sqrt{2\pi}} *
\exp(-\frac{1}{2} (a-1/x)^2)
where :math:`\Phi` is the normal CDF, :math:`x > 0`, and :math:`a > 0`.
`alpha` takes ``a`` as a shape parameter.
%(after_notes)s
References
----------
.. [1] Johnson, Kotz, and Balakrishnan, "Continuous Univariate
Distributions, Volume 1", Second Edition, John Wiley and Sons,
p. 173 (1994).
.. [2] Anthony A. Salvia, "Reliability applications of the Alpha
Distribution", IEEE Transactions on Reliability, Vol. R-34,
No. 3, pp. 251-252 (1985).
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x, a):
# alpha.pdf(x, a) = 1/(x**2*Phi(a)*sqrt(2*pi)) * exp(-1/2 * (a-1/x)**2)
return 1.0/(x**2)/_norm_cdf(a)*_norm_pdf(a-1.0/x)
def _logpdf(self, x, a):
return -2*np.log(x) + _norm_logpdf(a-1.0/x) - np.log(_norm_cdf(a))
def _cdf(self, x, a):
return _norm_cdf(a-1.0/x) / _norm_cdf(a)
def _ppf(self, q, a):
return 1.0/np.asarray(a-sc.ndtri(q*_norm_cdf(a)))
def _stats(self, a):
return [np.inf]*2 + [np.nan]*2
alpha = alpha_gen(a=0.0, name='alpha')
class anglit_gen(rv_continuous):
r"""An anglit continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `anglit` is:
.. math::
f(x) = \sin(2x + \pi/2) = \cos(2x)
for :math:`-\pi/4 \le x \le \pi/4`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# anglit.pdf(x) = sin(2*x + \pi/2) = cos(2*x)
return np.cos(2*x)
def _cdf(self, x):
return np.sin(x+np.pi/4)**2.0
def _ppf(self, q):
return np.arcsin(np.sqrt(q))-np.pi/4
def _stats(self):
return 0.0, np.pi*np.pi/16-0.5, 0.0, -2*(np.pi**4 - 96)/(np.pi*np.pi-8)**2
def _entropy(self):
return 1-np.log(2)
anglit = anglit_gen(a=-np.pi/4, b=np.pi/4, name='anglit')
class arcsine_gen(rv_continuous):
r"""An arcsine continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `arcsine` is:
.. math::
f(x) = \frac{1}{\pi \sqrt{x (1-x)}}
for :math:`0 < x < 1`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# arcsine.pdf(x) = 1/(pi*sqrt(x*(1-x)))
return 1.0/np.pi/np.sqrt(x*(1-x))
def _cdf(self, x):
return 2.0/np.pi*np.arcsin(np.sqrt(x))
def _ppf(self, q):
return np.sin(np.pi/2.0*q)**2.0
def _stats(self):
mu = 0.5
mu2 = 1.0/8
g1 = 0
g2 = -3.0/2.0
return mu, mu2, g1, g2
def _entropy(self):
return -0.24156447527049044468
arcsine = arcsine_gen(a=0.0, b=1.0, name='arcsine')
class FitDataError(ValueError):
# This exception is raised by, for example, beta_gen.fit when both floc
# and fscale are fixed and there are values in the data not in the open
# interval (floc, floc+fscale).
def __init__(self, distr, lower, upper):
self.args = (
"Invalid values in `data`. Maximum likelihood "
"estimation with {distr!r} requires that {lower!r} < x "
"< {upper!r} for each x in `data`.".format(
distr=distr, lower=lower, upper=upper),
)
class FitSolverError(RuntimeError):
# This exception is raised by, for example, beta_gen.fit when
# optimize.fsolve returns with ier != 1.
def __init__(self, mesg):
emsg = "Solver for the MLE equations failed to converge: "
emsg += mesg.replace('\n', '')
self.args = (emsg,)
def _beta_mle_a(a, b, n, s1):
# The zeros of this function give the MLE for `a`, with
# `b`, `n` and `s1` given. `s1` is the sum of the logs of
# the data. `n` is the number of data points.
psiab = sc.psi(a + b)
func = s1 - n * (-psiab + sc.psi(a))
return func
def _beta_mle_ab(theta, n, s1, s2):
# Zeros of this function are critical points of
# the maximum likelihood function. Solving this system
# for theta (which contains a and b) gives the MLE for a and b
# given `n`, `s1` and `s2`. `s1` is the sum of the logs of the data,
# and `s2` is the sum of the logs of 1 - data. `n` is the number
# of data points.
a, b = theta
psiab = sc.psi(a + b)
func = [s1 - n * (-psiab + sc.psi(a)),
s2 - n * (-psiab + sc.psi(b))]
return func
class beta_gen(rv_continuous):
r"""A beta continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `beta` is:
.. math::
f(x, a, b) = \frac{\Gamma(a+b) x^{a-1} (1-x)^{b-1}}
{\Gamma(a) \Gamma(b)}
for :math:`0 <= x <= 1`, :math:`a > 0`, :math:`b > 0`, where
:math:`\Gamma` is the gamma function (`scipy.special.gamma`).
`beta` takes :math:`a` and :math:`b` as shape parameters.
%(after_notes)s
%(example)s
"""
def _rvs(self, a, b, size=None, random_state=None):
return random_state.beta(a, b, size)
def _pdf(self, x, a, b):
# gamma(a+b) * x**(a-1) * (1-x)**(b-1)
# beta.pdf(x, a, b) = ------------------------------------
# gamma(a)*gamma(b)
return np.exp(self._logpdf(x, a, b))
def _logpdf(self, x, a, b):
lPx = sc.xlog1py(b - 1.0, -x) + sc.xlogy(a - 1.0, x)
lPx -= sc.betaln(a, b)
return lPx
def _cdf(self, x, a, b):
return sc.btdtr(a, b, x)
def _ppf(self, q, a, b):
return sc.btdtri(a, b, q)
def _stats(self, a, b):
mn = a*1.0 / (a + b)
var = (a*b*1.0)/(a+b+1.0)/(a+b)**2.0
g1 = 2.0*(b-a)*np.sqrt((1.0+a+b)/(a*b)) / (2+a+b)
g2 = 6.0*(a**3 + a**2*(1-2*b) + b**2*(1+b) - 2*a*b*(2+b))
g2 /= a*b*(a+b+2)*(a+b+3)
return mn, var, g1, g2
def _fitstart(self, data):
g1 = _skew(data)
g2 = _kurtosis(data)
def func(x):
a, b = x
sk = 2*(b-a)*np.sqrt(a + b + 1) / (a + b + 2) / np.sqrt(a*b)
ku = a**3 - a**2*(2*b-1) + b**2*(b+1) - 2*a*b*(b+2)
ku /= a*b*(a+b+2)*(a+b+3)
ku *= 6
return [sk-g1, ku-g2]
a, b = optimize.fsolve(func, (1.0, 1.0))
return super(beta_gen, self)._fitstart(data, args=(a, b))
@extend_notes_in_docstring(rv_continuous, notes="""\
In the special case where both `floc` and `fscale` are given, a
`ValueError` is raised if any value `x` in `data` does not satisfy
`floc < x < floc + fscale`.\n\n""")
def fit(self, data, *args, **kwds):
# Override rv_continuous.fit, so we can more efficiently handle the
# case where floc and fscale are given.
floc = kwds.get('floc', None)
fscale = kwds.get('fscale', None)
if floc is None or fscale is None:
# do general fit
return super(beta_gen, self).fit(data, *args, **kwds)
# We already got these from kwds, so just pop them.
kwds.pop('floc', None)
kwds.pop('fscale', None)
f0 = _get_fixed_fit_value(kwds, ['f0', 'fa', 'fix_a'])
f1 = _get_fixed_fit_value(kwds, ['f1', 'fb', 'fix_b'])
_remove_optimizer_parameters(kwds)
if f0 is not None and f1 is not None:
# This check is for consistency with `rv_continuous.fit`.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
# Special case: loc and scale are constrained, so we are fitting
# just the shape parameters. This can be done much more efficiently
# than the method used in `rv_continuous.fit`. (See the subsection
# "Two unknown parameters" in the section "Maximum likelihood" of
# the Wikipedia article on the Beta distribution for the formulas.)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
# Normalize the data to the interval [0, 1].
data = (np.ravel(data) - floc) / fscale
if np.any(data <= 0) or np.any(data >= 1):
raise FitDataError("beta", lower=floc, upper=floc + fscale)
xbar = data.mean()
if f0 is not None or f1 is not None:
# One of the shape parameters is fixed.
if f0 is not None:
# The shape parameter a is fixed, so swap the parameters
# and flip the data. We always solve for `a`. The result
# will be swapped back before returning.
b = f0
data = 1 - data
xbar = 1 - xbar
else:
b = f1
# Initial guess for a. Use the formula for the mean of the beta
# distribution, E[x] = a / (a + b), to generate a reasonable
# starting point based on the mean of the data and the given
# value of b.
a = b * xbar / (1 - xbar)
# Compute the MLE for `a` by solving _beta_mle_a.
theta, info, ier, mesg = optimize.fsolve(
_beta_mle_a, a,
args=(b, len(data), np.log(data).sum()),
full_output=True
)
if ier != 1:
raise FitSolverError(mesg=mesg)
a = theta[0]
if f0 is not None:
# The shape parameter a was fixed, so swap back the
# parameters.
a, b = b, a
else:
# Neither of the shape parameters is fixed.
# s1 and s2 are used in the extra arguments passed to _beta_mle_ab
# by optimize.fsolve.
s1 = np.log(data).sum()
s2 = sc.log1p(-data).sum()
# Use the "method of moments" to estimate the initial
# guess for a and b.
fac = xbar * (1 - xbar) / data.var(ddof=0) - 1
a = xbar * fac
b = (1 - xbar) * fac
# Compute the MLE for a and b by solving _beta_mle_ab.
theta, info, ier, mesg = optimize.fsolve(
_beta_mle_ab, [a, b],
args=(len(data), s1, s2),
full_output=True
)
if ier != 1:
raise FitSolverError(mesg=mesg)
a, b = theta
return a, b, floc, fscale
beta = beta_gen(a=0.0, b=1.0, name='beta')
class betaprime_gen(rv_continuous):
r"""A beta prime continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `betaprime` is:
.. math::
f(x, a, b) = \frac{x^{a-1} (1+x)^{-a-b}}{\beta(a, b)}
for :math:`x >= 0`, :math:`a > 0`, :math:`b > 0`, where
:math:`\beta(a, b)` is the beta function (see `scipy.special.beta`).
`betaprime` takes ``a`` and ``b`` as shape parameters.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, a, b, size=None, random_state=None):
u1 = gamma.rvs(a, size=size, random_state=random_state)
u2 = gamma.rvs(b, size=size, random_state=random_state)
return u1 / u2
def _pdf(self, x, a, b):
# betaprime.pdf(x, a, b) = x**(a-1) * (1+x)**(-a-b) / beta(a, b)
return np.exp(self._logpdf(x, a, b))
def _logpdf(self, x, a, b):
return sc.xlogy(a - 1.0, x) - sc.xlog1py(a + b, x) - sc.betaln(a, b)
def _cdf(self, x, a, b):
return sc.betainc(a, b, x/(1.+x))
def _munp(self, n, a, b):
if n == 1.0:
return np.where(b > 1,
a/(b-1.0),
np.inf)
elif n == 2.0:
return np.where(b > 2,
a*(a+1.0)/((b-2.0)*(b-1.0)),
np.inf)
elif n == 3.0:
return np.where(b > 3,
a*(a+1.0)*(a+2.0)/((b-3.0)*(b-2.0)*(b-1.0)),
np.inf)
elif n == 4.0:
return np.where(b > 4,
(a*(a + 1.0)*(a + 2.0)*(a + 3.0) /
((b - 4.0)*(b - 3.0)*(b - 2.0)*(b - 1.0))),
np.inf)
else:
raise NotImplementedError
betaprime = betaprime_gen(a=0.0, name='betaprime')
class bradford_gen(rv_continuous):
r"""A Bradford continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `bradford` is:
.. math::
f(x, c) = \frac{c}{\log(1+c) (1+cx)}
for :math:`0 <= x <= 1` and :math:`c > 0`.
`bradford` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, c):
# bradford.pdf(x, c) = c / (k * (1+c*x))
return c / (c*x + 1.0) / sc.log1p(c)
def _cdf(self, x, c):
return sc.log1p(c*x) / sc.log1p(c)
def _ppf(self, q, c):
return sc.expm1(q * sc.log1p(c)) / c
def _stats(self, c, moments='mv'):
k = np.log(1.0+c)
mu = (c-k)/(c*k)
mu2 = ((c+2.0)*k-2.0*c)/(2*c*k*k)
g1 = None
g2 = None
if 's' in moments:
g1 = np.sqrt(2)*(12*c*c-9*c*k*(c+2)+2*k*k*(c*(c+3)+3))
g1 /= np.sqrt(c*(c*(k-2)+2*k))*(3*c*(k-2)+6*k)
if 'k' in moments:
g2 = (c**3*(k-3)*(k*(3*k-16)+24)+12*k*c*c*(k-4)*(k-3) +
6*c*k*k*(3*k-14) + 12*k**3)
g2 /= 3*c*(c*(k-2)+2*k)**2
return mu, mu2, g1, g2
def _entropy(self, c):
k = np.log(1+c)
return k/2.0 - np.log(c/k)
bradford = bradford_gen(a=0.0, b=1.0, name='bradford')
class burr_gen(rv_continuous):
r"""A Burr (Type III) continuous random variable.
%(before_notes)s
See Also
--------
fisk : a special case of either `burr` or `burr12` with ``d=1``
burr12 : Burr Type XII distribution
mielke : Mielke Beta-Kappa / Dagum distribution
Notes
-----
The probability density function for `burr` is:
.. math::
f(x, c, d) = c d x^{-c - 1} / (1 + x^{-c})^{d + 1}
for :math:`x >= 0` and :math:`c, d > 0`.
`burr` takes :math:`c` and :math:`d` as shape parameters.
This is the PDF corresponding to the third CDF given in Burr's list;
specifically, it is equation (11) in Burr's paper [1]_. The distribution
is also commonly referred to as the Dagum distribution [2]_. If the
parameter :math:`c < 1` then the mean of the distribution does not
exist and if :math:`c < 2` the variance does not exist [2]_.
The PDF is finite at the left endpoint :math:`x = 0` if :math:`c * d >= 1`.
%(after_notes)s
References
----------
.. [1] Burr, I. W. "Cumulative frequency functions", Annals of
Mathematical Statistics, 13(2), pp 215-232 (1942).
.. [2] https://en.wikipedia.org/wiki/Dagum_distribution
.. [3] Kleiber, Christian. "A guide to the Dagum distributions."
Modeling Income Distributions and Lorenz Curves pp 97-117 (2008).
%(example)s
"""
# Do not set _support_mask to rv_continuous._open_support_mask
# Whether the left-hand endpoint is suitable for pdf evaluation is dependent
# on the values of c and d: if c*d >= 1, the pdf is finite, otherwise infinite.
def _pdf(self, x, c, d):
# burr.pdf(x, c, d) = c * d * x**(-c-1) * (1+x**(-c))**(-d-1)
output = _lazywhere(x == 0, [x, c, d],
lambda x_, c_, d_: c_ * d_ * (x_**(c_*d_-1)) / (1 + x_**c_),
f2 = lambda x_, c_, d_: (c_ * d_ * (x_ ** (-c_ - 1.0)) /
((1 + x_ ** (-c_)) ** (d_ + 1.0))))
if output.ndim == 0:
return output[()]
return output
def _logpdf(self, x, c, d):
output = _lazywhere(
x == 0, [x, c, d],
lambda x_, c_, d_: (np.log(c_) + np.log(d_) + sc.xlogy(c_*d_ - 1, x_)
- (d_+1) * sc.log1p(x_**(c_))),
f2 = lambda x_, c_, d_: (np.log(c_) + np.log(d_)
+ sc.xlogy(-c_ - 1, x_)
- sc.xlog1py(d_+1, x_**(-c_))))
if output.ndim == 0:
return output[()]
return output
def _cdf(self, x, c, d):
return (1 + x**(-c))**(-d)
def _logcdf(self, x, c, d):
return sc.log1p(x**(-c)) * (-d)
def _sf(self, x, c, d):
return np.exp(self._logsf(x, c, d))
def _logsf(self, x, c, d):
return np.log1p(- (1 + x**(-c))**(-d))
def _ppf(self, q, c, d):
return (q**(-1.0/d) - 1)**(-1.0/c)
def _stats(self, c, d):
nc = np.arange(1, 5).reshape(4,1) / c
#ek is the kth raw moment, e1 is the mean e2-e1**2 variance etc.
e1, e2, e3, e4 = sc.beta(d + nc, 1. - nc) * d
mu = np.where(c > 1.0, e1, np.nan)
mu2_if_c = e2 - mu**2
mu2 = np.where(c > 2.0, mu2_if_c, np.nan)
g1 = _lazywhere(
c > 3.0,
(c, e1, e2, e3, mu2_if_c),
lambda c, e1, e2, e3, mu2_if_c: (e3 - 3*e2*e1 + 2*e1**3) / np.sqrt((mu2_if_c)**3),
fillvalue=np.nan)
g2 = _lazywhere(
c > 4.0,
(c, e1, e2, e3, e4, mu2_if_c),
lambda c, e1, e2, e3, e4, mu2_if_c: (
((e4 - 4*e3*e1 + 6*e2*e1**2 - 3*e1**4) / mu2_if_c**2) - 3),
fillvalue=np.nan)
return mu, mu2, g1, g2
def _munp(self, n, c, d):
def __munp(n, c, d):
nc = 1. * n / c
return d * sc.beta(1.0 - nc, d + nc)
n, c, d = np.asarray(n), np.asarray(c), np.asarray(d)
return _lazywhere((c > n) & (n == n) & (d == d), (c, d, n),
lambda c, d, n: __munp(n, c, d),
np.nan)
burr = burr_gen(a=0.0, name='burr')
class burr12_gen(rv_continuous):
r"""A Burr (Type XII) continuous random variable.
%(before_notes)s
See Also
--------
fisk : a special case of either `burr` or `burr12` with ``d=1``
burr : Burr Type III distribution
Notes
-----
The probability density function for `burr` is:
.. math::
f(x, c, d) = c d x^{c-1} / (1 + x^c)^{d + 1}
for :math:`x >= 0` and :math:`c, d > 0`.
`burr12` takes ``c`` and ``d`` as shape parameters for :math:`c`
and :math:`d`.
This is the PDF corresponding to the twelfth CDF given in Burr's list;
specifically, it is equation (20) in Burr's paper [1]_.
%(after_notes)s
The Burr type 12 distribution is also sometimes referred to as
the Singh-Maddala distribution from NIST [2]_.
References
----------
.. [1] Burr, I. W. "Cumulative frequency functions", Annals of
Mathematical Statistics, 13(2), pp 215-232 (1942).
.. [2] https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/b12pdf.htm
.. [3] "Burr distribution",
https://en.wikipedia.org/wiki/Burr_distribution
%(example)s
"""
def _pdf(self, x, c, d):
# burr12.pdf(x, c, d) = c * d * x**(c-1) * (1+x**(c))**(-d-1)
return np.exp(self._logpdf(x, c, d))
def _logpdf(self, x, c, d):
return np.log(c) + np.log(d) + sc.xlogy(c - 1, x) + sc.xlog1py(-d-1, x**c)
def _cdf(self, x, c, d):
return -sc.expm1(self._logsf(x, c, d))
def _logcdf(self, x, c, d):
return sc.log1p(-(1 + x**c)**(-d))
def _sf(self, x, c, d):
return np.exp(self._logsf(x, c, d))
def _logsf(self, x, c, d):
return sc.xlog1py(-d, x**c)
def _ppf(self, q, c, d):
# The following is an implementation of
# ((1 - q)**(-1.0/d) - 1)**(1.0/c)
# that does a better job handling small values of q.
return sc.expm1(-1/d * sc.log1p(-q))**(1/c)
def _munp(self, n, c, d):
nc = 1. * n / c
return d * sc.beta(1.0 + nc, d - nc)
burr12 = burr12_gen(a=0.0, name='burr12')
class fisk_gen(burr_gen):
r"""A Fisk continuous random variable.
The Fisk distribution is also known as the log-logistic distribution.
%(before_notes)s
Notes
-----
The probability density function for `fisk` is:
.. math::
f(x, c) = c x^{-c-1} (1 + x^{-c})^{-2}
for :math:`x >= 0` and :math:`c > 0`.
`fisk` takes ``c`` as a shape parameter for :math:`c`.
`fisk` is a special case of `burr` or `burr12` with ``d=1``.
%(after_notes)s
See Also
--------
burr
%(example)s
"""
def _pdf(self, x, c):
# fisk.pdf(x, c) = c * x**(-c-1) * (1 + x**(-c))**(-2)
return burr._pdf(x, c, 1.0)
def _cdf(self, x, c):
return burr._cdf(x, c, 1.0)
def _sf(self, x, c):
return burr._sf(x, c, 1.0)
def _logpdf(self, x, c):
# fisk.pdf(x, c) = c * x**(-c-1) * (1 + x**(-c))**(-2)
return burr._logpdf(x, c, 1.0)
def _logcdf(self, x, c):
return burr._logcdf(x, c, 1.0)
def _logsf(self, x, c):
return burr._logsf(x, c, 1.0)
def _ppf(self, x, c):
return burr._ppf(x, c, 1.0)
def _munp(self, n, c):
return burr._munp(n, c, 1.0)
def _stats(self, c):
return burr._stats(c, 1.0)
def _entropy(self, c):
return 2 - np.log(c)
fisk = fisk_gen(a=0.0, name='fisk')
# median = loc
class cauchy_gen(rv_continuous):
r"""A Cauchy continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `cauchy` is
.. math::
f(x) = \frac{1}{\pi (1 + x^2)}
for a real number :math:`x`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# cauchy.pdf(x) = 1 / (pi * (1 + x**2))
return 1.0/np.pi/(1.0+x*x)
def _cdf(self, x):
return 0.5 + 1.0/np.pi*np.arctan(x)
def _ppf(self, q):
return np.tan(np.pi*q-np.pi/2.0)
def _sf(self, x):
return 0.5 - 1.0/np.pi*np.arctan(x)
def _isf(self, q):
return np.tan(np.pi/2.0-np.pi*q)
def _stats(self):
return np.nan, np.nan, np.nan, np.nan
def _entropy(self):
return np.log(4*np.pi)
def _fitstart(self, data, args=None):
# Initialize ML guesses using quartiles instead of moments.
p25, p50, p75 = np.percentile(data, [25, 50, 75])
return p50, (p75 - p25)/2
cauchy = cauchy_gen(name='cauchy')
class chi_gen(rv_continuous):
r"""A chi continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `chi` is:
.. math::
f(x, k) = \frac{1}{2^{k/2-1} \Gamma \left( k/2 \right)}
x^{k-1} \exp \left( -x^2/2 \right)
for :math:`x >= 0` and :math:`k > 0` (degrees of freedom, denoted ``df``
in the implementation). :math:`\Gamma` is the gamma function
(`scipy.special.gamma`).
Special cases of `chi` are:
- ``chi(1, loc, scale)`` is equivalent to `halfnorm`
- ``chi(2, 0, scale)`` is equivalent to `rayleigh`
- ``chi(3, 0, scale)`` is equivalent to `maxwell`
`chi` takes ``df`` as a shape parameter.
%(after_notes)s
%(example)s
"""
def _rvs(self, df, size=None, random_state=None):
return np.sqrt(chi2.rvs(df, size=size, random_state=random_state))
def _pdf(self, x, df):
# x**(df-1) * exp(-x**2/2)
# chi.pdf(x, df) = -------------------------
# 2**(df/2-1) * gamma(df/2)
return np.exp(self._logpdf(x, df))
def _logpdf(self, x, df):
l = np.log(2) - .5*np.log(2)*df - sc.gammaln(.5*df)
return l + sc.xlogy(df - 1., x) - .5*x**2
def _cdf(self, x, df):
return sc.gammainc(.5*df, .5*x**2)
def _ppf(self, q, df):
return np.sqrt(2*sc.gammaincinv(.5*df, q))
def _stats(self, df):
mu = np.sqrt(2)*sc.gamma(df/2.0+0.5)/sc.gamma(df/2.0)
mu2 = df - mu*mu
g1 = (2*mu**3.0 + mu*(1-2*df))/np.asarray(np.power(mu2, 1.5))
g2 = 2*df*(1.0-df)-6*mu**4 + 4*mu**2 * (2*df-1)
g2 /= np.asarray(mu2**2.0)
return mu, mu2, g1, g2
chi = chi_gen(a=0.0, name='chi')
## Chi-squared (gamma-distributed with loc=0 and scale=2 and shape=df/2)
class chi2_gen(rv_continuous):
r"""A chi-squared continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `chi2` is:
.. math::
f(x, k) = \frac{1}{2^{k/2} \Gamma \left( k/2 \right)}
x^{k/2-1} \exp \left( -x/2 \right)
for :math:`x > 0` and :math:`k > 0` (degrees of freedom, denoted ``df``
in the implementation).
`chi2` takes ``df`` as a shape parameter.
%(after_notes)s
%(example)s
"""
def _rvs(self, df, size=None, random_state=None):
return random_state.chisquare(df, size)
def _pdf(self, x, df):
# chi2.pdf(x, df) = 1 / (2*gamma(df/2)) * (x/2)**(df/2-1) * exp(-x/2)
return np.exp(self._logpdf(x, df))
def _logpdf(self, x, df):
return sc.xlogy(df/2.-1, x) - x/2. - sc.gammaln(df/2.) - (np.log(2)*df)/2.
def _cdf(self, x, df):
return sc.chdtr(df, x)
def _sf(self, x, df):
return sc.chdtrc(df, x)
def _isf(self, p, df):
return sc.chdtri(df, p)
def _ppf(self, p, df):
return 2*sc.gammaincinv(df/2, p)
def _stats(self, df):
mu = df
mu2 = 2*df
g1 = 2*np.sqrt(2.0/df)
g2 = 12.0/df
return mu, mu2, g1, g2
chi2 = chi2_gen(a=0.0, name='chi2')
class cosine_gen(rv_continuous):
r"""A cosine continuous random variable.
%(before_notes)s
Notes
-----
The cosine distribution is an approximation to the normal distribution.
The probability density function for `cosine` is:
.. math::
f(x) = \frac{1}{2\pi} (1+\cos(x))
for :math:`-\pi \le x \le \pi`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# cosine.pdf(x) = 1/(2*pi) * (1+cos(x))
return 1.0/2/np.pi*(1+np.cos(x))
def _cdf(self, x):
return 1.0/2/np.pi*(np.pi + x + np.sin(x))
def _stats(self):
return 0.0, np.pi*np.pi/3.0-2.0, 0.0, -6.0*(np.pi**4-90)/(5.0*(np.pi*np.pi-6)**2)
def _entropy(self):
return np.log(4*np.pi)-1.0
cosine = cosine_gen(a=-np.pi, b=np.pi, name='cosine')
class dgamma_gen(rv_continuous):
r"""A double gamma continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `dgamma` is:
.. math::
f(x, a) = \frac{1}{2\Gamma(a)} |x|^{a-1} \exp(-|x|)
for a real number :math:`x` and :math:`a > 0`. :math:`\Gamma` is the
gamma function (`scipy.special.gamma`).
`dgamma` takes ``a`` as a shape parameter for :math:`a`.
%(after_notes)s
%(example)s
"""
def _rvs(self, a, size=None, random_state=None):
u = random_state.uniform(size=size)
gm = gamma.rvs(a, size=size, random_state=random_state)
return gm * np.where(u >= 0.5, 1, -1)
def _pdf(self, x, a):
# dgamma.pdf(x, a) = 1 / (2*gamma(a)) * abs(x)**(a-1) * exp(-abs(x))
ax = abs(x)
return 1.0/(2*sc.gamma(a))*ax**(a-1.0) * np.exp(-ax)
def _logpdf(self, x, a):
ax = abs(x)
return sc.xlogy(a - 1.0, ax) - ax - np.log(2) - sc.gammaln(a)
def _cdf(self, x, a):
fac = 0.5*sc.gammainc(a, abs(x))
return np.where(x > 0, 0.5 + fac, 0.5 - fac)
def _sf(self, x, a):
fac = 0.5*sc.gammainc(a, abs(x))
return np.where(x > 0, 0.5-fac, 0.5+fac)
def _ppf(self, q, a):
fac = sc.gammainccinv(a, 1-abs(2*q-1))
return np.where(q > 0.5, fac, -fac)
def _stats(self, a):
mu2 = a*(a+1.0)
return 0.0, mu2, 0.0, (a+2.0)*(a+3.0)/mu2-3.0
dgamma = dgamma_gen(name='dgamma')
class dweibull_gen(rv_continuous):
r"""A double Weibull continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `dweibull` is given by
.. math::
f(x, c) = c / 2 |x|^{c-1} \exp(-|x|^c)
for a real number :math:`x` and :math:`c > 0`.
`dweibull` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _rvs(self, c, size=None, random_state=None):
u = random_state.uniform(size=size)
w = weibull_min.rvs(c, size=size, random_state=random_state)
return w * (np.where(u >= 0.5, 1, -1))
def _pdf(self, x, c):
# dweibull.pdf(x, c) = c / 2 * abs(x)**(c-1) * exp(-abs(x)**c)
ax = abs(x)
Px = c / 2.0 * ax**(c-1.0) * np.exp(-ax**c)
return Px
def _logpdf(self, x, c):
ax = abs(x)
return np.log(c) - np.log(2.0) + sc.xlogy(c - 1.0, ax) - ax**c
def _cdf(self, x, c):
Cx1 = 0.5 * np.exp(-abs(x)**c)
return np.where(x > 0, 1 - Cx1, Cx1)
def _ppf(self, q, c):
fac = 2. * np.where(q <= 0.5, q, 1. - q)
fac = np.power(-np.log(fac), 1.0 / c)
return np.where(q > 0.5, fac, -fac)
def _munp(self, n, c):
return (1 - (n % 2)) * sc.gamma(1.0 + 1.0 * n / c)
# since we know that all odd moments are zeros, return them at once.
# returning Nones from _stats makes the public stats call _munp
# so overall we're saving one or two gamma function evaluations here.
def _stats(self, c):
return 0, None, 0, None
dweibull = dweibull_gen(name='dweibull')
## Exponential (gamma distributed with a=1.0, loc=loc and scale=scale)
class expon_gen(rv_continuous):
r"""An exponential continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `expon` is:
.. math::
f(x) = \exp(-x)
for :math:`x \ge 0`.
%(after_notes)s
A common parameterization for `expon` is in terms of the rate parameter
``lambda``, such that ``pdf = lambda * exp(-lambda * x)``. This
parameterization corresponds to using ``scale = 1 / lambda``.
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return random_state.standard_exponential(size)
def _pdf(self, x):
# expon.pdf(x) = exp(-x)
return np.exp(-x)
def _logpdf(self, x):
return -x
def _cdf(self, x):
return -sc.expm1(-x)
def _ppf(self, q):
return -sc.log1p(-q)
def _sf(self, x):
return np.exp(-x)
def _logsf(self, x):
return -x
def _isf(self, q):
return -np.log(q)
def _stats(self):
return 1.0, 1.0, 2.0, 6.0
def _entropy(self):
return 1.0
@replace_notes_in_docstring(rv_continuous, notes="""\
This function uses explicit formulas for the maximum likelihood
estimation of the exponential distribution parameters, so the
`optimizer`, `loc` and `scale` keyword arguments are ignored.\n\n""")
def fit(self, data, *args, **kwds):
if len(args) > 0:
raise TypeError("Too many arguments.")
floc = kwds.pop('floc', None)
fscale = kwds.pop('fscale', None)
_remove_optimizer_parameters(kwds)
if floc is not None and fscale is not None:
# This check is for consistency with `rv_continuous.fit`.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
data = np.asarray(data)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
data_min = data.min()
if floc is None:
# ML estimate of the location is the minimum of the data.
loc = data_min
else:
loc = floc
if data_min < loc:
# There are values that are less than the specified loc.
raise FitDataError("expon", lower=floc, upper=np.inf)
if fscale is None:
# ML estimate of the scale is the shifted mean.
scale = data.mean() - loc
else:
scale = fscale
# We expect the return values to be floating point, so ensure it
# by explicitly converting to float.
return float(loc), float(scale)
expon = expon_gen(a=0.0, name='expon')
## Exponentially Modified Normal (exponential distribution
## convolved with a Normal).
## This is called an exponentially modified gaussian on wikipedia
class exponnorm_gen(rv_continuous):
r"""An exponentially modified Normal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `exponnorm` is:
.. math::
f(x, K) = \frac{1}{2K} \exp\left(\frac{1}{2 K^2} - x / K \right)
\text{erfc}\left(-\frac{x - 1/K}{\sqrt{2}}\right)
where :math:`x` is a real number and :math:`K > 0`.
It can be thought of as the sum of a standard normal random variable
and an independent exponentially distributed random variable with rate
``1/K``.
%(after_notes)s
An alternative parameterization of this distribution (for example, in
`Wikipedia <https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution>`_)
involves three parameters, :math:`\mu`, :math:`\lambda` and
:math:`\sigma`.
In the present parameterization this corresponds to having ``loc`` and
``scale`` equal to :math:`\mu` and :math:`\sigma`, respectively, and
shape parameter :math:`K = 1/(\sigma\lambda)`.
.. versionadded:: 0.16.0
%(example)s
"""
def _rvs(self, K, size=None, random_state=None):
expval = random_state.standard_exponential(size) * K
gval = random_state.standard_normal(size)
return expval + gval
def _pdf(self, x, K):
# exponnorm.pdf(x, K) =
# 1/(2*K) exp(1/(2 * K**2)) exp(-x / K) * erfc-(x - 1/K) / sqrt(2))
invK = 1.0 / K
exparg = 0.5 * invK**2 - invK * x
# Avoid overflows; setting np.exp(exparg) to the max float works
# all right here
expval = _lazywhere(exparg < _LOGXMAX, (exparg,), np.exp, _XMAX)
return 0.5 * invK * (expval * sc.erfc(-(x - invK) / np.sqrt(2)))
def _logpdf(self, x, K):
invK = 1.0 / K
exparg = 0.5 * invK**2 - invK * x
return exparg + np.log(0.5 * invK * sc.erfc(-(x - invK) / np.sqrt(2)))
def _cdf(self, x, K):
invK = 1.0 / K
expval = invK * (0.5 * invK - x)
return _norm_cdf(x) - np.exp(expval) * _norm_cdf(x - invK)
def _sf(self, x, K):
invK = 1.0 / K
expval = invK * (0.5 * invK - x)
return _norm_cdf(-x) + np.exp(expval) * _norm_cdf(x - invK)
def _stats(self, K):
K2 = K * K
opK2 = 1.0 + K2
skw = 2 * K**3 * opK2**(-1.5)
krt = 6.0 * K2 * K2 * opK2**(-2)
return K, opK2, skw, krt
exponnorm = exponnorm_gen(name='exponnorm')
class exponweib_gen(rv_continuous):
r"""An exponentiated Weibull continuous random variable.
%(before_notes)s
See Also
--------
weibull_min, numpy.random.RandomState.weibull
Notes
-----
The probability density function for `exponweib` is:
.. math::
f(x, a, c) = a c [1-\exp(-x^c)]^{a-1} \exp(-x^c) x^{c-1}
and its cumulative distribution function is:
.. math::
F(x, a, c) = [1-\exp(-x^c)]^a
for :math:`x > 0`, :math:`a > 0`, :math:`c > 0`.
`exponweib` takes :math:`a` and :math:`c` as shape parameters:
* :math:`a` is the exponentiation parameter,
with the special case :math:`a=1` corresponding to the
(non-exponentiated) Weibull distribution `weibull_min`.
* :math:`c` is the shape parameter of the non-exponentiated Weibull law.
%(after_notes)s
References
----------
https://en.wikipedia.org/wiki/Exponentiated_Weibull_distribution
%(example)s
"""
def _pdf(self, x, a, c):
# exponweib.pdf(x, a, c) =
# a * c * (1-exp(-x**c))**(a-1) * exp(-x**c)*x**(c-1)
return np.exp(self._logpdf(x, a, c))
def _logpdf(self, x, a, c):
negxc = -x**c
exm1c = -sc.expm1(negxc)
logp = (np.log(a) + np.log(c) + sc.xlogy(a - 1.0, exm1c) +
negxc + sc.xlogy(c - 1.0, x))
return logp
def _cdf(self, x, a, c):
exm1c = -sc.expm1(-x**c)
return exm1c**a
def _ppf(self, q, a, c):
return (-sc.log1p(-q**(1.0/a)))**np.asarray(1.0/c)
exponweib = exponweib_gen(a=0.0, name='exponweib')
class exponpow_gen(rv_continuous):
r"""An exponential power continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `exponpow` is:
.. math::
f(x, b) = b x^{b-1} \exp(1 + x^b - \exp(x^b))
for :math:`x \ge 0`, :math:`b > 0`. Note that this is a different
distribution from the exponential power distribution that is also known
under the names "generalized normal" or "generalized Gaussian".
`exponpow` takes ``b`` as a shape parameter for :math:`b`.
%(after_notes)s
References
----------
http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Exponentialpower.pdf
%(example)s
"""
def _pdf(self, x, b):
# exponpow.pdf(x, b) = b * x**(b-1) * exp(1 + x**b - exp(x**b))
return np.exp(self._logpdf(x, b))
def _logpdf(self, x, b):
xb = x**b
f = 1 + np.log(b) + sc.xlogy(b - 1.0, x) + xb - np.exp(xb)
return f
def _cdf(self, x, b):
return -sc.expm1(-sc.expm1(x**b))
def _sf(self, x, b):
return np.exp(-sc.expm1(x**b))
def _isf(self, x, b):
return (sc.log1p(-np.log(x)))**(1./b)
def _ppf(self, q, b):
return pow(sc.log1p(-sc.log1p(-q)), 1.0/b)
exponpow = exponpow_gen(a=0.0, name='exponpow')
class fatiguelife_gen(rv_continuous):
r"""A fatigue-life (Birnbaum-Saunders) continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `fatiguelife` is:
.. math::
f(x, c) = \frac{x+1}{2c\sqrt{2\pi x^3}} \exp(-\frac{(x-1)^2}{2x c^2})
for :math:`x >= 0` and :math:`c > 0`.
`fatiguelife` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
References
----------
.. [1] "Birnbaum-Saunders distribution",
https://en.wikipedia.org/wiki/Birnbaum-Saunders_distribution
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, c, size=None, random_state=None):
z = random_state.standard_normal(size)
x = 0.5*c*z
x2 = x*x
t = 1.0 + 2*x2 + 2*x*np.sqrt(1 + x2)
return t
def _pdf(self, x, c):
# fatiguelife.pdf(x, c) =
# (x+1) / (2*c*sqrt(2*pi*x**3)) * exp(-(x-1)**2/(2*x*c**2))
return np.exp(self._logpdf(x, c))
def _logpdf(self, x, c):
return (np.log(x+1) - (x-1)**2 / (2.0*x*c**2) - np.log(2*c) -
0.5*(np.log(2*np.pi) + 3*np.log(x)))
def _cdf(self, x, c):
return _norm_cdf(1.0 / c * (np.sqrt(x) - 1.0/np.sqrt(x)))
def _ppf(self, q, c):
tmp = c*sc.ndtri(q)
return 0.25 * (tmp + np.sqrt(tmp**2 + 4))**2
def _stats(self, c):
# NB: the formula for kurtosis in wikipedia seems to have an error:
# it's 40, not 41. At least it disagrees with the one from Wolfram
# Alpha. And the latter one, below, passes the tests, while the wiki
# one doesn't So far I didn't have the guts to actually check the
# coefficients from the expressions for the raw moments.
c2 = c*c
mu = c2 / 2.0 + 1.0
den = 5.0 * c2 + 4.0
mu2 = c2*den / 4.0
g1 = 4 * c * (11*c2 + 6.0) / np.power(den, 1.5)
g2 = 6 * c2 * (93*c2 + 40.0) / den**2.0
return mu, mu2, g1, g2
fatiguelife = fatiguelife_gen(a=0.0, name='fatiguelife')
class foldcauchy_gen(rv_continuous):
r"""A folded Cauchy continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `foldcauchy` is:
.. math::
f(x, c) = \frac{1}{\pi (1+(x-c)^2)} + \frac{1}{\pi (1+(x+c)^2)}
for :math:`x \ge 0`.
`foldcauchy` takes ``c`` as a shape parameter for :math:`c`.
%(example)s
"""
def _rvs(self, c, size=None, random_state=None):
return abs(cauchy.rvs(loc=c, size=size,
random_state=random_state))
def _pdf(self, x, c):
# foldcauchy.pdf(x, c) = 1/(pi*(1+(x-c)**2)) + 1/(pi*(1+(x+c)**2))
return 1.0/np.pi*(1.0/(1+(x-c)**2) + 1.0/(1+(x+c)**2))
def _cdf(self, x, c):
return 1.0/np.pi*(np.arctan(x-c) + np.arctan(x+c))
def _stats(self, c):
return np.inf, np.inf, np.nan, np.nan
foldcauchy = foldcauchy_gen(a=0.0, name='foldcauchy')
class f_gen(rv_continuous):
r"""An F continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `f` is:
.. math::
f(x, df_1, df_2) = \frac{df_2^{df_2/2} df_1^{df_1/2} x^{df_1 / 2-1}}
{(df_2+df_1 x)^{(df_1+df_2)/2}
B(df_1/2, df_2/2)}
for :math:`x > 0`.
`f` takes ``dfn`` and ``dfd`` as shape parameters.
%(after_notes)s
%(example)s
"""
def _rvs(self, dfn, dfd, size=None, random_state=None):
return random_state.f(dfn, dfd, size)
def _pdf(self, x, dfn, dfd):
# df2**(df2/2) * df1**(df1/2) * x**(df1/2-1)
# F.pdf(x, df1, df2) = --------------------------------------------
# (df2+df1*x)**((df1+df2)/2) * B(df1/2, df2/2)
return np.exp(self._logpdf(x, dfn, dfd))
def _logpdf(self, x, dfn, dfd):
n = 1.0 * dfn
m = 1.0 * dfd
lPx = m/2 * np.log(m) + n/2 * np.log(n) + sc.xlogy(n/2 - 1, x)
lPx -= ((n+m)/2) * np.log(m + n*x) + sc.betaln(n/2, m/2)
return lPx
def _cdf(self, x, dfn, dfd):
return sc.fdtr(dfn, dfd, x)
def _sf(self, x, dfn, dfd):
return sc.fdtrc(dfn, dfd, x)
def _ppf(self, q, dfn, dfd):
return sc.fdtri(dfn, dfd, q)
def _stats(self, dfn, dfd):
v1, v2 = 1. * dfn, 1. * dfd
v2_2, v2_4, v2_6, v2_8 = v2 - 2., v2 - 4., v2 - 6., v2 - 8.
mu = _lazywhere(
v2 > 2, (v2, v2_2),
lambda v2, v2_2: v2 / v2_2,
np.inf)
mu2 = _lazywhere(
v2 > 4, (v1, v2, v2_2, v2_4),
lambda v1, v2, v2_2, v2_4:
2 * v2 * v2 * (v1 + v2_2) / (v1 * v2_2**2 * v2_4),
np.inf)
g1 = _lazywhere(
v2 > 6, (v1, v2_2, v2_4, v2_6),
lambda v1, v2_2, v2_4, v2_6:
(2 * v1 + v2_2) / v2_6 * np.sqrt(v2_4 / (v1 * (v1 + v2_2))),
np.nan)
g1 *= np.sqrt(8.)
g2 = _lazywhere(
v2 > 8, (g1, v2_6, v2_8),
lambda g1, v2_6, v2_8: (8 + g1 * g1 * v2_6) / v2_8,
np.nan)
g2 *= 3. / 2.
return mu, mu2, g1, g2
f = f_gen(a=0.0, name='f')
## Folded Normal
## abs(Z) where (Z is normal with mu=L and std=S so that c=abs(L)/S)
##
## note: regress docs have scale parameter correct, but first parameter
## he gives is a shape parameter A = c * scale
## Half-normal is folded normal with shape-parameter c=0.
class foldnorm_gen(rv_continuous):
r"""A folded normal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `foldnorm` is:
.. math::
f(x, c) = \sqrt{2/\pi} cosh(c x) \exp(-\frac{x^2+c^2}{2})
for :math:`c \ge 0`.
`foldnorm` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _argcheck(self, c):
return c >= 0
def _rvs(self, c, size=None, random_state=None):
return abs(random_state.standard_normal(size) + c)
def _pdf(self, x, c):
# foldnormal.pdf(x, c) = sqrt(2/pi) * cosh(c*x) * exp(-(x**2+c**2)/2)
return _norm_pdf(x + c) + _norm_pdf(x-c)
def _cdf(self, x, c):
return _norm_cdf(x-c) + _norm_cdf(x+c) - 1.0
def _stats(self, c):
# Regina C. Elandt, Technometrics 3, 551 (1961)
# https://www.jstor.org/stable/1266561
#
c2 = c*c
expfac = np.exp(-0.5*c2) / np.sqrt(2.*np.pi)
mu = 2.*expfac + c * sc.erf(c/np.sqrt(2))
mu2 = c2 + 1 - mu*mu
g1 = 2. * (mu*mu*mu - c2*mu - expfac)
g1 /= np.power(mu2, 1.5)
g2 = c2 * (c2 + 6.) + 3 + 8.*expfac*mu
g2 += (2. * (c2 - 3.) - 3. * mu**2) * mu**2
g2 = g2 / mu2**2.0 - 3.
return mu, mu2, g1, g2
foldnorm = foldnorm_gen(a=0.0, name='foldnorm')
class weibull_min_gen(rv_continuous):
r"""Weibull minimum continuous random variable.
The Weibull Minimum Extreme Value distribution, from extreme value theory
(Fisher-Gnedenko theorem), is also often simply called the Weibull
distribution. It arises as the limiting distribution of the rescaled
minimum of iid random variables.
%(before_notes)s
See Also
--------
weibull_max, numpy.random.RandomState.weibull, exponweib
Notes
-----
The probability density function for `weibull_min` is:
.. math::
f(x, c) = c x^{c-1} \exp(-x^c)
for :math:`x > 0`, :math:`c > 0`.
`weibull_min` takes ``c`` as a shape parameter for :math:`c`.
(named :math:`k` in Wikipedia article and :math:`a` in
``numpy.random.weibull``). Special shape values are :math:`c=1` and
:math:`c=2` where Weibull distribution reduces to the `expon` and
`rayleigh` distributions respectively.
%(after_notes)s
References
----------
https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/Fisher-Tippett-Gnedenko_theorem
%(example)s
"""
def _pdf(self, x, c):
# frechet_r.pdf(x, c) = c * x**(c-1) * exp(-x**c)
return c*pow(x, c-1)*np.exp(-pow(x, c))
def _logpdf(self, x, c):
return np.log(c) + sc.xlogy(c - 1, x) - pow(x, c)
def _cdf(self, x, c):
return -sc.expm1(-pow(x, c))
def _sf(self, x, c):
return np.exp(-pow(x, c))
def _logsf(self, x, c):
return -pow(x, c)
def _ppf(self, q, c):
return pow(-sc.log1p(-q), 1.0/c)
def _munp(self, n, c):
return sc.gamma(1.0+n*1.0/c)
def _entropy(self, c):
return -_EULER / c - np.log(c) + _EULER + 1
weibull_min = weibull_min_gen(a=0.0, name='weibull_min')
class weibull_max_gen(rv_continuous):
r"""Weibull maximum continuous random variable.
The Weibull Maximum Extreme Value distribution, from extreme value theory
(Fisher-Gnedenko theorem), is the limiting distribution of rescaled
maximum of iid random variables. This is the distribution of -X
if X is from the `weibull_min` function.
%(before_notes)s
See Also
--------
weibull_min
Notes
-----
The probability density function for `weibull_max` is:
.. math::
f(x, c) = c (-x)^{c-1} \exp(-(-x)^c)
for :math:`x < 0`, :math:`c > 0`.
`weibull_max` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
References
----------
https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/Fisher-Tippett-Gnedenko_theorem
%(example)s
"""
def _pdf(self, x, c):
# frechet_l.pdf(x, c) = c * (-x)**(c-1) * exp(-(-x)**c)
return c*pow(-x, c-1)*np.exp(-pow(-x, c))
def _logpdf(self, x, c):
return np.log(c) + sc.xlogy(c-1, -x) - pow(-x, c)
def _cdf(self, x, c):
return np.exp(-pow(-x, c))
def _logcdf(self, x, c):
return -pow(-x, c)
def _sf(self, x, c):
return -sc.expm1(-pow(-x, c))
def _ppf(self, q, c):
return -pow(-np.log(q), 1.0/c)
def _munp(self, n, c):
val = sc.gamma(1.0+n*1.0/c)
if int(n) % 2:
sgn = -1
else:
sgn = 1
return sgn * val
def _entropy(self, c):
return -_EULER / c - np.log(c) + _EULER + 1
weibull_max = weibull_max_gen(b=0.0, name='weibull_max')
# Public methods to be deprecated in frechet_r and frechet_l:
# ['__call__', 'cdf', 'entropy', 'expect', 'fit', 'fit_loc_scale', 'freeze',
# 'interval', 'isf', 'logcdf', 'logpdf', 'logsf', 'mean', 'median', 'moment',
# 'nnlf', 'pdf', 'ppf', 'rvs', 'sf', 'stats', 'std', 'var']
_frechet_r_deprec_msg = """\
The distribution `frechet_r` is a synonym for `weibull_min`; this historical
usage is deprecated because of possible confusion with the (quite different)
Frechet distribution. To preserve the existing behavior of the program, use
`scipy.stats.weibull_min`. For the Frechet distribution (i.e. the Type II
extreme value distribution), use `scipy.stats.invweibull`."""
class frechet_r_gen(weibull_min_gen):
"""A Frechet right (or Weibull minimum) continuous random variable.
%(before_notes)s
See Also
--------
weibull_min : The same distribution as `frechet_r`.
Notes
-----
%(after_notes)s
%(example)s
"""
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def __call__(self, *args, **kwargs):
return weibull_min_gen.__call__(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def cdf(self, *args, **kwargs):
return weibull_min_gen.cdf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def entropy(self, *args, **kwargs):
return weibull_min_gen.entropy(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def expect(self, *args, **kwargs):
return weibull_min_gen.expect(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def fit(self, *args, **kwargs):
return weibull_min_gen.fit(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def fit_loc_scale(self, *args, **kwargs):
return weibull_min_gen.fit_loc_scale(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def freeze(self, *args, **kwargs):
return weibull_min_gen.freeze(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def interval(self, *args, **kwargs):
return weibull_min_gen.interval(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def isf(self, *args, **kwargs):
return weibull_min_gen.isf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def logcdf(self, *args, **kwargs):
return weibull_min_gen.logcdf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def logpdf(self, *args, **kwargs):
return weibull_min_gen.logpdf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def logsf(self, *args, **kwargs):
return weibull_min_gen.logsf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def mean(self, *args, **kwargs):
return weibull_min_gen.mean(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def median(self, *args, **kwargs):
return weibull_min_gen.median(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def moment(self, *args, **kwargs):
return weibull_min_gen.moment(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def nnlf(self, *args, **kwargs):
return weibull_min_gen.nnlf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def pdf(self, *args, **kwargs):
return weibull_min_gen.pdf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def ppf(self, *args, **kwargs):
return weibull_min_gen.ppf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def rvs(self, *args, **kwargs):
return weibull_min_gen.rvs(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def sf(self, *args, **kwargs):
return weibull_min_gen.sf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def stats(self, *args, **kwargs):
return weibull_min_gen.stats(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def std(self, *args, **kwargs):
return weibull_min_gen.std(self, *args, **kwargs)
@np.deprecate(old_name='frechet_r', message=_frechet_r_deprec_msg)
def var(self, *args, **kwargs):
return weibull_min_gen.var(self, *args, **kwargs)
frechet_r = frechet_r_gen(a=0.0, name='frechet_r')
_frechet_l_deprec_msg = """\
The distribution `frechet_l` is a synonym for `weibull_max`; this historical
usage is deprecated because of possible confusion with the (quite different)
Frechet distribution. To preserve the existing behavior of the program, use
`scipy.stats.weibull_max`. For the Frechet distribution (i.e. the Type II
extreme value distribution), use `scipy.stats.invweibull`."""
class frechet_l_gen(weibull_max_gen):
"""A Frechet left (or Weibull maximum) continuous random variable.
%(before_notes)s
See Also
--------
weibull_max : The same distribution as `frechet_l`.
Notes
-----
%(after_notes)s
%(example)s
"""
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def __call__(self, *args, **kwargs):
return weibull_max_gen.__call__(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def cdf(self, *args, **kwargs):
return weibull_max_gen.cdf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def entropy(self, *args, **kwargs):
return weibull_max_gen.entropy(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def expect(self, *args, **kwargs):
return weibull_max_gen.expect(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def fit(self, *args, **kwargs):
return weibull_max_gen.fit(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def fit_loc_scale(self, *args, **kwargs):
return weibull_max_gen.fit_loc_scale(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def freeze(self, *args, **kwargs):
return weibull_max_gen.freeze(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def interval(self, *args, **kwargs):
return weibull_max_gen.interval(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def isf(self, *args, **kwargs):
return weibull_max_gen.isf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def logcdf(self, *args, **kwargs):
return weibull_max_gen.logcdf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def logpdf(self, *args, **kwargs):
return weibull_max_gen.logpdf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def logsf(self, *args, **kwargs):
return weibull_max_gen.logsf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def mean(self, *args, **kwargs):
return weibull_max_gen.mean(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def median(self, *args, **kwargs):
return weibull_max_gen.median(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def moment(self, *args, **kwargs):
return weibull_max_gen.moment(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def nnlf(self, *args, **kwargs):
return weibull_max_gen.nnlf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def pdf(self, *args, **kwargs):
return weibull_max_gen.pdf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def ppf(self, *args, **kwargs):
return weibull_max_gen.ppf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def rvs(self, *args, **kwargs):
return weibull_max_gen.rvs(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def sf(self, *args, **kwargs):
return weibull_max_gen.sf(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def stats(self, *args, **kwargs):
return weibull_max_gen.stats(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def std(self, *args, **kwargs):
return weibull_max_gen.std(self, *args, **kwargs)
@np.deprecate(old_name='frechet_l', message=_frechet_l_deprec_msg)
def var(self, *args, **kwargs):
return weibull_max_gen.var(self, *args, **kwargs)
frechet_l = frechet_l_gen(b=0.0, name='frechet_l')
class genlogistic_gen(rv_continuous):
r"""A generalized logistic continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `genlogistic` is:
.. math::
f(x, c) = c \frac{\exp(-x)}
{(1 + \exp(-x))^{c+1}}
for :math:`x >= 0`, :math:`c > 0`.
`genlogistic` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, c):
# genlogistic.pdf(x, c) = c * exp(-x) / (1 + exp(-x))**(c+1)
return np.exp(self._logpdf(x, c))
def _logpdf(self, x, c):
return np.log(c) - x - (c+1.0)*sc.log1p(np.exp(-x))
def _cdf(self, x, c):
Cx = (1+np.exp(-x))**(-c)
return Cx
def _ppf(self, q, c):
vals = -np.log(pow(q, -1.0/c)-1)
return vals
def _stats(self, c):
mu = _EULER + sc.psi(c)
mu2 = np.pi*np.pi/6.0 + sc.zeta(2, c)
g1 = -2*sc.zeta(3, c) + 2*_ZETA3
g1 /= np.power(mu2, 1.5)
g2 = np.pi**4/15.0 + 6*sc.zeta(4, c)
g2 /= mu2**2.0
return mu, mu2, g1, g2
genlogistic = genlogistic_gen(name='genlogistic')
class genpareto_gen(rv_continuous):
r"""A generalized Pareto continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `genpareto` is:
.. math::
f(x, c) = (1 + c x)^{-1 - 1/c}
defined for :math:`x \ge 0` if :math:`c \ge 0`, and for
:math:`0 \le x \le -1/c` if :math:`c < 0`.
`genpareto` takes ``c`` as a shape parameter for :math:`c`.
For :math:`c=0`, `genpareto` reduces to the exponential
distribution, `expon`:
.. math::
f(x, 0) = \exp(-x)
For :math:`c=-1`, `genpareto` is uniform on ``[0, 1]``:
.. math::
f(x, -1) = 1
%(after_notes)s
%(example)s
"""
def _argcheck(self, c):
return np.isfinite(c)
def _get_support(self, c):
c = np.asarray(c)
b = _lazywhere(c < 0, (c,),
lambda c: -1. / c,
np.inf)
a = np.where(c >= 0, self.a, self.a)
return a, b
def _pdf(self, x, c):
# genpareto.pdf(x, c) = (1 + c * x)**(-1 - 1/c)
return np.exp(self._logpdf(x, c))
def _logpdf(self, x, c):
return _lazywhere((x == x) & (c != 0), (x, c),
lambda x, c: -sc.xlog1py(c + 1., c*x) / c,
-x)
def _cdf(self, x, c):
return -sc.inv_boxcox1p(-x, -c)
def _sf(self, x, c):
return sc.inv_boxcox(-x, -c)
def _logsf(self, x, c):
return _lazywhere((x == x) & (c != 0), (x, c),
lambda x, c: -sc.log1p(c*x) / c,
-x)
def _ppf(self, q, c):
return -sc.boxcox1p(-q, -c)
def _isf(self, q, c):
return -sc.boxcox(q, -c)
def _stats(self, c, moments='mv'):
if 'm' not in moments:
m = None
else:
m = _lazywhere(c < 1, (c,),
lambda xi: 1/(1 - xi),
np.inf)
if 'v' not in moments:
v = None
else:
v = _lazywhere(c < 1/2, (c,),
lambda xi: 1 / (1 - xi)**2 / (1 - 2*xi),
np.nan)
if 's' not in moments:
s = None
else:
s = _lazywhere(c < 1/3, (c,),
lambda xi: 2 * (1 + xi) * np.sqrt(1 - 2*xi) /
(1 - 3*xi),
np.nan)
if 'k' not in moments:
k = None
else:
k = _lazywhere(c < 1/4, (c,),
lambda xi: 3 * (1 - 2*xi) * (2*xi**2 + xi + 3) /
(1 - 3*xi) / (1 - 4*xi) - 3,
np.nan)
return m, v, s, k
def _munp(self, n, c):
def __munp(n, c):
val = 0.0
k = np.arange(0, n + 1)
for ki, cnk in zip(k, sc.comb(n, k)):
val = val + cnk * (-1) ** ki / (1.0 - c * ki)
return np.where(c * n < 1, val * (-1.0 / c) ** n, np.inf)
return _lazywhere(c != 0, (c,),
lambda c: __munp(n, c),
sc.gamma(n + 1))
def _entropy(self, c):
return 1. + c
genpareto = genpareto_gen(a=0.0, name='genpareto')
class genexpon_gen(rv_continuous):
r"""A generalized exponential continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `genexpon` is:
.. math::
f(x, a, b, c) = (a + b (1 - \exp(-c x)))
\exp(-a x - b x + \frac{b}{c} (1-\exp(-c x)))
for :math:`x \ge 0`, :math:`a, b, c > 0`.
`genexpon` takes :math:`a`, :math:`b` and :math:`c` as shape parameters.
%(after_notes)s
References
----------
H.K. Ryu, "An Extension of Marshall and Olkin's Bivariate Exponential
Distribution", Journal of the American Statistical Association, 1993.
N. Balakrishnan, "The Exponential Distribution: Theory, Methods and
Applications", Asit P. Basu.
%(example)s
"""
def _pdf(self, x, a, b, c):
# genexpon.pdf(x, a, b, c) = (a + b * (1 - exp(-c*x))) * \
# exp(-a*x - b*x + b/c * (1-exp(-c*x)))
return (a + b*(-sc.expm1(-c*x)))*np.exp((-a-b)*x +
b*(-sc.expm1(-c*x))/c)
def _cdf(self, x, a, b, c):
return -sc.expm1((-a-b)*x + b*(-sc.expm1(-c*x))/c)
def _logpdf(self, x, a, b, c):
return np.log(a+b*(-sc.expm1(-c*x))) + (-a-b)*x+b*(-sc.expm1(-c*x))/c
genexpon = genexpon_gen(a=0.0, name='genexpon')
class genextreme_gen(rv_continuous):
r"""A generalized extreme value continuous random variable.
%(before_notes)s
See Also
--------
gumbel_r
Notes
-----
For :math:`c=0`, `genextreme` is equal to `gumbel_r`.
The probability density function for `genextreme` is:
.. math::
f(x, c) = \begin{cases}
\exp(-\exp(-x)) \exp(-x) &\text{for } c = 0\\
\exp(-(1-c x)^{1/c}) (1-c x)^{1/c-1} &\text{for }
x \le 1/c, c > 0
\end{cases}
Note that several sources and software packages use the opposite
convention for the sign of the shape parameter :math:`c`.
`genextreme` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _argcheck(self, c):
return np.where(abs(c) == np.inf, 0, 1)
def _get_support(self, c):
_b = np.where(c > 0, 1.0 / np.maximum(c, _XMIN), np.inf)
_a = np.where(c < 0, 1.0 / np.minimum(c, -_XMIN), -np.inf)
return _a, _b
def _loglogcdf(self, x, c):
return _lazywhere((x == x) & (c != 0), (x, c),
lambda x, c: sc.log1p(-c*x)/c, -x)
def _pdf(self, x, c):
# genextreme.pdf(x, c) =
# exp(-exp(-x))*exp(-x), for c==0
# exp(-(1-c*x)**(1/c))*(1-c*x)**(1/c-1), for x \le 1/c, c > 0
return np.exp(self._logpdf(x, c))
def _logpdf(self, x, c):
cx = _lazywhere((x == x) & (c != 0), (x, c), lambda x, c: c*x, 0.0)
logex2 = sc.log1p(-cx)
logpex2 = self._loglogcdf(x, c)
pex2 = np.exp(logpex2)
# Handle special cases
np.putmask(logpex2, (c == 0) & (x == -np.inf), 0.0)
logpdf = np.where((cx == 1) | (cx == -np.inf),
-np.inf,
-pex2+logpex2-logex2)
np.putmask(logpdf, (c == 1) & (x == 1), 0.0)
return logpdf
def _logcdf(self, x, c):
return -np.exp(self._loglogcdf(x, c))
def _cdf(self, x, c):
return np.exp(self._logcdf(x, c))
def _sf(self, x, c):
return -sc.expm1(self._logcdf(x, c))
def _ppf(self, q, c):
x = -np.log(-np.log(q))
return _lazywhere((x == x) & (c != 0), (x, c),
lambda x, c: -sc.expm1(-c * x) / c, x)
def _isf(self, q, c):
x = -np.log(-sc.log1p(-q))
return _lazywhere((x == x) & (c != 0), (x, c),
lambda x, c: -sc.expm1(-c * x) / c, x)
def _stats(self, c):
g = lambda n: sc.gamma(n*c + 1)
g1 = g(1)
g2 = g(2)
g3 = g(3)
g4 = g(4)
g2mg12 = np.where(abs(c) < 1e-7, (c*np.pi)**2.0/6.0, g2-g1**2.0)
gam2k = np.where(abs(c) < 1e-7, np.pi**2.0/6.0,
sc.expm1(sc.gammaln(2.0*c+1.0)-2*sc.gammaln(c + 1.0))/c**2.0)
eps = 1e-14
gamk = np.where(abs(c) < eps, -_EULER, sc.expm1(sc.gammaln(c + 1))/c)
m = np.where(c < -1.0, np.nan, -gamk)
v = np.where(c < -0.5, np.nan, g1**2.0*gam2k)
# skewness
sk1 = _lazywhere(c >= -1./3,
(c, g1, g2, g3, g2mg12),
lambda c, g1, g2, g3, g2gm12:
np.sign(c)*(-g3 + (g2 + 2*g2mg12)*g1)/g2mg12**1.5,
fillvalue=np.nan)
sk = np.where(abs(c) <= eps**0.29, 12*np.sqrt(6)*_ZETA3/np.pi**3, sk1)
# kurtosis
ku1 = _lazywhere(c >= -1./4,
(g1, g2, g3, g4, g2mg12),
lambda g1, g2, g3, g4, g2mg12:
(g4 + (-4*g3 + 3*(g2 + g2mg12)*g1)*g1)/g2mg12**2,
fillvalue=np.nan)
ku = np.where(abs(c) <= (eps)**0.23, 12.0/5.0, ku1-3.0)
return m, v, sk, ku
def _fitstart(self, data):
# This is better than the default shape of (1,).
g = _skew(data)
if g < 0:
a = 0.5
else:
a = -0.5
return super(genextreme_gen, self)._fitstart(data, args=(a,))
def _munp(self, n, c):
k = np.arange(0, n+1)
vals = 1.0/c**n * np.sum(
sc.comb(n, k) * (-1)**k * sc.gamma(c*k + 1),
axis=0)
return np.where(c*n > -1, vals, np.inf)
def _entropy(self, c):
return _EULER*(1 - c) + 1
genextreme = genextreme_gen(name='genextreme')
def _digammainv(y):
# Inverse of the digamma function (real positive arguments only).
# This function is used in the `fit` method of `gamma_gen`.
# The function uses either optimize.fsolve or optimize.newton
# to solve `sc.digamma(x) - y = 0`. There is probably room for
# improvement, but currently it works over a wide range of y:
# >>> y = 64*np.random.randn(1000000)
# >>> y.min(), y.max()
# (-311.43592651416662, 351.77388222276869)
# x = [_digammainv(t) for t in y]
# np.abs(sc.digamma(x) - y).max()
# 1.1368683772161603e-13
#
_em = 0.5772156649015328606065120
func = lambda x: sc.digamma(x) - y
if y > -0.125:
x0 = np.exp(y) + 0.5
if y < 10:
# Some experimentation shows that newton reliably converges
# must faster than fsolve in this y range. For larger y,
# newton sometimes fails to converge.
value = optimize.newton(func, x0, tol=1e-10)
return value
elif y > -3:
x0 = np.exp(y/2.332) + 0.08661
else:
x0 = 1.0 / (-y - _em)
value, info, ier, mesg = optimize.fsolve(func, x0, xtol=1e-11,
full_output=True)
if ier != 1:
raise RuntimeError("_digammainv: fsolve failed, y = %r" % y)
return value[0]
## Gamma (Use MATLAB and MATHEMATICA (b=theta=scale, a=alpha=shape) definition)
## gamma(a, loc, scale) with a an integer is the Erlang distribution
## gamma(1, loc, scale) is the Exponential distribution
## gamma(df/2, 0, 2) is the chi2 distribution with df degrees of freedom.
class gamma_gen(rv_continuous):
r"""A gamma continuous random variable.
%(before_notes)s
See Also
--------
erlang, expon
Notes
-----
The probability density function for `gamma` is:
.. math::
f(x, a) = \frac{x^{a-1} \exp(-x)}{\Gamma(a)}
for :math:`x \ge 0`, :math:`a > 0`. Here :math:`\Gamma(a)` refers to the
gamma function.
`gamma` takes ``a`` as a shape parameter for :math:`a`.
When :math:`a` is an integer, `gamma` reduces to the Erlang
distribution, and when :math:`a=1` to the exponential distribution.
%(after_notes)s
%(example)s
"""
def _rvs(self, a, size=None, random_state=None):
return random_state.standard_gamma(a, size)
def _pdf(self, x, a):
# gamma.pdf(x, a) = x**(a-1) * exp(-x) / gamma(a)
return np.exp(self._logpdf(x, a))
def _logpdf(self, x, a):
return sc.xlogy(a-1.0, x) - x - sc.gammaln(a)
def _cdf(self, x, a):
return sc.gammainc(a, x)
def _sf(self, x, a):
return sc.gammaincc(a, x)
def _ppf(self, q, a):
return sc.gammaincinv(a, q)
def _stats(self, a):
return a, a, 2.0/np.sqrt(a), 6.0/a
def _entropy(self, a):
return sc.psi(a)*(1-a) + a + sc.gammaln(a)
def _fitstart(self, data):
# The skewness of the gamma distribution is `4 / np.sqrt(a)`.
# We invert that to estimate the shape `a` using the skewness
# of the data. The formula is regularized with 1e-8 in the
# denominator to allow for degenerate data where the skewness
# is close to 0.
a = 4 / (1e-8 + _skew(data)**2)
return super(gamma_gen, self)._fitstart(data, args=(a,))
@extend_notes_in_docstring(rv_continuous, notes="""\
When the location is fixed by using the argument `floc`, this
function uses explicit formulas or solves a simpler numerical
problem than the full ML optimization problem. So in that case,
the `optimizer`, `loc` and `scale` arguments are ignored.\n\n""")
def fit(self, data, *args, **kwds):
floc = kwds.get('floc', None)
if floc is None:
# loc is not fixed. Use the default fit method.
return super(gamma_gen, self).fit(data, *args, **kwds)
# We already have this value, so just pop it from kwds.
kwds.pop('floc', None)
f0 = _get_fixed_fit_value(kwds, ['f0', 'fa', 'fix_a'])
fscale = kwds.pop('fscale', None)
_remove_optimizer_parameters(kwds)
# Special case: loc is fixed.
if f0 is not None and fscale is not None:
# This check is for consistency with `rv_continuous.fit`.
# Without this check, this function would just return the
# parameters that were given.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
# Fixed location is handled by shifting the data.
data = np.asarray(data)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
if np.any(data <= floc):
raise FitDataError("gamma", lower=floc, upper=np.inf)
if floc != 0:
# Don't do the subtraction in-place, because `data` might be a
# view of the input array.
data = data - floc
xbar = data.mean()
# Three cases to handle:
# * shape and scale both free
# * shape fixed, scale free
# * shape free, scale fixed
if fscale is None:
# scale is free
if f0 is not None:
# shape is fixed
a = f0
else:
# shape and scale are both free.
# The MLE for the shape parameter `a` is the solution to:
# np.log(a) - sc.digamma(a) - np.log(xbar) +
# np.log(data).mean() = 0
s = np.log(xbar) - np.log(data).mean()
func = lambda a: np.log(a) - sc.digamma(a) - s
aest = (3-s + np.sqrt((s-3)**2 + 24*s)) / (12*s)
xa = aest*(1-0.4)
xb = aest*(1+0.4)
a = optimize.brentq(func, xa, xb, disp=0)
# The MLE for the scale parameter is just the data mean
# divided by the shape parameter.
scale = xbar / a
else:
# scale is fixed, shape is free
# The MLE for the shape parameter `a` is the solution to:
# sc.digamma(a) - np.log(data).mean() + np.log(fscale) = 0
c = np.log(data).mean() - np.log(fscale)
a = _digammainv(c)
scale = fscale
return a, floc, scale
gamma = gamma_gen(a=0.0, name='gamma')
class erlang_gen(gamma_gen):
"""An Erlang continuous random variable.
%(before_notes)s
See Also
--------
gamma
Notes
-----
The Erlang distribution is a special case of the Gamma distribution, with
the shape parameter `a` an integer. Note that this restriction is not
enforced by `erlang`. It will, however, generate a warning the first time
a non-integer value is used for the shape parameter.
Refer to `gamma` for examples.
"""
def _argcheck(self, a):
allint = np.all(np.floor(a) == a)
if not allint:
# An Erlang distribution shouldn't really have a non-integer
# shape parameter, so warn the user.
warnings.warn(
'The shape parameter of the erlang distribution '
'has been given a non-integer value %r.' % (a,),
RuntimeWarning)
return a > 0
def _fitstart(self, data):
# Override gamma_gen_fitstart so that an integer initial value is
# used. (Also regularize the division, to avoid issues when
# _skew(data) is 0 or close to 0.)
a = int(4.0 / (1e-8 + _skew(data)**2))
return super(gamma_gen, self)._fitstart(data, args=(a,))
# Trivial override of the fit method, so we can monkey-patch its
# docstring.
def fit(self, data, *args, **kwds):
return super(erlang_gen, self).fit(data, *args, **kwds)
if fit.__doc__:
fit.__doc__ = (rv_continuous.fit.__doc__ +
"""
Notes
-----
The Erlang distribution is generally defined to have integer values
for the shape parameter. This is not enforced by the `erlang` class.
When fitting the distribution, it will generally return a non-integer
value for the shape parameter. By using the keyword argument
`f0=<integer>`, the fit method can be constrained to fit the data to
a specific integer shape parameter.
""")
erlang = erlang_gen(a=0.0, name='erlang')
class gengamma_gen(rv_continuous):
r"""A generalized gamma continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `gengamma` is:
.. math::
f(x, a, c) = \frac{|c| x^{c a-1} \exp(-x^c)}{\Gamma(a)}
for :math:`x \ge 0`, :math:`a > 0`, and :math:`c \ne 0`.
:math:`\Gamma` is the gamma function (`scipy.special.gamma`).
`gengamma` takes :math:`a` and :math:`c` as shape parameters.
%(after_notes)s
%(example)s
"""
def _argcheck(self, a, c):
return (a > 0) & (c != 0)
def _pdf(self, x, a, c):
# gengamma.pdf(x, a, c) = abs(c) * x**(c*a-1) * exp(-x**c) / gamma(a)
return np.exp(self._logpdf(x, a, c))
def _logpdf(self, x, a, c):
return np.log(abs(c)) + sc.xlogy(c*a - 1, x) - x**c - sc.gammaln(a)
def _cdf(self, x, a, c):
xc = x**c
val1 = sc.gammainc(a, xc)
val2 = sc.gammaincc(a, xc)
return np.where(c > 0, val1, val2)
def _sf(self, x, a, c):
xc = x**c
val1 = sc.gammainc(a, xc)
val2 = sc.gammaincc(a, xc)
return np.where(c > 0, val2, val1)
def _ppf(self, q, a, c):
val1 = sc.gammaincinv(a, q)
val2 = sc.gammainccinv(a, q)
return np.where(c > 0, val1, val2)**(1.0/c)
def _isf(self, q, a, c):
val1 = sc.gammaincinv(a, q)
val2 = sc.gammainccinv(a, q)
return np.where(c > 0, val2, val1)**(1.0/c)
def _munp(self, n, a, c):
# Pochhammer symbol: sc.pocha,n) = gamma(a+n)/gamma(a)
return sc.poch(a, n*1.0/c)
def _entropy(self, a, c):
val = sc.psi(a)
return a*(1-val) + 1.0/c*val + sc.gammaln(a) - np.log(abs(c))
gengamma = gengamma_gen(a=0.0, name='gengamma')
class genhalflogistic_gen(rv_continuous):
r"""A generalized half-logistic continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `genhalflogistic` is:
.. math::
f(x, c) = \frac{2 (1 - c x)^{1/(c-1)}}{[1 + (1 - c x)^{1/c}]^2}
for :math:`0 \le x \le 1/c`, and :math:`c > 0`.
`genhalflogistic` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _argcheck(self, c):
return c > 0
def _get_support(self, c):
return self.a, 1.0/c
def _pdf(self, x, c):
# genhalflogistic.pdf(x, c) =
# 2 * (1-c*x)**(1/c-1) / (1+(1-c*x)**(1/c))**2
limit = 1.0/c
tmp = np.asarray(1-c*x)
tmp0 = tmp**(limit-1)
tmp2 = tmp0*tmp
return 2*tmp0 / (1+tmp2)**2
def _cdf(self, x, c):
limit = 1.0/c
tmp = np.asarray(1-c*x)
tmp2 = tmp**(limit)
return (1.0-tmp2) / (1+tmp2)
def _ppf(self, q, c):
return 1.0/c*(1-((1.0-q)/(1.0+q))**c)
def _entropy(self, c):
return 2 - (2*c+1)*np.log(2)
genhalflogistic = genhalflogistic_gen(a=0.0, name='genhalflogistic')
class gompertz_gen(rv_continuous):
r"""A Gompertz (or truncated Gumbel) continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `gompertz` is:
.. math::
f(x, c) = c \exp(x) \exp(-c (e^x-1))
for :math:`x \ge 0`, :math:`c > 0`.
`gompertz` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, c):
# gompertz.pdf(x, c) = c * exp(x) * exp(-c*(exp(x)-1))
return np.exp(self._logpdf(x, c))
def _logpdf(self, x, c):
return np.log(c) + x - c * sc.expm1(x)
def _cdf(self, x, c):
return -sc.expm1(-c * sc.expm1(x))
def _ppf(self, q, c):
return sc.log1p(-1.0 / c * sc.log1p(-q))
def _entropy(self, c):
return 1.0 - np.log(c) - np.exp(c)*sc.expn(1, c)
gompertz = gompertz_gen(a=0.0, name='gompertz')
class gumbel_r_gen(rv_continuous):
r"""A right-skewed Gumbel continuous random variable.
%(before_notes)s
See Also
--------
gumbel_l, gompertz, genextreme
Notes
-----
The probability density function for `gumbel_r` is:
.. math::
f(x) = \exp(-(x + e^{-x}))
The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett
distribution. It is also related to the extreme value distribution,
log-Weibull and Gompertz distributions.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# gumbel_r.pdf(x) = exp(-(x + exp(-x)))
return np.exp(self._logpdf(x))
def _logpdf(self, x):
return -x - np.exp(-x)
def _cdf(self, x):
return np.exp(-np.exp(-x))
def _logcdf(self, x):
return -np.exp(-x)
def _ppf(self, q):
return -np.log(-np.log(q))
def _stats(self):
return _EULER, np.pi*np.pi/6.0, 12*np.sqrt(6)/np.pi**3 * _ZETA3, 12.0/5
def _entropy(self):
# https://en.wikipedia.org/wiki/Gumbel_distribution
return _EULER + 1.
gumbel_r = gumbel_r_gen(name='gumbel_r')
class gumbel_l_gen(rv_continuous):
r"""A left-skewed Gumbel continuous random variable.
%(before_notes)s
See Also
--------
gumbel_r, gompertz, genextreme
Notes
-----
The probability density function for `gumbel_l` is:
.. math::
f(x) = \exp(x - e^x)
The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett
distribution. It is also related to the extreme value distribution,
log-Weibull and Gompertz distributions.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# gumbel_l.pdf(x) = exp(x - exp(x))
return np.exp(self._logpdf(x))
def _logpdf(self, x):
return x - np.exp(x)
def _cdf(self, x):
return -sc.expm1(-np.exp(x))
def _ppf(self, q):
return np.log(-sc.log1p(-q))
def _logsf(self, x):
return -np.exp(x)
def _sf(self, x):
return np.exp(-np.exp(x))
def _isf(self, x):
return np.log(-np.log(x))
def _stats(self):
return -_EULER, np.pi*np.pi/6.0, \
-12*np.sqrt(6)/np.pi**3 * _ZETA3, 12.0/5
def _entropy(self):
return _EULER + 1.
gumbel_l = gumbel_l_gen(name='gumbel_l')
class halfcauchy_gen(rv_continuous):
r"""A Half-Cauchy continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `halfcauchy` is:
.. math::
f(x) = \frac{2}{\pi (1 + x^2)}
for :math:`x \ge 0`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# halfcauchy.pdf(x) = 2 / (pi * (1 + x**2))
return 2.0/np.pi/(1.0+x*x)
def _logpdf(self, x):
return np.log(2.0/np.pi) - sc.log1p(x*x)
def _cdf(self, x):
return 2.0/np.pi*np.arctan(x)
def _ppf(self, q):
return np.tan(np.pi/2*q)
def _stats(self):
return np.inf, np.inf, np.nan, np.nan
def _entropy(self):
return np.log(2*np.pi)
halfcauchy = halfcauchy_gen(a=0.0, name='halfcauchy')
class halflogistic_gen(rv_continuous):
r"""A half-logistic continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `halflogistic` is:
.. math::
f(x) = \frac{ 2 e^{-x} }{ (1+e^{-x})^2 }
= \frac{1}{2} \text{sech}(x/2)^2
for :math:`x \ge 0`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# halflogistic.pdf(x) = 2 * exp(-x) / (1+exp(-x))**2
# = 1/2 * sech(x/2)**2
return np.exp(self._logpdf(x))
def _logpdf(self, x):
return np.log(2) - x - 2. * sc.log1p(np.exp(-x))
def _cdf(self, x):
return np.tanh(x/2.0)
def _ppf(self, q):
return 2*np.arctanh(q)
def _munp(self, n):
if n == 1:
return 2*np.log(2)
if n == 2:
return np.pi*np.pi/3.0
if n == 3:
return 9*_ZETA3
if n == 4:
return 7*np.pi**4 / 15.0
return 2*(1-pow(2.0, 1-n))*sc.gamma(n+1)*sc.zeta(n, 1)
def _entropy(self):
return 2-np.log(2)
halflogistic = halflogistic_gen(a=0.0, name='halflogistic')
class halfnorm_gen(rv_continuous):
r"""A half-normal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `halfnorm` is:
.. math::
f(x) = \sqrt{2/\pi} \exp(-x^2 / 2)
for :math:`x >= 0`.
`halfnorm` is a special case of `chi` with ``df=1``.
%(after_notes)s
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return abs(random_state.standard_normal(size=size))
def _pdf(self, x):
# halfnorm.pdf(x) = sqrt(2/pi) * exp(-x**2/2)
return np.sqrt(2.0/np.pi)*np.exp(-x*x/2.0)
def _logpdf(self, x):
return 0.5 * np.log(2.0/np.pi) - x*x/2.0
def _cdf(self, x):
return _norm_cdf(x)*2-1.0
def _ppf(self, q):
return sc.ndtri((1+q)/2.0)
def _stats(self):
return (np.sqrt(2.0/np.pi),
1-2.0/np.pi,
np.sqrt(2)*(4-np.pi)/(np.pi-2)**1.5,
8*(np.pi-3)/(np.pi-2)**2)
def _entropy(self):
return 0.5*np.log(np.pi/2.0)+0.5
halfnorm = halfnorm_gen(a=0.0, name='halfnorm')
class hypsecant_gen(rv_continuous):
r"""A hyperbolic secant continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `hypsecant` is:
.. math::
f(x) = \frac{1}{\pi} \text{sech}(x)
for a real number :math:`x`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x):
# hypsecant.pdf(x) = 1/pi * sech(x)
return 1.0/(np.pi*np.cosh(x))
def _cdf(self, x):
return 2.0/np.pi*np.arctan(np.exp(x))
def _ppf(self, q):
return np.log(np.tan(np.pi*q/2.0))
def _stats(self):
return 0, np.pi*np.pi/4, 0, 2
def _entropy(self):
return np.log(2*np.pi)
hypsecant = hypsecant_gen(name='hypsecant')
class gausshyper_gen(rv_continuous):
r"""A Gauss hypergeometric continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `gausshyper` is:
.. math::
f(x, a, b, c, z) = C x^{a-1} (1-x)^{b-1} (1+zx)^{-c}
for :math:`0 \le x \le 1`, :math:`a > 0`, :math:`b > 0`, and
:math:`C = \frac{1}{B(a, b) F[2, 1](c, a; a+b; -z)}`.
:math:`F[2, 1]` is the Gauss hypergeometric function
`scipy.special.hyp2f1`.
`gausshyper` takes :math:`a`, :math:`b`, :math:`c` and :math:`z` as shape
parameters.
%(after_notes)s
%(example)s
"""
def _argcheck(self, a, b, c, z):
return (a > 0) & (b > 0) & (c == c) & (z == z)
def _pdf(self, x, a, b, c, z):
# gausshyper.pdf(x, a, b, c, z) =
# C * x**(a-1) * (1-x)**(b-1) * (1+z*x)**(-c)
Cinv = sc.gamma(a)*sc.gamma(b)/sc.gamma(a+b)*sc.hyp2f1(c, a, a+b, -z)
return 1.0/Cinv * x**(a-1.0) * (1.0-x)**(b-1.0) / (1.0+z*x)**c
def _munp(self, n, a, b, c, z):
fac = sc.beta(n+a, b) / sc.beta(a, b)
num = sc.hyp2f1(c, a+n, a+b+n, -z)
den = sc.hyp2f1(c, a, a+b, -z)
return fac*num / den
gausshyper = gausshyper_gen(a=0.0, b=1.0, name='gausshyper')
class invgamma_gen(rv_continuous):
r"""An inverted gamma continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `invgamma` is:
.. math::
f(x, a) = \frac{x^{-a-1}}{\Gamma(a)} \exp(-\frac{1}{x})
for :math:`x >= 0`, :math:`a > 0`. :math:`\Gamma` is the gamma function
(`scipy.special.gamma`).
`invgamma` takes ``a`` as a shape parameter for :math:`a`.
`invgamma` is a special case of `gengamma` with ``c=-1``.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x, a):
# invgamma.pdf(x, a) = x**(-a-1) / gamma(a) * exp(-1/x)
return np.exp(self._logpdf(x, a))
def _logpdf(self, x, a):
return -(a+1) * np.log(x) - sc.gammaln(a) - 1.0/x
def _cdf(self, x, a):
return sc.gammaincc(a, 1.0 / x)
def _ppf(self, q, a):
return 1.0 / sc.gammainccinv(a, q)
def _sf(self, x, a):
return sc.gammainc(a, 1.0 / x)
def _isf(self, q, a):
return 1.0 / sc.gammaincinv(a, q)
def _stats(self, a, moments='mvsk'):
m1 = _lazywhere(a > 1, (a,), lambda x: 1. / (x - 1.), np.inf)
m2 = _lazywhere(a > 2, (a,), lambda x: 1. / (x - 1.)**2 / (x - 2.),
np.inf)
g1, g2 = None, None
if 's' in moments:
g1 = _lazywhere(
a > 3, (a,),
lambda x: 4. * np.sqrt(x - 2.) / (x - 3.), np.nan)
if 'k' in moments:
g2 = _lazywhere(
a > 4, (a,),
lambda x: 6. * (5. * x - 11.) / (x - 3.) / (x - 4.), np.nan)
return m1, m2, g1, g2
def _entropy(self, a):
return a - (a+1.0) * sc.psi(a) + sc.gammaln(a)
invgamma = invgamma_gen(a=0.0, name='invgamma')
# scale is gamma from DATAPLOT and B from Regress
class invgauss_gen(rv_continuous):
r"""An inverse Gaussian continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `invgauss` is:
.. math::
f(x, \mu) = \frac{1}{\sqrt{2 \pi x^3}}
\exp(-\frac{(x-\mu)^2}{2 x \mu^2})
for :math:`x >= 0` and :math:`\mu > 0`.
`invgauss` takes ``mu`` as a shape parameter for :math:`\mu`.
%(after_notes)s
When :math:`\mu` is too small, evaluating the cumulative distribution
function will be inaccurate due to ``cdf(mu -> 0) = inf * 0``.
NaNs are returned for :math:`\mu \le 0.0028`.
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, mu, size=None, random_state=None):
return random_state.wald(mu, 1.0, size=size)
def _pdf(self, x, mu):
# invgauss.pdf(x, mu) =
# 1 / sqrt(2*pi*x**3) * exp(-(x-mu)**2/(2*x*mu**2))
return 1.0/np.sqrt(2*np.pi*x**3.0)*np.exp(-1.0/(2*x)*((x-mu)/mu)**2)
def _logpdf(self, x, mu):
return -0.5*np.log(2*np.pi) - 1.5*np.log(x) - ((x-mu)/mu)**2/(2*x)
def _cdf(self, x, mu):
fac = np.sqrt(1.0/x)
# Numerical accuracy for small `mu` is bad. See #869.
C1 = _norm_cdf(fac*(x-mu)/mu)
C1 += np.exp(1.0/mu) * _norm_cdf(-fac*(x+mu)/mu) * np.exp(1.0/mu)
return C1
def _stats(self, mu):
return mu, mu**3.0, 3*np.sqrt(mu), 15*mu
invgauss = invgauss_gen(a=0.0, name='invgauss')
class geninvgauss_gen(rv_continuous):
r"""A Generalized Inverse Gaussian continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `geninvgauss` is:
.. math::
f(x, p, b) = x^{p-1} \exp(-b (x + 1/x) / 2) / (2 K_p(b))
where `x > 0`, and the parameters `p, b` satisfy `b > 0` ([1]_).
:math:`K_p` is the modified Bessel function of second kind of order `p`
(`scipy.special.kv`).
%(after_notes)s
The inverse Gaussian distribution `stats.invgauss(mu)` is a special case of
`geninvgauss` with `p = -1/2`, `b = 1 / mu` and `scale = mu`.
Generating random variates is challenging for this distribution. The
implementation is based on [2]_.
References
----------
.. [1] O. Barndorff-Nielsen, P. Blaesild, C. Halgreen, "First hitting time
models for the generalized inverse gaussian distribution",
Stochastic Processes and their Applications 7, pp. 49--54, 1978.
.. [2] W. Hoermann and J. Leydold, "Generating generalized inverse Gaussian
random variates", Statistics and Computing, 24(4), p. 547--557, 2014.
%(example)s
"""
def _argcheck(self, p, b):
return (p == p) & (b > 0)
def _logpdf(self, x, p, b):
# kve instead of kv works better for large values of b
# warn if kve produces infinite values and replace by nan
# otherwise c = -inf and the results are often incorrect
@np.vectorize
def logpdf_single(x, p, b):
return _stats.geninvgauss_logpdf(x, p, b)
z = logpdf_single(x, p, b)
if np.isnan(z).any():
msg = ("Infinite values encountered in scipy.special.kve(p, b). "
"Values replaced by NaN to avoid incorrect results.")
warnings.warn(msg, RuntimeWarning)
return z
def _pdf(self, x, p, b):
# relying on logpdf avoids overflow of x**(p-1) for large x and p
return np.exp(self._logpdf(x, p, b))
def _cdf(self, x, *args):
_a, _b = self._get_support(*args)
@np.vectorize
def _cdf_single(x, *args):
p, b = args
user_data = np.array([p, b], float).ctypes.data_as(ctypes.c_void_p)
llc = LowLevelCallable.from_cython(_stats, '_geninvgauss_pdf', user_data)
return integrate.quad(llc, _a, x)[0]
return _cdf_single(x, *args)
def _logquasipdf(self, x, p, b):
# log of the quasi-density (w/o normalizing constant) used in _rvs
return _lazywhere(x > 0, (x, p, b),
lambda x, p, b: (p - 1)*np.log(x) - b*(x + 1/x)/2,
-np.inf)
def _rvs(self, p, b, size=None, random_state=None):
# if p and b are scalar, use _rvs_scalar, otherwise need to create
# output by iterating over parameters
if np.isscalar(p) and np.isscalar(b):
out = self._rvs_scalar(p, b, size, random_state)
elif p.size == 1 and b.size == 1:
out = self._rvs_scalar(p.item(), b.item(), size, random_state)
else:
# When this method is called, size will be a (possibly empty)
# tuple of integers. It will not be None; if `size=None` is passed
# to `rvs()`, size will be the empty tuple ().
p, b = np.broadcast_arrays(p, b)
# p and b now have the same shape.
# `shp` is the shape of the blocks of random variates that are
# generated for each combination of parameters associated with
# broadcasting p and b.
# bc is a tuple the same lenth as size. The values
# in bc are bools. If bc[j] is True, it means that
# entire axis is filled in for a given combination of the
# broadcast arguments.
shp, bc = _check_shape(p.shape, size)
# `numsamples` is the total number of variates to be generated
# for each combination of the input arguments.
numsamples = int(np.prod(shp))
# `out` is the array to be returned. It is filled in in the
# loop below.
out = np.empty(size)
it = np.nditer([p, b],
flags=['multi_index'],
op_flags=[['readonly'], ['readonly']])
while not it.finished:
# Convert the iterator's multi_index into an index into the
# `out` array where the call to _rvs_scalar() will be stored.
# Where bc is True, we use a full slice; otherwise we use the
# index value from it.multi_index. len(it.multi_index) might
# be less than len(bc), and in that case we want to align these
# two sequences to the right, so the loop variable j runs from
# -len(size) to 0. This doesn't cause an IndexError, as
# bc[j] will be True in those cases where it.multi_index[j]
# would cause an IndexError.
idx = tuple((it.multi_index[j] if not bc[j] else slice(None))
for j in range(-len(size), 0))
out[idx] = self._rvs_scalar(it[0], it[1], numsamples, random_state).reshape(shp)
it.iternext()
if size == ():
out = out.item()
return out
def _rvs_scalar(self, p, b, numsamples, random_state):
# following [2], the quasi-pdf is used instead of the pdf for the
# generation of rvs
invert_res = False
if not(numsamples):
numsamples = 1
if p < 0:
# note: if X is geninvgauss(p, b), then 1/X is geninvgauss(-p, b)
p = -p
invert_res = True
m = self._mode(p, b)
# determine method to be used following [2]
ratio_unif = True
if p >= 1 or b > 1:
# ratio of uniforms with mode shift below
mode_shift = True
elif b >= min(0.5, 2 * np.sqrt(1 - p) / 3):
# ratio of uniforms without mode shift below
mode_shift = False
else:
# new algorithm in [2]
ratio_unif = False
# prepare sampling of rvs
size1d = tuple(np.atleast_1d(numsamples))
N = np.prod(size1d) # number of rvs needed, reshape upon return
x = np.zeros(N)
simulated = 0
if ratio_unif:
# use ratio of uniforms method
if mode_shift:
a2 = -2 * (p + 1) / b - m
a1 = 2 * m * (p - 1) / b - 1
# find roots of x**3 + a2*x**2 + a1*x + m (Cardano's formula)
p1 = a1 - a2**2 / 3
q1 = 2 * a2**3 / 27 - a2 * a1 / 3 + m
phi = np.arccos(-q1 * np.sqrt(-27 / p1**3) / 2)
s1 = -np.sqrt(-4 * p1 / 3)
root1 = s1 * np.cos(phi / 3 + np.pi / 3) - a2 / 3
root2 = -s1 * np.cos(phi / 3) - a2 / 3
# root3 = s1 * np.cos(phi / 3 - np.pi / 3) - a2 / 3
# if g is the quasipdf, rescale: g(x) / g(m) which we can write
# as exp(log(g(x)) - log(g(m))). This is important
# since for large values of p and b, g cannot be evaluated.
# denote the rescaled quasipdf by h
lm = self._logquasipdf(m, p, b)
d1 = self._logquasipdf(root1, p, b) - lm
d2 = self._logquasipdf(root2, p, b) - lm
# compute the bounding rectangle w.r.t. h. Note that
# np.exp(0.5*d1) = np.sqrt(g(root1)/g(m)) = np.sqrt(h(root1))
vmin = (root1 - m) * np.exp(0.5 * d1)
vmax = (root2 - m) * np.exp(0.5 * d2)
umax = 1 # umax = sqrt(h(m)) = 1
logqpdf = lambda x: self._logquasipdf(x, p, b) - lm
c = m
else:
# ratio of uniforms without mode shift
# compute np.sqrt(quasipdf(m))
umax = np.exp(0.5*self._logquasipdf(m, p, b))
xplus = ((1 + p) + np.sqrt((1 + p)**2 + b**2))/b
vmin = 0
# compute xplus * np.sqrt(quasipdf(xplus))
vmax = xplus * np.exp(0.5 * self._logquasipdf(xplus, p, b))
c = 0
logqpdf = lambda x: self._logquasipdf(x, p, b)
if vmin >= vmax:
raise ValueError("vmin must be smaller than vmax.")
if umax <= 0:
raise ValueError("umax must be positive.")
i = 1
while simulated < N:
k = N - simulated
# simulate uniform rvs on [0, umax] and [vmin, vmax]
u = umax * random_state.uniform(size=k)
v = random_state.uniform(size=k)
v = vmin + (vmax - vmin) * v
rvs = v / u + c
# rewrite acceptance condition u**2 <= pdf(rvs) by taking logs
accept = (2*np.log(u) <= logqpdf(rvs))
num_accept = np.sum(accept)
if num_accept > 0:
x[simulated:(simulated + num_accept)] = rvs[accept]
simulated += num_accept
if (simulated == 0) and (i*N >= 50000):
msg = ("Not a single random variate could be generated "
"in {} attempts. Sampling does not appear to "
"work for the provided parameters.".format(i*N))
raise RuntimeError(msg)
i += 1
else:
# use new algorithm in [2]
x0 = b / (1 - p)
xs = np.max((x0, 2 / b))
k1 = np.exp(self._logquasipdf(m, p, b))
A1 = k1 * x0
if x0 < 2 / b:
k2 = np.exp(-b)
if p > 0:
A2 = k2 * ((2 / b)**p - x0**p) / p
else:
A2 = k2 * np.log(2 / b**2)
else:
k2, A2 = 0, 0
k3 = xs**(p - 1)
A3 = 2 * k3 * np.exp(-xs * b / 2) / b
A = A1 + A2 + A3
# [2]: rejection constant is < 2.73; so expected runtime is finite
while simulated < N:
k = N - simulated
h, rvs = np.zeros(k), np.zeros(k)
# simulate uniform rvs on [x1, x2] and [0, y2]
u = random_state.uniform(size=k)
v = A * random_state.uniform(size=k)
cond1 = v <= A1
cond2 = np.logical_not(cond1) & (v <= A1 + A2)
cond3 = np.logical_not(cond1 | cond2)
# subdomain (0, x0)
rvs[cond1] = x0 * v[cond1] / A1
h[cond1] = k1
# subdomain (x0, 2 / b)
if p > 0:
rvs[cond2] = (x0**p + (v[cond2] - A1) * p / k2)**(1 / p)
else:
rvs[cond2] = b * np.exp((v[cond2] - A1) * np.exp(b))
h[cond2] = k2 * rvs[cond2]**(p - 1)
# subdomain (xs, infinity)
z = np.exp(-xs * b / 2) - b * (v[cond3] - A1 - A2) / (2 * k3)
rvs[cond3] = -2 / b * np.log(z)
h[cond3] = k3 * np.exp(-rvs[cond3] * b / 2)
# apply rejection method
accept = (np.log(u * h) <= self._logquasipdf(rvs, p, b))
num_accept = sum(accept)
if num_accept > 0:
x[simulated:(simulated + num_accept)] = rvs[accept]
simulated += num_accept
rvs = np.reshape(x, size1d)
if invert_res:
rvs = 1 / rvs
return rvs
def _mode(self, p, b):
# distinguish cases to avoid catastrophic cancellation (see [2])
if p < 1:
return b / (np.sqrt((p - 1)**2 + b**2) + 1 - p)
else:
return (np.sqrt((1 - p)**2 + b**2) - (1 - p)) / b
def _munp(self, n, p, b):
num = sc.kve(p + n, b)
denom = sc.kve(p, b)
inf_vals = np.isinf(num) | np.isinf(denom)
if inf_vals.any():
msg = ("Infinite values encountered in the moment calculation "
"involving scipy.special.kve. Values replaced by NaN to "
"avoid incorrect results.")
warnings.warn(msg, RuntimeWarning)
m = np.full_like(num, np.nan, dtype=np.double)
m[~inf_vals] = num[~inf_vals] / denom[~inf_vals]
else:
m = num / denom
return m
geninvgauss = geninvgauss_gen(a=0.0, name="geninvgauss")
class norminvgauss_gen(rv_continuous):
r"""A Normal Inverse Gaussian continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `norminvgauss` is:
.. math::
f(x, a, b) = \frac{a \, K_1(a \sqrt{1 + x^2})}{\pi \sqrt{1 + x^2}} \,
\exp(\sqrt{a^2 - b^2} + b x)
where :math:`x` is a real number, the parameter :math:`a` is the tail
heaviness and :math:`b` is the asymmetry parameter satisfying
:math:`a > 0` and :math:`|b| <= a`.
:math:`K_1` is the modified Bessel function of second kind
(`scipy.special.k1`).
%(after_notes)s
A normal inverse Gaussian random variable `Y` with parameters `a` and `b`
can be expressed as a normal mean-variance mixture:
`Y = b * V + sqrt(V) * X` where `X` is `norm(0,1)` and `V` is
`invgauss(mu=1/sqrt(a**2 - b**2))`. This representation is used
to generate random variates.
References
----------
O. Barndorff-Nielsen, "Hyperbolic Distributions and Distributions on
Hyperbolae", Scandinavian Journal of Statistics, Vol. 5(3),
pp. 151-157, 1978.
O. Barndorff-Nielsen, "Normal Inverse Gaussian Distributions and Stochastic
Volatility Modelling", Scandinavian Journal of Statistics, Vol. 24,
pp. 1-13, 1997.
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _argcheck(self, a, b):
return (a > 0) & (np.absolute(b) < a)
def _pdf(self, x, a, b):
gamma = np.sqrt(a**2 - b**2)
fac1 = a / np.pi * np.exp(gamma)
sq = np.hypot(1, x) # reduce overflows
return fac1 * sc.k1e(a * sq) * np.exp(b*x - a*sq) / sq
def _rvs(self, a, b, size=None, random_state=None):
# note: X = b * V + sqrt(V) * X is norminvgaus(a,b) if X is standard
# normal and V is invgauss(mu=1/sqrt(a**2 - b**2))
gamma = np.sqrt(a**2 - b**2)
ig = invgauss.rvs(mu=1/gamma, size=size, random_state=random_state)
return b * ig + np.sqrt(ig) * norm.rvs(size=size, random_state=random_state)
def _stats(self, a, b):
gamma = np.sqrt(a**2 - b**2)
mean = b / gamma
variance = a**2 / gamma**3
skewness = 3.0 * b / (a * np.sqrt(gamma))
kurtosis = 3.0 * (1 + 4 * b**2 / a**2) / gamma
return mean, variance, skewness, kurtosis
norminvgauss = norminvgauss_gen(name="norminvgauss")
class invweibull_gen(rv_continuous):
u"""An inverted Weibull continuous random variable.
This distribution is also known as the Fréchet distribution or the
type II extreme value distribution.
%(before_notes)s
Notes
-----
The probability density function for `invweibull` is:
.. math::
f(x, c) = c x^{-c-1} \\exp(-x^{-c})
for :math:`x > 0`, :math:`c > 0`.
`invweibull` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
References
----------
F.R.S. de Gusmao, E.M.M Ortega and G.M. Cordeiro, "The generalized inverse
Weibull distribution", Stat. Papers, vol. 52, pp. 591-619, 2011.
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x, c):
# invweibull.pdf(x, c) = c * x**(-c-1) * exp(-x**(-c))
xc1 = np.power(x, -c - 1.0)
xc2 = np.power(x, -c)
xc2 = np.exp(-xc2)
return c * xc1 * xc2
def _cdf(self, x, c):
xc1 = np.power(x, -c)
return np.exp(-xc1)
def _ppf(self, q, c):
return np.power(-np.log(q), -1.0/c)
def _munp(self, n, c):
return sc.gamma(1 - n / c)
def _entropy(self, c):
return 1+_EULER + _EULER / c - np.log(c)
invweibull = invweibull_gen(a=0, name='invweibull')
class johnsonsb_gen(rv_continuous):
r"""A Johnson SB continuous random variable.
%(before_notes)s
See Also
--------
johnsonsu
Notes
-----
The probability density function for `johnsonsb` is:
.. math::
f(x, a, b) = \frac{b}{x(1-x)} \phi(a + b \log \frac{x}{1-x} )
for :math:`0 <= x < =1` and :math:`a, b > 0`, and :math:`\phi` is the normal
pdf.
`johnsonsb` takes :math:`a` and :math:`b` as shape parameters.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _argcheck(self, a, b):
return (b > 0) & (a == a)
def _pdf(self, x, a, b):
# johnsonsb.pdf(x, a, b) = b / (x*(1-x)) * phi(a + b * log(x/(1-x)))
trm = _norm_pdf(a + b*np.log(x/(1.0-x)))
return b*1.0/(x*(1-x))*trm
def _cdf(self, x, a, b):
return _norm_cdf(a + b*np.log(x/(1.0-x)))
def _ppf(self, q, a, b):
return 1.0 / (1 + np.exp(-1.0 / b * (_norm_ppf(q) - a)))
johnsonsb = johnsonsb_gen(a=0.0, b=1.0, name='johnsonsb')
class johnsonsu_gen(rv_continuous):
r"""A Johnson SU continuous random variable.
%(before_notes)s
See Also
--------
johnsonsb
Notes
-----
The probability density function for `johnsonsu` is:
.. math::
f(x, a, b) = \frac{b}{\sqrt{x^2 + 1}}
\phi(a + b \log(x + \sqrt{x^2 + 1}))
for all :math:`x, a, b > 0`, and :math:`\phi` is the normal pdf.
`johnsonsu` takes :math:`a` and :math:`b` as shape parameters.
%(after_notes)s
%(example)s
"""
def _argcheck(self, a, b):
return (b > 0) & (a == a)
def _pdf(self, x, a, b):
# johnsonsu.pdf(x, a, b) = b / sqrt(x**2 + 1) *
# phi(a + b * log(x + sqrt(x**2 + 1)))
x2 = x*x
trm = _norm_pdf(a + b * np.log(x + np.sqrt(x2+1)))
return b*1.0/np.sqrt(x2+1.0)*trm
def _cdf(self, x, a, b):
return _norm_cdf(a + b * np.log(x + np.sqrt(x*x + 1)))
def _ppf(self, q, a, b):
return np.sinh((_norm_ppf(q) - a) / b)
johnsonsu = johnsonsu_gen(name='johnsonsu')
class laplace_gen(rv_continuous):
r"""A Laplace continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `laplace` is
.. math::
f(x) = \frac{1}{2} \exp(-|x|)
for a real number :math:`x`.
%(after_notes)s
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return random_state.laplace(0, 1, size=size)
def _pdf(self, x):
# laplace.pdf(x) = 1/2 * exp(-abs(x))
return 0.5*np.exp(-abs(x))
def _cdf(self, x):
return np.where(x > 0, 1.0-0.5*np.exp(-x), 0.5*np.exp(x))
def _ppf(self, q):
return np.where(q > 0.5, -np.log(2*(1-q)), np.log(2*q))
def _stats(self):
return 0, 2, 0, 3
def _entropy(self):
return np.log(2)+1
@replace_notes_in_docstring(rv_continuous, notes="""\
This function uses explicit formulas for the maximum likelihood
estimation of the Laplace distribution parameters, so the keyword
arguments `loc`, `scale`, and `optimizer` are ignored.\n\n""")
def fit(self, data, *args, **kwds):
floc = kwds.pop('floc', None)
fscale = kwds.pop('fscale', None)
_check_fit_input_parameters(data, args,
kwds, fixed_param=(floc, fscale))
# MLE for the laplace distribution
if floc is None:
loc = np.median(data)
else:
loc = floc
if fscale is None:
scale = (np.sum(np.abs(data - loc))) / len(data)
else:
scale = fscale
# Source: Statistical Distributions, 3rd Edition. Evans, Hastings,
# and Peacock (2000), Page 124
return loc, scale
laplace = laplace_gen(name='laplace')
def _check_fit_input_parameters(data, args, kwds, fixed_param):
if len(args) > 0:
raise TypeError("Too many arguments.")
_remove_optimizer_parameters(kwds)
if None not in fixed_param:
# This check is for consistency with `rv_continuous.fit`.
# Without this check, this function would just return the
# parameters that were given.
raise RuntimeError("All parameters fixed. There is nothing to "
"optimize.")
data = np.asarray(data)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
class levy_gen(rv_continuous):
r"""A Levy continuous random variable.
%(before_notes)s
See Also
--------
levy_stable, levy_l
Notes
-----
The probability density function for `levy` is:
.. math::
f(x) = \frac{1}{\sqrt{2\pi x^3}} \exp\left(-\frac{1}{2x}\right)
for :math:`x >= 0`.
This is the same as the Levy-stable distribution with :math:`a=1/2` and
:math:`b=1`.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x):
# levy.pdf(x) = 1 / (x * sqrt(2*pi*x)) * exp(-1/(2*x))
return 1 / np.sqrt(2*np.pi*x) / x * np.exp(-1/(2*x))
def _cdf(self, x):
# Equivalent to 2*norm.sf(np.sqrt(1/x))
return sc.erfc(np.sqrt(0.5 / x))
def _ppf(self, q):
# Equivalent to 1.0/(norm.isf(q/2)**2) or 0.5/(erfcinv(q)**2)
val = -sc.ndtri(q/2)
return 1.0 / (val * val)
def _stats(self):
return np.inf, np.inf, np.nan, np.nan
levy = levy_gen(a=0.0, name="levy")
class levy_l_gen(rv_continuous):
r"""A left-skewed Levy continuous random variable.
%(before_notes)s
See Also
--------
levy, levy_stable
Notes
-----
The probability density function for `levy_l` is:
.. math::
f(x) = \frac{1}{|x| \sqrt{2\pi |x|}} \exp{ \left(-\frac{1}{2|x|} \right)}
for :math:`x <= 0`.
This is the same as the Levy-stable distribution with :math:`a=1/2` and
:math:`b=-1`.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x):
# levy_l.pdf(x) = 1 / (abs(x) * sqrt(2*pi*abs(x))) * exp(-1/(2*abs(x)))
ax = abs(x)
return 1/np.sqrt(2*np.pi*ax)/ax*np.exp(-1/(2*ax))
def _cdf(self, x):
ax = abs(x)
return 2 * _norm_cdf(1 / np.sqrt(ax)) - 1
def _ppf(self, q):
val = _norm_ppf((q + 1.0) / 2)
return -1.0 / (val * val)
def _stats(self):
return np.inf, np.inf, np.nan, np.nan
levy_l = levy_l_gen(b=0.0, name="levy_l")
class levy_stable_gen(rv_continuous):
r"""A Levy-stable continuous random variable.
%(before_notes)s
See Also
--------
levy, levy_l
Notes
-----
The distribution for `levy_stable` has characteristic function:
.. math::
\varphi(t, \alpha, \beta, c, \mu) =
e^{it\mu -|ct|^{\alpha}(1-i\beta \operatorname{sign}(t)\Phi(\alpha, t))}
where:
.. math::
\Phi = \begin{cases}
\tan \left({\frac {\pi \alpha }{2}}\right)&\alpha \neq 1\\
-{\frac {2}{\pi }}\log |t|&\alpha =1
\end{cases}
The probability density function for `levy_stable` is:
.. math::
f(x) = \frac{1}{2\pi}\int_{-\infty}^\infty \varphi(t)e^{-ixt}\,dt
where :math:`-\infty < t < \infty`. This integral does not have a known closed form.
For evaluation of pdf we use either Zolotarev :math:`S_0` parameterization with integration,
direct integration of standard parameterization of characteristic function or FFT of
characteristic function. If set to other than None and if number of points is greater than
``levy_stable.pdf_fft_min_points_threshold`` (defaults to None) we use FFT otherwise we use one
of the other methods.
The default method is 'best' which uses Zolotarev's method if alpha = 1 and integration of
characteristic function otherwise. The default method can be changed by setting
``levy_stable.pdf_default_method`` to either 'zolotarev', 'quadrature' or 'best'.
To increase accuracy of FFT calculation one can specify ``levy_stable.pdf_fft_grid_spacing``
(defaults to 0.001) and ``pdf_fft_n_points_two_power`` (defaults to a value that covers the
input range * 4). Setting ``pdf_fft_n_points_two_power`` to 16 should be sufficiently accurate
in most cases at the expense of CPU time.
For evaluation of cdf we use Zolatarev :math:`S_0` parameterization with integration or integral of
the pdf FFT interpolated spline. The settings affecting FFT calculation are the same as
for pdf calculation. Setting the threshold to ``None`` (default) will disable FFT. For cdf
calculations the Zolatarev method is superior in accuracy, so FFT is disabled by default.
Fitting estimate uses quantile estimation method in [MC]. MLE estimation of parameters in
fit method uses this quantile estimate initially. Note that MLE doesn't always converge if
using FFT for pdf calculations; so it's best that ``pdf_fft_min_points_threshold`` is left unset.
.. warning::
For pdf calculations implementation of Zolatarev is unstable for values where alpha = 1 and
beta != 0. In this case the quadrature method is recommended. FFT calculation is also
considered experimental.
For cdf calculations FFT calculation is considered experimental. Use Zolatarev's method
instead (default).
%(after_notes)s
References
----------
.. [MC] McCulloch, J., 1986. Simple consistent estimators of stable distribution parameters.
Communications in Statistics - Simulation and Computation 15, 11091136.
.. [MS] Mittnik, S.T. Rachev, T. Doganoglu, D. Chenyao, 1999. Maximum likelihood estimation
of stable Paretian models, Mathematical and Computer Modelling, Volume 29, Issue 10,
1999, Pages 275-293.
.. [BS] Borak, S., Hardle, W., Rafal, W. 2005. Stable distributions, Economic Risk.
%(example)s
"""
def _rvs(self, alpha, beta, size=None, random_state=None):
def alpha1func(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
return (2/np.pi*(np.pi/2 + bTH)*tanTH -
beta*np.log((np.pi/2*W*cosTH)/(np.pi/2 + bTH)))
def beta0func(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
return (W/(cosTH/np.tan(aTH) + np.sin(TH)) *
((np.cos(aTH) + np.sin(aTH)*tanTH)/W)**(1.0/alpha))
def otherwise(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
# alpha is not 1 and beta is not 0
val0 = beta*np.tan(np.pi*alpha/2)
th0 = np.arctan(val0)/alpha
val3 = W/(cosTH/np.tan(alpha*(th0 + TH)) + np.sin(TH))
res3 = val3*((np.cos(aTH) + np.sin(aTH)*tanTH -
val0*(np.sin(aTH) - np.cos(aTH)*tanTH))/W)**(1.0/alpha)
return res3
def alphanot1func(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
res = _lazywhere(beta == 0,
(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W),
beta0func, f2=otherwise)
return res
alpha = np.broadcast_to(alpha, size)
beta = np.broadcast_to(beta, size)
TH = uniform.rvs(loc=-np.pi/2.0, scale=np.pi, size=size,
random_state=random_state)
W = expon.rvs(size=size, random_state=random_state)
aTH = alpha*TH
bTH = beta*TH
cosTH = np.cos(TH)
tanTH = np.tan(TH)
res = _lazywhere(alpha == 1,
(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W),
alpha1func, f2=alphanot1func)
return res
def _argcheck(self, alpha, beta):
return (alpha > 0) & (alpha <= 2) & (beta <= 1) & (beta >= -1)
@staticmethod
def _cf(t, alpha, beta):
Phi = lambda alpha, t: np.tan(np.pi*alpha/2) if alpha != 1 else -2.0*np.log(np.abs(t))/np.pi
return np.exp(-(np.abs(t)**alpha)*(1-1j*beta*np.sign(t)*Phi(alpha, t)))
@staticmethod
def _pdf_from_cf_with_fft(cf, h=0.01, q=9):
"""Calculates pdf from cf using fft. Using region around 0 with N=2**q points
separated by distance h. As suggested by [MS].
"""
N = 2**q
n = np.arange(1,N+1)
density = ((-1)**(n-1-N/2))*np.fft.fft(((-1)**(n-1))*cf(2*np.pi*(n-1-N/2)/h/N))/h/N
x = (n-1-N/2)*h
return (x, density)
@staticmethod
def _pdf_single_value_best(x, alpha, beta):
if alpha != 1. or (alpha == 1. and beta == 0.):
return levy_stable_gen._pdf_single_value_zolotarev(x, alpha, beta)
else:
return levy_stable_gen._pdf_single_value_cf_integrate(x, alpha, beta)
@staticmethod
def _pdf_single_value_cf_integrate(x, alpha, beta):
cf = lambda t: levy_stable_gen._cf(t, alpha, beta)
return integrate.quad(lambda t: np.real(np.exp(-1j*t*x)*cf(t)), -np.inf, np.inf, limit=1000)[0]/np.pi/2
@staticmethod
def _pdf_single_value_zolotarev(x, alpha, beta):
"""Calculate pdf using Zolotarev's methods as detailed in [BS].
"""
zeta = -beta*np.tan(np.pi*alpha/2.)
if alpha != 1:
x0 = x + zeta # convert to S_0 parameterization
xi = np.arctan(-zeta)/alpha
def V(theta):
return np.cos(alpha*xi)**(1/(alpha-1)) * \
(np.cos(theta)/np.sin(alpha*(xi+theta)))**(alpha/(alpha-1)) * \
(np.cos(alpha*xi+(alpha-1)*theta)/np.cos(theta))
if x0 > zeta:
def g(theta):
return (V(theta) *
np.real(np.complex128(x0-zeta)**(alpha/(alpha-1))))
def f(theta):
return g(theta) * np.exp(-g(theta))
# spare calculating integral on null set
# use isclose as macos has fp differences
if np.isclose(-xi, np.pi/2, rtol=1e-014, atol=1e-014):
return 0.
with np.errstate(all="ignore"):
intg_max = optimize.minimize_scalar(lambda theta: -f(theta), bounds=[-xi, np.pi/2])
intg_kwargs = {}
# windows quadpack less forgiving with points out of bounds
if intg_max.success and not np.isnan(intg_max.fun)\
and intg_max.x > -xi and intg_max.x < np.pi/2:
intg_kwargs["points"] = [intg_max.x]
intg = integrate.quad(f, -xi, np.pi/2, **intg_kwargs)[0]
return alpha * intg / np.pi / np.abs(alpha-1) / (x0-zeta)
elif x0 == zeta:
return sc.gamma(1+1/alpha)*np.cos(xi)/np.pi/((1+zeta**2)**(1/alpha/2))
else:
return levy_stable_gen._pdf_single_value_zolotarev(-x, alpha, -beta)
else:
# since location zero, no need to reposition x for S_0 parameterization
xi = np.pi/2
if beta != 0:
warnings.warn('Density calculation unstable for alpha=1 and beta!=0.' +
' Use quadrature method instead.', RuntimeWarning)
def V(theta):
expr_1 = np.pi/2+beta*theta
return 2. * expr_1 * np.exp(expr_1*np.tan(theta)/beta) / np.cos(theta) / np.pi
def g(theta):
return np.exp(-np.pi * x / 2. / beta) * V(theta)
def f(theta):
return g(theta) * np.exp(-g(theta))
with np.errstate(all="ignore"):
intg_max = optimize.minimize_scalar(lambda theta: -f(theta), bounds=[-np.pi/2, np.pi/2])
intg = integrate.fixed_quad(f, -np.pi/2, intg_max.x)[0] + integrate.fixed_quad(f, intg_max.x, np.pi/2)[0]
return intg / np.abs(beta) / 2.
else:
return 1/(1+x**2)/np.pi
@staticmethod
def _cdf_single_value_zolotarev(x, alpha, beta):
"""Calculate cdf using Zolotarev's methods as detailed in [BS].
"""
zeta = -beta*np.tan(np.pi*alpha/2.)
if alpha != 1:
x0 = x + zeta # convert to S_0 parameterization
xi = np.arctan(-zeta)/alpha
def V(theta):
return np.cos(alpha*xi)**(1/(alpha-1)) * \
(np.cos(theta)/np.sin(alpha*(xi+theta)))**(alpha/(alpha-1)) * \
(np.cos(alpha*xi+(alpha-1)*theta)/np.cos(theta))
if x0 > zeta:
c_1 = 1 if alpha > 1 else .5 - xi/np.pi
def f(theta):
z = np.complex128(x0 - zeta)
return np.exp(-V(theta) * np.real(z**(alpha/(alpha-1))))
with np.errstate(all="ignore"):
# spare calculating integral on null set
# use isclose as macos has fp differences
if np.isclose(-xi, np.pi/2, rtol=1e-014, atol=1e-014):
intg = 0
else:
intg = integrate.quad(f, -xi, np.pi/2)[0]
return c_1 + np.sign(1-alpha) * intg / np.pi
elif x0 == zeta:
return .5 - xi/np.pi
else:
return 1 - levy_stable_gen._cdf_single_value_zolotarev(-x, alpha, -beta)
else:
# since location zero, no need to reposition x for S_0 parameterization
xi = np.pi/2
if beta > 0:
def V(theta):
expr_1 = np.pi/2+beta*theta
return 2. * expr_1 * np.exp(expr_1*np.tan(theta)/beta) / np.cos(theta) / np.pi
with np.errstate(all="ignore"):
expr_1 = np.exp(-np.pi*x/beta/2.)
int_1 = integrate.quad(lambda theta: np.exp(-expr_1 * V(theta)), -np.pi/2, np.pi/2)[0]
return int_1 / np.pi
elif beta == 0:
return .5 + np.arctan(x)/np.pi
else:
return 1 - levy_stable_gen._cdf_single_value_zolotarev(-x, 1, -beta)
def _pdf(self, x, alpha, beta):
x = np.asarray(x).reshape(1, -1)[0,:]
x, alpha, beta = np.broadcast_arrays(x, alpha, beta)
data_in = np.dstack((x, alpha, beta))[0]
data_out = np.empty(shape=(len(data_in),1))
pdf_default_method_name = getattr(self, 'pdf_default_method', 'best')
if pdf_default_method_name == 'best':
pdf_single_value_method = levy_stable_gen._pdf_single_value_best
elif pdf_default_method_name == 'zolotarev':
pdf_single_value_method = levy_stable_gen._pdf_single_value_zolotarev
else:
pdf_single_value_method = levy_stable_gen._pdf_single_value_cf_integrate
fft_min_points_threshold = getattr(self, 'pdf_fft_min_points_threshold', None)
fft_grid_spacing = getattr(self, 'pdf_fft_grid_spacing', 0.001)
fft_n_points_two_power = getattr(self, 'pdf_fft_n_points_two_power', None)
# group data in unique arrays of alpha, beta pairs
uniq_param_pairs = np.vstack(list({tuple(row) for row in
data_in[:, 1:]}))
for pair in uniq_param_pairs:
data_mask = np.all(data_in[:,1:] == pair, axis=-1)
data_subset = data_in[data_mask]
if fft_min_points_threshold is None or len(data_subset) < fft_min_points_threshold:
data_out[data_mask] = np.array([pdf_single_value_method(_x, _alpha, _beta)
for _x, _alpha, _beta in data_subset]).reshape(len(data_subset), 1)
else:
warnings.warn('Density calculations experimental for FFT method.' +
' Use combination of zolatarev and quadrature methods instead.', RuntimeWarning)
_alpha, _beta = pair
_x = data_subset[:,(0,)]
# need enough points to "cover" _x for interpolation
h = fft_grid_spacing
q = np.ceil(np.log(2*np.max(np.abs(_x))/h)/np.log(2)) + 2 if fft_n_points_two_power is None else int(fft_n_points_two_power)
density_x, density = levy_stable_gen._pdf_from_cf_with_fft(lambda t: levy_stable_gen._cf(t, _alpha, _beta), h=h, q=q)
f = interpolate.interp1d(density_x, np.real(density))
data_out[data_mask] = f(_x)
return data_out.T[0]
def _cdf(self, x, alpha, beta):
x = np.asarray(x).reshape(1, -1)[0,:]
x, alpha, beta = np.broadcast_arrays(x, alpha, beta)
data_in = np.dstack((x, alpha, beta))[0]
data_out = np.empty(shape=(len(data_in),1))
fft_min_points_threshold = getattr(self, 'pdf_fft_min_points_threshold', None)
fft_grid_spacing = getattr(self, 'pdf_fft_grid_spacing', 0.001)
fft_n_points_two_power = getattr(self, 'pdf_fft_n_points_two_power', None)
# group data in unique arrays of alpha, beta pairs
uniq_param_pairs = np.vstack(
list({tuple(row) for row in data_in[:,1:]}))
for pair in uniq_param_pairs:
data_mask = np.all(data_in[:,1:] == pair, axis=-1)
data_subset = data_in[data_mask]
if fft_min_points_threshold is None or len(data_subset) < fft_min_points_threshold:
data_out[data_mask] = np.array([levy_stable._cdf_single_value_zolotarev(_x, _alpha, _beta)
for _x, _alpha, _beta in data_subset]).reshape(len(data_subset), 1)
else:
warnings.warn(u'FFT method is considered experimental for ' +
u'cumulative distribution function ' +
u'evaluations. Use Zolotarevs method instead).',
RuntimeWarning)
_alpha, _beta = pair
_x = data_subset[:,(0,)]
# need enough points to "cover" _x for interpolation
h = fft_grid_spacing
q = 16 if fft_n_points_two_power is None else int(fft_n_points_two_power)
density_x, density = levy_stable_gen._pdf_from_cf_with_fft(lambda t: levy_stable_gen._cf(t, _alpha, _beta), h=h, q=q)
f = interpolate.InterpolatedUnivariateSpline(density_x, np.real(density))
data_out[data_mask] = np.array([f.integral(self.a, x_1) for x_1 in _x]).reshape(data_out[data_mask].shape)
return data_out.T[0]
def _fitstart(self, data):
# We follow McCullock 1986 method - Simple Consistent Estimators
# of Stable Distribution Parameters
# Table III and IV
nu_alpha_range = [2.439, 2.5, 2.6, 2.7, 2.8, 3, 3.2, 3.5, 4, 5, 6, 8, 10, 15, 25]
nu_beta_range = [0, 0.1, 0.2, 0.3, 0.5, 0.7, 1]
# table III - alpha = psi_1(nu_alpha, nu_beta)
alpha_table = [
[2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000],
[1.916, 1.924, 1.924, 1.924, 1.924, 1.924, 1.924],
[1.808, 1.813, 1.829, 1.829, 1.829, 1.829, 1.829],
[1.729, 1.730, 1.737, 1.745, 1.745, 1.745, 1.745],
[1.664, 1.663, 1.663, 1.668, 1.676, 1.676, 1.676],
[1.563, 1.560, 1.553, 1.548, 1.547, 1.547, 1.547],
[1.484, 1.480, 1.471, 1.460, 1.448, 1.438, 1.438],
[1.391, 1.386, 1.378, 1.364, 1.337, 1.318, 1.318],
[1.279, 1.273, 1.266, 1.250, 1.210, 1.184, 1.150],
[1.128, 1.121, 1.114, 1.101, 1.067, 1.027, 0.973],
[1.029, 1.021, 1.014, 1.004, 0.974, 0.935, 0.874],
[0.896, 0.892, 0.884, 0.883, 0.855, 0.823, 0.769],
[0.818, 0.812, 0.806, 0.801, 0.780, 0.756, 0.691],
[0.698, 0.695, 0.692, 0.689, 0.676, 0.656, 0.597],
[0.593, 0.590, 0.588, 0.586, 0.579, 0.563, 0.513]]
# table IV - beta = psi_2(nu_alpha, nu_beta)
beta_table = [
[0, 2.160, 1.000, 1.000, 1.000, 1.000, 1.000],
[0, 1.592, 3.390, 1.000, 1.000, 1.000, 1.000],
[0, 0.759, 1.800, 1.000, 1.000, 1.000, 1.000],
[0, 0.482, 1.048, 1.694, 1.000, 1.000, 1.000],
[0, 0.360, 0.760, 1.232, 2.229, 1.000, 1.000],
[0, 0.253, 0.518, 0.823, 1.575, 1.000, 1.000],
[0, 0.203, 0.410, 0.632, 1.244, 1.906, 1.000],
[0, 0.165, 0.332, 0.499, 0.943, 1.560, 1.000],
[0, 0.136, 0.271, 0.404, 0.689, 1.230, 2.195],
[0, 0.109, 0.216, 0.323, 0.539, 0.827, 1.917],
[0, 0.096, 0.190, 0.284, 0.472, 0.693, 1.759],
[0, 0.082, 0.163, 0.243, 0.412, 0.601, 1.596],
[0, 0.074, 0.147, 0.220, 0.377, 0.546, 1.482],
[0, 0.064, 0.128, 0.191, 0.330, 0.478, 1.362],
[0, 0.056, 0.112, 0.167, 0.285, 0.428, 1.274]]
# Table V and VII
alpha_range = [2, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1, 0.9, 0.8, 0.7, 0.6, 0.5]
beta_range = [0, 0.25, 0.5, 0.75, 1]
# Table V - nu_c = psi_3(alpha, beta)
nu_c_table = [
[1.908, 1.908, 1.908, 1.908, 1.908],
[1.914, 1.915, 1.916, 1.918, 1.921],
[1.921, 1.922, 1.927, 1.936, 1.947],
[1.927, 1.930, 1.943, 1.961, 1.987],
[1.933, 1.940, 1.962, 1.997, 2.043],
[1.939, 1.952, 1.988, 2.045, 2.116],
[1.946, 1.967, 2.022, 2.106, 2.211],
[1.955, 1.984, 2.067, 2.188, 2.333],
[1.965, 2.007, 2.125, 2.294, 2.491],
[1.980, 2.040, 2.205, 2.435, 2.696],
[2.000, 2.085, 2.311, 2.624, 2.973],
[2.040, 2.149, 2.461, 2.886, 3.356],
[2.098, 2.244, 2.676, 3.265, 3.912],
[2.189, 2.392, 3.004, 3.844, 4.775],
[2.337, 2.634, 3.542, 4.808, 6.247],
[2.588, 3.073, 4.534, 6.636, 9.144]]
# Table VII - nu_zeta = psi_5(alpha, beta)
nu_zeta_table = [
[0, 0.000, 0.000, 0.000, 0.000],
[0, -0.017, -0.032, -0.049, -0.064],
[0, -0.030, -0.061, -0.092, -0.123],
[0, -0.043, -0.088, -0.132, -0.179],
[0, -0.056, -0.111, -0.170, -0.232],
[0, -0.066, -0.134, -0.206, -0.283],
[0, -0.075, -0.154, -0.241, -0.335],
[0, -0.084, -0.173, -0.276, -0.390],
[0, -0.090, -0.192, -0.310, -0.447],
[0, -0.095, -0.208, -0.346, -0.508],
[0, -0.098, -0.223, -0.380, -0.576],
[0, -0.099, -0.237, -0.424, -0.652],
[0, -0.096, -0.250, -0.469, -0.742],
[0, -0.089, -0.262, -0.520, -0.853],
[0, -0.078, -0.272, -0.581, -0.997],
[0, -0.061, -0.279, -0.659, -1.198]]
psi_1 = interpolate.interp2d(nu_beta_range, nu_alpha_range, alpha_table, kind='linear')
psi_2 = interpolate.interp2d(nu_beta_range, nu_alpha_range, beta_table, kind='linear')
psi_2_1 = lambda nu_beta, nu_alpha: psi_2(nu_beta, nu_alpha) if nu_beta > 0 else -psi_2(-nu_beta, nu_alpha)
phi_3 = interpolate.interp2d(beta_range, alpha_range, nu_c_table, kind='linear')
phi_3_1 = lambda beta, alpha: phi_3(beta, alpha) if beta > 0 else phi_3(-beta, alpha)
phi_5 = interpolate.interp2d(beta_range, alpha_range, nu_zeta_table, kind='linear')
phi_5_1 = lambda beta, alpha: phi_5(beta, alpha) if beta > 0 else -phi_5(-beta, alpha)
# quantiles
p05 = np.percentile(data, 5)
p50 = np.percentile(data, 50)
p95 = np.percentile(data, 95)
p25 = np.percentile(data, 25)
p75 = np.percentile(data, 75)
nu_alpha = (p95 - p05)/(p75 - p25)
nu_beta = (p95 + p05 - 2*p50)/(p95 - p05)
if nu_alpha >= 2.439:
alpha = np.clip(psi_1(nu_beta, nu_alpha)[0], np.finfo(float).eps, 2.)
beta = np.clip(psi_2_1(nu_beta, nu_alpha)[0], -1., 1.)
else:
alpha = 2.0
beta = np.sign(nu_beta)
c = (p75 - p25) / phi_3_1(beta, alpha)[0]
zeta = p50 + c*phi_5_1(beta, alpha)[0]
delta = np.clip(zeta-beta*c*np.tan(np.pi*alpha/2.) if alpha == 1. else zeta, np.finfo(float).eps, np.inf)
return (alpha, beta, delta, c)
def _stats(self, alpha, beta):
mu = 0 if alpha > 1 else np.nan
mu2 = 2 if alpha == 2 else np.inf
g1 = 0. if alpha == 2. else np.NaN
g2 = 0. if alpha == 2. else np.NaN
return mu, mu2, g1, g2
levy_stable = levy_stable_gen(name='levy_stable')
class logistic_gen(rv_continuous):
r"""A logistic (or Sech-squared) continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `logistic` is:
.. math::
f(x) = \frac{\exp(-x)}
{(1+\exp(-x))^2}
`logistic` is a special case of `genlogistic` with ``c=1``.
%(after_notes)s
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return random_state.logistic(size=size)
def _pdf(self, x):
# logistic.pdf(x) = exp(-x) / (1+exp(-x))**2
return np.exp(self._logpdf(x))
def _logpdf(self, x):
return -x - 2. * sc.log1p(np.exp(-x))
def _cdf(self, x):
return sc.expit(x)
def _ppf(self, q):
return sc.logit(q)
def _sf(self, x):
return sc.expit(-x)
def _isf(self, q):
return -sc.logit(q)
def _stats(self):
return 0, np.pi*np.pi/3.0, 0, 6.0/5.0
def _entropy(self):
# https://en.wikipedia.org/wiki/Logistic_distribution
return 2.0
logistic = logistic_gen(name='logistic')
class loggamma_gen(rv_continuous):
r"""A log gamma continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `loggamma` is:
.. math::
f(x, c) = \frac{\exp(c x - \exp(x))}
{\Gamma(c)}
for all :math:`x, c > 0`. Here, :math:`\Gamma` is the
gamma function (`scipy.special.gamma`).
`loggamma` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _rvs(self, c, size=None, random_state=None):
return np.log(random_state.gamma(c, size=size))
def _pdf(self, x, c):
# loggamma.pdf(x, c) = exp(c*x-exp(x)) / gamma(c)
return np.exp(c*x-np.exp(x)-sc.gammaln(c))
def _cdf(self, x, c):
return sc.gammainc(c, np.exp(x))
def _ppf(self, q, c):
return np.log(sc.gammaincinv(c, q))
def _stats(self, c):
# See, for example, "A Statistical Study of Log-Gamma Distribution", by
# Ping Shing Chan (thesis, McMaster University, 1993).
mean = sc.digamma(c)
var = sc.polygamma(1, c)
skewness = sc.polygamma(2, c) / np.power(var, 1.5)
excess_kurtosis = sc.polygamma(3, c) / (var*var)
return mean, var, skewness, excess_kurtosis
loggamma = loggamma_gen(name='loggamma')
class loglaplace_gen(rv_continuous):
r"""A log-Laplace continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `loglaplace` is:
.. math::
f(x, c) = \begin{cases}\frac{c}{2} x^{ c-1} &\text{for } 0 < x < 1\\
\frac{c}{2} x^{-c-1} &\text{for } x \ge 1
\end{cases}
for :math:`c > 0`.
`loglaplace` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
References
----------
T.J. Kozubowski and K. Podgorski, "A log-Laplace growth rate model",
The Mathematical Scientist, vol. 28, pp. 49-60, 2003.
%(example)s
"""
def _pdf(self, x, c):
# loglaplace.pdf(x, c) = c / 2 * x**(c-1), for 0 < x < 1
# = c / 2 * x**(-c-1), for x >= 1
cd2 = c/2.0
c = np.where(x < 1, c, -c)
return cd2*x**(c-1)
def _cdf(self, x, c):
return np.where(x < 1, 0.5*x**c, 1-0.5*x**(-c))
def _ppf(self, q, c):
return np.where(q < 0.5, (2.0*q)**(1.0/c), (2*(1.0-q))**(-1.0/c))
def _munp(self, n, c):
return c**2 / (c**2 - n**2)
def _entropy(self, c):
return np.log(2.0/c) + 1.0
loglaplace = loglaplace_gen(a=0.0, name='loglaplace')
def _lognorm_logpdf(x, s):
return _lazywhere(x != 0, (x, s),
lambda x, s: -np.log(x)**2 / (2*s**2) - np.log(s*x*np.sqrt(2*np.pi)),
-np.inf)
class lognorm_gen(rv_continuous):
r"""A lognormal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `lognorm` is:
.. math::
f(x, s) = \frac{1}{s x \sqrt{2\pi}}
\exp\left(-\frac{\log^2(x)}{2s^2}\right)
for :math:`x > 0`, :math:`s > 0`.
`lognorm` takes ``s`` as a shape parameter for :math:`s`.
%(after_notes)s
A common parametrization for a lognormal random variable ``Y`` is in
terms of the mean, ``mu``, and standard deviation, ``sigma``, of the
unique normally distributed random variable ``X`` such that exp(X) = Y.
This parametrization corresponds to setting ``s = sigma`` and ``scale =
exp(mu)``.
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, s, size=None, random_state=None):
return np.exp(s * random_state.standard_normal(size))
def _pdf(self, x, s):
# lognorm.pdf(x, s) = 1 / (s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2)
return np.exp(self._logpdf(x, s))
def _logpdf(self, x, s):
return _lognorm_logpdf(x, s)
def _cdf(self, x, s):
return _norm_cdf(np.log(x) / s)
def _logcdf(self, x, s):
return _norm_logcdf(np.log(x) / s)
def _ppf(self, q, s):
return np.exp(s * _norm_ppf(q))
def _sf(self, x, s):
return _norm_sf(np.log(x) / s)
def _logsf(self, x, s):
return _norm_logsf(np.log(x) / s)
def _stats(self, s):
p = np.exp(s*s)
mu = np.sqrt(p)
mu2 = p*(p-1)
g1 = np.sqrt((p-1))*(2+p)
g2 = np.polyval([1, 2, 3, 0, -6.0], p)
return mu, mu2, g1, g2
def _entropy(self, s):
return 0.5 * (1 + np.log(2*np.pi) + 2 * np.log(s))
@extend_notes_in_docstring(rv_continuous, notes="""\
When the location parameter is fixed by using the `floc` argument,
this function uses explicit formulas for the maximum likelihood
estimation of the log-normal shape and scale parameters, so the
`optimizer`, `loc` and `scale` keyword arguments are ignored.\n\n""")
def fit(self, data, *args, **kwds):
floc = kwds.get('floc', None)
if floc is None:
# loc is not fixed. Use the default fit method.
return super(lognorm_gen, self).fit(data, *args, **kwds)
f0 = (kwds.get('f0', None) or kwds.get('fs', None) or
kwds.get('fix_s', None))
fscale = kwds.get('fscale', None)
if len(args) > 1:
raise TypeError("Too many input arguments.")
for name in ['f0', 'fs', 'fix_s', 'floc', 'fscale', 'loc', 'scale',
'optimizer']:
kwds.pop(name, None)
if kwds:
raise TypeError("Unknown arguments: %s." % kwds)
# Special case: loc is fixed. Use the maximum likelihood formulas
# instead of the numerical solver.
if f0 is not None and fscale is not None:
# This check is for consistency with `rv_continuous.fit`.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
data = np.asarray(data)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
floc = float(floc)
if floc != 0:
# Shifting the data by floc. Don't do the subtraction in-place,
# because `data` might be a view of the input array.
data = data - floc
if np.any(data <= 0):
raise FitDataError("lognorm", lower=floc, upper=np.inf)
lndata = np.log(data)
# Three cases to handle:
# * shape and scale both free
# * shape fixed, scale free
# * shape free, scale fixed
if fscale is None:
# scale is free.
scale = np.exp(lndata.mean())
if f0 is None:
# shape is free.
shape = lndata.std()
else:
# shape is fixed.
shape = float(f0)
else:
# scale is fixed, shape is free
scale = float(fscale)
shape = np.sqrt(((lndata - np.log(scale))**2).mean())
return shape, floc, scale
lognorm = lognorm_gen(a=0.0, name='lognorm')
class gilbrat_gen(rv_continuous):
r"""A Gilbrat continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `gilbrat` is:
.. math::
f(x) = \frac{1}{x \sqrt{2\pi}} \exp(-\frac{1}{2} (\log(x))^2)
`gilbrat` is a special case of `lognorm` with ``s=1``.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, size=None, random_state=None):
return np.exp(random_state.standard_normal(size))
def _pdf(self, x):
# gilbrat.pdf(x) = 1/(x*sqrt(2*pi)) * exp(-1/2*(log(x))**2)
return np.exp(self._logpdf(x))
def _logpdf(self, x):
return _lognorm_logpdf(x, 1.0)
def _cdf(self, x):
return _norm_cdf(np.log(x))
def _ppf(self, q):
return np.exp(_norm_ppf(q))
def _stats(self):
p = np.e
mu = np.sqrt(p)
mu2 = p * (p - 1)
g1 = np.sqrt((p - 1)) * (2 + p)
g2 = np.polyval([1, 2, 3, 0, -6.0], p)
return mu, mu2, g1, g2
def _entropy(self):
return 0.5 * np.log(2 * np.pi) + 0.5
gilbrat = gilbrat_gen(a=0.0, name='gilbrat')
class maxwell_gen(rv_continuous):
r"""A Maxwell continuous random variable.
%(before_notes)s
Notes
-----
A special case of a `chi` distribution, with ``df=3``, ``loc=0.0``,
and given ``scale = a``, where ``a`` is the parameter used in the
Mathworld description [1]_.
The probability density function for `maxwell` is:
.. math::
f(x) = \sqrt{2/\pi}x^2 \exp(-x^2/2)
for :math:`x >= 0`.
%(after_notes)s
References
----------
.. [1] http://mathworld.wolfram.com/MaxwellDistribution.html
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return chi.rvs(3.0, size=size, random_state=random_state)
def _pdf(self, x):
# maxwell.pdf(x) = sqrt(2/pi)x**2 * exp(-x**2/2)
return _SQRT_2_OVER_PI*x*x*np.exp(-x*x/2.0)
def _logpdf(self, x):
return _LOG_SQRT_2_OVER_PI + 2*np.log(x) - 0.5*x*x
def _cdf(self, x):
return sc.gammainc(1.5, x*x/2.0)
def _ppf(self, q):
return np.sqrt(2*sc.gammaincinv(1.5, q))
def _stats(self):
val = 3*np.pi-8
return (2*np.sqrt(2.0/np.pi),
3-8/np.pi,
np.sqrt(2)*(32-10*np.pi)/val**1.5,
(-12*np.pi*np.pi + 160*np.pi - 384) / val**2.0)
def _entropy(self):
return _EULER + 0.5*np.log(2*np.pi)-0.5
maxwell = maxwell_gen(a=0.0, name='maxwell')
class mielke_gen(rv_continuous):
r"""A Mielke Beta-Kappa / Dagum continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `mielke` is:
.. math::
f(x, k, s) = \frac{k x^{k-1}}{(1+x^s)^{1+k/s}}
for :math:`x > 0` and :math:`k, s > 0`. The distribution is sometimes
called Dagum distribution ([2]_). It was already defined in [3]_, called
a Burr Type III distribution (`burr` with parameters ``c=s`` and
``d=k/s``).
`mielke` takes ``k`` and ``s`` as shape parameters.
%(after_notes)s
References
----------
.. [1] Mielke, P.W., 1973 "Another Family of Distributions for Describing
and Analyzing Precipitation Data." J. Appl. Meteor., 12, 275-280
.. [2] Dagum, C., 1977 "A new model for personal income distribution."
Economie Appliquee, 33, 327-367.
.. [3] Burr, I. W. "Cumulative frequency functions", Annals of
Mathematical Statistics, 13(2), pp 215-232 (1942).
%(example)s
"""
def _argcheck(self, k, s):
return (k > 0) & (s > 0)
def _pdf(self, x, k, s):
return k*x**(k-1.0) / (1.0+x**s)**(1.0+k*1.0/s)
def _logpdf(self, x, k, s):
return np.log(k) + np.log(x)*(k-1.0) - np.log1p(x**s)*(1.0+k*1.0/s)
def _cdf(self, x, k, s):
return x**k / (1.0+x**s)**(k*1.0/s)
def _ppf(self, q, k, s):
qsk = pow(q, s*1.0/k)
return pow(qsk/(1.0-qsk), 1.0/s)
def _munp(self, n, k, s):
def nth_moment(n, k, s):
# n-th moment is defined for -k < n < s
return sc.gamma((k+n)/s)*sc.gamma(1-n/s)/sc.gamma(k/s)
return _lazywhere(n < s, (n, k, s), nth_moment, np.inf)
mielke = mielke_gen(a=0.0, name='mielke')
class kappa4_gen(rv_continuous):
r"""Kappa 4 parameter distribution.
%(before_notes)s
Notes
-----
The probability density function for kappa4 is:
.. math::
f(x, h, k) = (1 - k x)^{1/k - 1} (1 - h (1 - k x)^{1/k})^{1/h-1}
if :math:`h` and :math:`k` are not equal to 0.
If :math:`h` or :math:`k` are zero then the pdf can be simplified:
h = 0 and k != 0::
kappa4.pdf(x, h, k) = (1.0 - k*x)**(1.0/k - 1.0)*
exp(-(1.0 - k*x)**(1.0/k))
h != 0 and k = 0::
kappa4.pdf(x, h, k) = exp(-x)*(1.0 - h*exp(-x))**(1.0/h - 1.0)
h = 0 and k = 0::
kappa4.pdf(x, h, k) = exp(-x)*exp(-exp(-x))
kappa4 takes :math:`h` and :math:`k` as shape parameters.
The kappa4 distribution returns other distributions when certain
:math:`h` and :math:`k` values are used.
+------+-------------+----------------+------------------+
| h | k=0.0 | k=1.0 | -inf<=k<=inf |
+======+=============+================+==================+
| -1.0 | Logistic | | Generalized |
| | | | Logistic(1) |
| | | | |
| | logistic(x) | | |
+------+-------------+----------------+------------------+
| 0.0 | Gumbel | Reverse | Generalized |
| | | Exponential(2) | Extreme Value |
| | | | |
| | gumbel_r(x) | | genextreme(x, k) |
+------+-------------+----------------+------------------+
| 1.0 | Exponential | Uniform | Generalized |
| | | | Pareto |
| | | | |
| | expon(x) | uniform(x) | genpareto(x, -k) |
+------+-------------+----------------+------------------+
(1) There are at least five generalized logistic distributions.
Four are described here:
https://en.wikipedia.org/wiki/Generalized_logistic_distribution
The "fifth" one is the one kappa4 should match which currently
isn't implemented in scipy:
https://en.wikipedia.org/wiki/Talk:Generalized_logistic_distribution
https://www.mathwave.com/help/easyfit/html/analyses/distributions/gen_logistic.html
(2) This distribution is currently not in scipy.
References
----------
J.C. Finney, "Optimization of a Skewed Logistic Distribution With Respect
to the Kolmogorov-Smirnov Test", A Dissertation Submitted to the Graduate
Faculty of the Louisiana State University and Agricultural and Mechanical
College, (August, 2004),
https://digitalcommons.lsu.edu/gradschool_dissertations/3672
J.R.M. Hosking, "The four-parameter kappa distribution". IBM J. Res.
Develop. 38 (3), 25 1-258 (1994).
B. Kumphon, A. Kaew-Man, P. Seenoi, "A Rainfall Distribution for the Lampao
Site in the Chi River Basin, Thailand", Journal of Water Resource and
Protection, vol. 4, 866-869, (2012).
https://doi.org/10.4236/jwarp.2012.410101
C. Winchester, "On Estimation of the Four-Parameter Kappa Distribution", A
Thesis Submitted to Dalhousie University, Halifax, Nova Scotia, (March
2000).
http://www.nlc-bnc.ca/obj/s4/f2/dsk2/ftp01/MQ57336.pdf
%(after_notes)s
%(example)s
"""
def _argcheck(self, h, k):
return h == h
def _get_support(self, h, k):
condlist = [np.logical_and(h > 0, k > 0),
np.logical_and(h > 0, k == 0),
np.logical_and(h > 0, k < 0),
np.logical_and(h <= 0, k > 0),
np.logical_and(h <= 0, k == 0),
np.logical_and(h <= 0, k < 0)]
def f0(h, k):
return (1.0 - float_power(h, -k))/k
def f1(h, k):
return np.log(h)
def f3(h, k):
a = np.empty(np.shape(h))
a[:] = -np.inf
return a
def f5(h, k):
return 1.0/k
_a = _lazyselect(condlist,
[f0, f1, f0, f3, f3, f5],
[h, k],
default=np.nan)
def f0(h, k):
return 1.0/k
def f1(h, k):
a = np.empty(np.shape(h))
a[:] = np.inf
return a
_b = _lazyselect(condlist,
[f0, f1, f1, f0, f1, f1],
[h, k],
default=np.nan)
return _a, _b
def _pdf(self, x, h, k):
# kappa4.pdf(x, h, k) = (1.0 - k*x)**(1.0/k - 1.0)*
# (1.0 - h*(1.0 - k*x)**(1.0/k))**(1.0/h-1)
return np.exp(self._logpdf(x, h, k))
def _logpdf(self, x, h, k):
condlist = [np.logical_and(h != 0, k != 0),
np.logical_and(h == 0, k != 0),
np.logical_and(h != 0, k == 0),
np.logical_and(h == 0, k == 0)]
def f0(x, h, k):
'''pdf = (1.0 - k*x)**(1.0/k - 1.0)*(
1.0 - h*(1.0 - k*x)**(1.0/k))**(1.0/h-1.0)
logpdf = ...
'''
return (sc.xlog1py(1.0/k - 1.0, -k*x) +
sc.xlog1py(1.0/h - 1.0, -h*(1.0 - k*x)**(1.0/k)))
def f1(x, h, k):
'''pdf = (1.0 - k*x)**(1.0/k - 1.0)*np.exp(-(
1.0 - k*x)**(1.0/k))
logpdf = ...
'''
return sc.xlog1py(1.0/k - 1.0, -k*x) - (1.0 - k*x)**(1.0/k)
def f2(x, h, k):
'''pdf = np.exp(-x)*(1.0 - h*np.exp(-x))**(1.0/h - 1.0)
logpdf = ...
'''
return -x + sc.xlog1py(1.0/h - 1.0, -h*np.exp(-x))
def f3(x, h, k):
'''pdf = np.exp(-x-np.exp(-x))
logpdf = ...
'''
return -x - np.exp(-x)
return _lazyselect(condlist,
[f0, f1, f2, f3],
[x, h, k],
default=np.nan)
def _cdf(self, x, h, k):
return np.exp(self._logcdf(x, h, k))
def _logcdf(self, x, h, k):
condlist = [np.logical_and(h != 0, k != 0),
np.logical_and(h == 0, k != 0),
np.logical_and(h != 0, k == 0),
np.logical_and(h == 0, k == 0)]
def f0(x, h, k):
'''cdf = (1.0 - h*(1.0 - k*x)**(1.0/k))**(1.0/h)
logcdf = ...
'''
return (1.0/h)*sc.log1p(-h*(1.0 - k*x)**(1.0/k))
def f1(x, h, k):
'''cdf = np.exp(-(1.0 - k*x)**(1.0/k))
logcdf = ...
'''
return -(1.0 - k*x)**(1.0/k)
def f2(x, h, k):
'''cdf = (1.0 - h*np.exp(-x))**(1.0/h)
logcdf = ...
'''
return (1.0/h)*sc.log1p(-h*np.exp(-x))
def f3(x, h, k):
'''cdf = np.exp(-np.exp(-x))
logcdf = ...
'''
return -np.exp(-x)
return _lazyselect(condlist,
[f0, f1, f2, f3],
[x, h, k],
default=np.nan)
def _ppf(self, q, h, k):
condlist = [np.logical_and(h != 0, k != 0),
np.logical_and(h == 0, k != 0),
np.logical_and(h != 0, k == 0),
np.logical_and(h == 0, k == 0)]
def f0(q, h, k):
return 1.0/k*(1.0 - ((1.0 - (q**h))/h)**k)
def f1(q, h, k):
return 1.0/k*(1.0 - (-np.log(q))**k)
def f2(q, h, k):
'''ppf = -np.log((1.0 - (q**h))/h)
'''
return -sc.log1p(-(q**h)) + np.log(h)
def f3(q, h, k):
return -np.log(-np.log(q))
return _lazyselect(condlist,
[f0, f1, f2, f3],
[q, h, k],
default=np.nan)
def _stats(self, h, k):
if h >= 0 and k >= 0:
maxr = 5
elif h < 0 and k >= 0:
maxr = int(-1.0/h*k)
elif k < 0:
maxr = int(-1.0/k)
else:
maxr = 5
outputs = [None if r < maxr else np.nan for r in range(1, 5)]
return outputs[:]
kappa4 = kappa4_gen(name='kappa4')
class kappa3_gen(rv_continuous):
r"""Kappa 3 parameter distribution.
%(before_notes)s
Notes
-----
The probability density function for `kappa3` is:
.. math::
f(x, a) = a (a + x^a)^{-(a + 1)/a}
for :math:`x > 0` and :math:`a > 0`.
`kappa3` takes ``a`` as a shape parameter for :math:`a`.
References
----------
P.W. Mielke and E.S. Johnson, "Three-Parameter Kappa Distribution Maximum
Likelihood and Likelihood Ratio Tests", Methods in Weather Research,
701-707, (September, 1973),
https://doi.org/10.1175/1520-0493(1973)101<0701:TKDMLE>2.3.CO;2
B. Kumphon, "Maximum Entropy and Maximum Likelihood Estimation for the
Three-Parameter Kappa Distribution", Open Journal of Statistics, vol 2,
415-419 (2012), https://doi.org/10.4236/ojs.2012.24050
%(after_notes)s
%(example)s
"""
def _argcheck(self, a):
return a > 0
def _pdf(self, x, a):
# kappa3.pdf(x, a) = a*(a + x**a)**(-(a + 1)/a), for x > 0
return a*(a + x**a)**(-1.0/a-1)
def _cdf(self, x, a):
return x*(a + x**a)**(-1.0/a)
def _ppf(self, q, a):
return (a/(q**-a - 1.0))**(1.0/a)
def _stats(self, a):
outputs = [None if i < a else np.nan for i in range(1, 5)]
return outputs[:]
kappa3 = kappa3_gen(a=0.0, name='kappa3')
class moyal_gen(rv_continuous):
r"""A Moyal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `moyal` is:
.. math::
f(x) = \exp(-(x + \exp(-x))/2) / \sqrt{2\pi}
for a real number :math:`x`.
%(after_notes)s
This distribution has utility in high-energy physics and radiation
detection. It describes the energy loss of a charged relativistic
particle due to ionization of the medium [1]_. It also provides an
approximation for the Landau distribution. For an in depth description
see [2]_. For additional description, see [3]_.
References
----------
.. [1] J.E. Moyal, "XXX. Theory of ionization fluctuations",
The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol 46, 263-280, (1955).
:doi:`10.1080/14786440308521076` (gated)
.. [2] G. Cordeiro et al., "The beta Moyal: a useful skew distribution",
International Journal of Research and Reviews in Applied Sciences,
vol 10, 171-192, (2012).
http://www.arpapress.com/Volumes/Vol10Issue2/IJRRAS_10_2_02.pdf
.. [3] C. Walck, "Handbook on Statistical Distributions for
Experimentalists; International Report SUF-PFY/96-01", Chapter 26,
University of Stockholm: Stockholm, Sweden, (2007).
http://www.stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf
.. versionadded:: 1.1.0
%(example)s
"""
def _rvs(self, size=None, random_state=None):
u1 = gamma.rvs(a = 0.5, scale = 2, size=size, random_state=random_state)
return -np.log(u1)
def _pdf(self, x):
return np.exp(-0.5 * (x + np.exp(-x))) / np.sqrt(2*np.pi)
def _cdf(self, x):
return sc.erfc(np.exp(-0.5 * x) / np.sqrt(2))
def _sf(self, x):
return sc.erf(np.exp(-0.5 * x) / np.sqrt(2))
def _ppf(self, x):
return -np.log(2 * sc.erfcinv(x)**2)
def _stats(self):
mu = np.log(2) + np.euler_gamma
mu2 = np.pi**2 / 2
g1 = 28 * np.sqrt(2) * sc.zeta(3) / np.pi**3
g2 = 4.
return mu, mu2, g1, g2
def _munp(self, n):
if n == 1.0:
return np.log(2) + np.euler_gamma
elif n == 2.0:
return np.pi**2 / 2 + (np.log(2) + np.euler_gamma)**2
elif n == 3.0:
tmp1 = 1.5 * np.pi**2 * (np.log(2)+np.euler_gamma)
tmp2 = (np.log(2)+np.euler_gamma)**3
tmp3 = 14 * sc.zeta(3)
return tmp1 + tmp2 + tmp3
elif n == 4.0:
tmp1 = 4 * 14 * sc.zeta(3) * (np.log(2) + np.euler_gamma)
tmp2 = 3 * np.pi**2 * (np.log(2) + np.euler_gamma)**2
tmp3 = (np.log(2) + np.euler_gamma)**4
tmp4 = 7 * np.pi**4 / 4
return tmp1 + tmp2 + tmp3 + tmp4
else:
# return generic for higher moments
# return rv_continuous._mom1_sc(self, n, b)
return self._mom1_sc(n)
moyal = moyal_gen(name="moyal")
class nakagami_gen(rv_continuous):
r"""A Nakagami continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `nakagami` is:
.. math::
f(x, \nu) = \frac{2 \nu^\nu}{\Gamma(\nu)} x^{2\nu-1} \exp(-\nu x^2)
for :math:`x >= 0`, :math:`\nu > 0`.
`nakagami` takes ``nu`` as a shape parameter for :math:`\nu`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, nu):
# nakagami.pdf(x, nu) = 2 * nu**nu / gamma(nu) *
# x**(2*nu-1) * exp(-nu*x**2)
return 2*nu**nu/sc.gamma(nu)*(x**(2*nu-1.0))*np.exp(-nu*x*x)
def _cdf(self, x, nu):
return sc.gammainc(nu, nu*x*x)
def _ppf(self, q, nu):
return np.sqrt(1.0/nu*sc.gammaincinv(nu, q))
def _stats(self, nu):
mu = sc.gamma(nu+0.5)/sc.gamma(nu)/np.sqrt(nu)
mu2 = 1.0-mu*mu
g1 = mu * (1 - 4*nu*mu2) / 2.0 / nu / np.power(mu2, 1.5)
g2 = -6*mu**4*nu + (8*nu-2)*mu**2-2*nu + 1
g2 /= nu*mu2**2.0
return mu, mu2, g1, g2
nakagami = nakagami_gen(a=0.0, name="nakagami")
class ncx2_gen(rv_continuous):
r"""A non-central chi-squared continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `ncx2` is:
.. math::
f(x, k, \lambda) = \frac{1}{2} \exp(-(\lambda+x)/2)
(x/\lambda)^{(k-2)/4} I_{(k-2)/2}(\sqrt{\lambda x})
for :math:`x >= 0` and :math:`k, \lambda > 0`. :math:`k` specifies the
degrees of freedom (denoted ``df`` in the implementation) and
:math:`\lambda` is the non-centrality parameter (denoted ``nc`` in the
implementation). :math:`I_\nu` denotes the modified Bessel function of
first order of degree :math:`\nu` (`scipy.special.iv`).
`ncx2` takes ``df`` and ``nc`` as shape parameters.
%(after_notes)s
%(example)s
"""
def _argcheck(self, df, nc):
return (df > 0) & (nc >= 0)
def _rvs(self, df, nc, size=None, random_state=None):
return random_state.noncentral_chisquare(df, nc, size)
def _logpdf(self, x, df, nc):
cond = np.ones_like(x, dtype=bool) & (nc != 0)
return _lazywhere(cond, (x, df, nc), f=_ncx2_log_pdf, f2=chi2.logpdf)
def _pdf(self, x, df, nc):
# ncx2.pdf(x, df, nc) = exp(-(nc+x)/2) * 1/2 * (x/nc)**((df-2)/4)
# * I[(df-2)/2](sqrt(nc*x))
cond = np.ones_like(x, dtype=bool) & (nc != 0)
return _lazywhere(cond, (x, df, nc), f=_ncx2_pdf, f2=chi2.pdf)
def _cdf(self, x, df, nc):
cond = np.ones_like(x, dtype=bool) & (nc != 0)
return _lazywhere(cond, (x, df, nc), f=_ncx2_cdf, f2=chi2.cdf)
def _ppf(self, q, df, nc):
cond = np.ones_like(q, dtype=bool) & (nc != 0)
return _lazywhere(cond, (q, df, nc), f=sc.chndtrix, f2=chi2.ppf)
def _stats(self, df, nc):
val = df + 2.0*nc
return (df + nc,
2*val,
np.sqrt(8)*(val+nc)/val**1.5,
12.0*(val+2*nc)/val**2.0)
ncx2 = ncx2_gen(a=0.0, name='ncx2')
class ncf_gen(rv_continuous):
r"""A non-central F distribution continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `ncf` is:
.. math::
f(x, n_1, n_2, \lambda) =
\exp\left(\frac{\lambda}{2} +
\lambda n_1 \frac{x}{2(n_1 x + n_2)}
\right)
n_1^{n_1/2} n_2^{n_2/2} x^{n_1/2 - 1} \\
(n_2 + n_1 x)^{-(n_1 + n_2)/2}
\gamma(n_1/2) \gamma(1 + n_2/2) \\
\frac{L^{\frac{n_1}{2}-1}_{n_2/2}
\left(-\lambda n_1 \frac{x}{2(n_1 x + n_2)}\right)}
{B(n_1/2, n_2/2)
\gamma\left(\frac{n_1 + n_2}{2}\right)}
for :math:`n_1, n_2 > 0`, :math:`\lambda\geq 0`. Here :math:`n_1` is the
degrees of freedom in the numerator, :math:`n_2` the degrees of freedom in
the denominator, :math:`\lambda` the non-centrality parameter,
:math:`\gamma` is the logarithm of the Gamma function, :math:`L_n^k` is a
generalized Laguerre polynomial and :math:`B` is the beta function.
`ncf` takes ``df1``, ``df2`` and ``nc`` as shape parameters. If ``nc=0``,
the distribution becomes equivalent to the Fisher distribution.
%(after_notes)s
See Also
--------
scipy.stats.f : Fisher distribution
%(example)s
"""
def _argcheck(self, df1, df2, nc):
return (df1 > 0) & (df2 > 0) & (nc >= 0)
def _rvs(self, dfn, dfd, nc, size=None, random_state=None):
return random_state.noncentral_f(dfn, dfd, nc, size)
def _pdf_skip(self, x, dfn, dfd, nc):
# ncf.pdf(x, df1, df2, nc) = exp(nc/2 + nc*df1*x/(2*(df1*x+df2))) *
# df1**(df1/2) * df2**(df2/2) * x**(df1/2-1) *
# (df2+df1*x)**(-(df1+df2)/2) *
# gamma(df1/2)*gamma(1+df2/2) *
# L^{v1/2-1}^{v2/2}(-nc*v1*x/(2*(v1*x+v2))) /
# (B(v1/2, v2/2) * gamma((v1+v2)/2))
n1, n2 = dfn, dfd
term = -nc/2+nc*n1*x/(2*(n2+n1*x)) + sc.gammaln(n1/2.)+sc.gammaln(1+n2/2.)
term -= sc.gammaln((n1+n2)/2.0)
Px = np.exp(term)
Px *= n1**(n1/2) * n2**(n2/2) * x**(n1/2-1)
Px *= (n2+n1*x)**(-(n1+n2)/2)
Px *= sc.assoc_laguerre(-nc*n1*x/(2.0*(n2+n1*x)), n2/2, n1/2-1)
Px /= sc.beta(n1/2, n2/2)
# This function does not have a return. Drop it for now, the generic
# function seems to work OK.
def _cdf(self, x, dfn, dfd, nc):
return sc.ncfdtr(dfn, dfd, nc, x)
def _ppf(self, q, dfn, dfd, nc):
return sc.ncfdtri(dfn, dfd, nc, q)
def _munp(self, n, dfn, dfd, nc):
val = (dfn * 1.0/dfd)**n
term = sc.gammaln(n+0.5*dfn) + sc.gammaln(0.5*dfd-n) - sc.gammaln(dfd*0.5)
val *= np.exp(-nc / 2.0+term)
val *= sc.hyp1f1(n+0.5*dfn, 0.5*dfn, 0.5*nc)
return val
def _stats(self, dfn, dfd, nc):
# Note: the rv_continuous class ensures that dfn > 0 when this function
# is called, so we don't have to check for division by zero with dfn
# in the following.
mu_num = dfd * (dfn + nc)
mu_den = dfn * (dfd - 2)
mu = np.full_like(mu_num, dtype=np.float64, fill_value=np.inf)
np.true_divide(mu_num, mu_den, where=dfd > 2, out=mu)
mu2_num = 2*((dfn + nc)**2 + (dfn + 2*nc)*(dfd - 2))*(dfd/dfn)**2
mu2_den = (dfd - 2)**2 * (dfd - 4)
mu2 = np.full_like(mu2_num, dtype=np.float64, fill_value=np.inf)
np.true_divide(mu2_num, mu2_den, where=dfd > 4, out=mu2)
return mu, mu2, None, None
ncf = ncf_gen(a=0.0, name='ncf')
class t_gen(rv_continuous):
r"""A Student's t continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `t` is:
.. math::
f(x, \nu) = \frac{\Gamma((\nu+1)/2)}
{\sqrt{\pi \nu} \Gamma(\nu/2)}
(1+x^2/\nu)^{-(\nu+1)/2}
where :math:`x` is a real number and the degrees of freedom parameter
:math:`\nu` (denoted ``df`` in the implementation) satisfies
:math:`\nu > 0`. :math:`\Gamma` is the gamma function
(`scipy.special.gamma`).
%(after_notes)s
%(example)s
"""
def _argcheck(self, df):
return df > 0
def _rvs(self, df, size=None, random_state=None):
return random_state.standard_t(df, size=size)
def _pdf(self, x, df):
# gamma((df+1)/2)
# t.pdf(x, df) = ---------------------------------------------------
# sqrt(pi*df) * gamma(df/2) * (1+x**2/df)**((df+1)/2)
r = np.asarray(df*1.0)
Px = np.exp(sc.gammaln((r+1)/2)-sc.gammaln(r/2))
Px /= np.sqrt(r*np.pi)*(1+(x**2)/r)**((r+1)/2)
return Px
def _logpdf(self, x, df):
r = df*1.0
lPx = sc.gammaln((r+1)/2)-sc.gammaln(r/2)
lPx -= 0.5*np.log(r*np.pi) + (r+1)/2*np.log(1+(x**2)/r)
return lPx
def _cdf(self, x, df):
return sc.stdtr(df, x)
def _sf(self, x, df):
return sc.stdtr(df, -x)
def _ppf(self, q, df):
return sc.stdtrit(df, q)
def _isf(self, q, df):
return -sc.stdtrit(df, q)
def _stats(self, df):
mu = np.where(df > 1, 0.0, np.inf)
mu2 = _lazywhere(df > 2, (df,),
lambda df: df / (df-2.0),
np.inf)
mu2 = np.where(df <= 1, np.nan, mu2)
g1 = np.where(df > 3, 0.0, np.nan)
g2 = _lazywhere(df > 4, (df,),
lambda df: 6.0 / (df-4.0),
np.inf)
g2 = np.where(df <= 2, np.nan, g2)
return mu, mu2, g1, g2
t = t_gen(name='t')
class nct_gen(rv_continuous):
r"""A non-central Student's t continuous random variable.
%(before_notes)s
Notes
-----
If :math:`Y` is a standard normal random variable and :math:`V` is
an independent chi-square random variable (`chi2`) with :math:`k` degrees
of freedom, then
.. math::
X = \frac{Y + c}{\sqrt{V/k}}
has a non-central Student's t distribution on the real line.
The degrees of freedom parameter :math:`k` (denoted ``df`` in the
implementation) satisfies :math:`k > 0` and the noncentrality parameter
:math:`c` (denoted ``nc`` in the implementation) is a real number.
%(after_notes)s
%(example)s
"""
def _argcheck(self, df, nc):
return (df > 0) & (nc == nc)
def _rvs(self, df, nc, size=None, random_state=None):
n = norm.rvs(loc=nc, size=size, random_state=random_state)
c2 = chi2.rvs(df, size=size, random_state=random_state)
return n * np.sqrt(df) / np.sqrt(c2)
def _pdf(self, x, df, nc):
n = df*1.0
nc = nc*1.0
x2 = x*x
ncx2 = nc*nc*x2
fac1 = n + x2
trm1 = n/2.*np.log(n) + sc.gammaln(n+1)
trm1 -= n*np.log(2)+nc*nc/2.+(n/2.)*np.log(fac1)+sc.gammaln(n/2.)
Px = np.exp(trm1)
valF = ncx2 / (2*fac1)
trm1 = np.sqrt(2)*nc*x*sc.hyp1f1(n/2+1, 1.5, valF)
trm1 /= np.asarray(fac1*sc.gamma((n+1)/2))
trm2 = sc.hyp1f1((n+1)/2, 0.5, valF)
trm2 /= np.asarray(np.sqrt(fac1)*sc.gamma(n/2+1))
Px *= trm1+trm2
return Px
def _cdf(self, x, df, nc):
return sc.nctdtr(df, nc, x)
def _ppf(self, q, df, nc):
return sc.nctdtrit(df, nc, q)
def _stats(self, df, nc, moments='mv'):
#
# See D. Hogben, R.S. Pinkham, and M.B. Wilk,
# 'The moments of the non-central t-distribution'
# Biometrika 48, p. 465 (2961).
# e.g. https://www.jstor.org/stable/2332772 (gated)
#
mu, mu2, g1, g2 = None, None, None, None
gfac = sc.gamma(df/2.-0.5) / sc.gamma(df/2.)
c11 = np.sqrt(df/2.) * gfac
c20 = df / (df-2.)
c22 = c20 - c11*c11
mu = np.where(df > 1, nc*c11, np.inf)
mu2 = np.where(df > 2, c22*nc*nc + c20, np.inf)
if 's' in moments:
c33t = df * (7.-2.*df) / (df-2.) / (df-3.) + 2.*c11*c11
c31t = 3.*df / (df-2.) / (df-3.)
mu3 = (c33t*nc*nc + c31t) * c11*nc
g1 = np.where(df > 3, mu3 / np.power(mu2, 1.5), np.nan)
# kurtosis
if 'k' in moments:
c44 = df*df / (df-2.) / (df-4.)
c44 -= c11*c11 * 2.*df*(5.-df) / (df-2.) / (df-3.)
c44 -= 3.*c11**4
c42 = df / (df-4.) - c11*c11 * (df-1.) / (df-3.)
c42 *= 6.*df / (df-2.)
c40 = 3.*df*df / (df-2.) / (df-4.)
mu4 = c44 * nc**4 + c42*nc**2 + c40
g2 = np.where(df > 4, mu4/mu2**2 - 3., np.nan)
return mu, mu2, g1, g2
nct = nct_gen(name="nct")
class pareto_gen(rv_continuous):
r"""A Pareto continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `pareto` is:
.. math::
f(x, b) = \frac{b}{x^{b+1}}
for :math:`x \ge 1`, :math:`b > 0`.
`pareto` takes ``b`` as a shape parameter for :math:`b`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, b):
# pareto.pdf(x, b) = b / x**(b+1)
return b * x**(-b-1)
def _cdf(self, x, b):
return 1 - x**(-b)
def _ppf(self, q, b):
return pow(1-q, -1.0/b)
def _sf(self, x, b):
return x**(-b)
def _stats(self, b, moments='mv'):
mu, mu2, g1, g2 = None, None, None, None
if 'm' in moments:
mask = b > 1
bt = np.extract(mask, b)
mu = valarray(np.shape(b), value=np.inf)
np.place(mu, mask, bt / (bt-1.0))
if 'v' in moments:
mask = b > 2
bt = np.extract(mask, b)
mu2 = valarray(np.shape(b), value=np.inf)
np.place(mu2, mask, bt / (bt-2.0) / (bt-1.0)**2)
if 's' in moments:
mask = b > 3
bt = np.extract(mask, b)
g1 = valarray(np.shape(b), value=np.nan)
vals = 2 * (bt + 1.0) * np.sqrt(bt - 2.0) / ((bt - 3.0) * np.sqrt(bt))
np.place(g1, mask, vals)
if 'k' in moments:
mask = b > 4
bt = np.extract(mask, b)
g2 = valarray(np.shape(b), value=np.nan)
vals = (6.0*np.polyval([1.0, 1.0, -6, -2], bt) /
np.polyval([1.0, -7.0, 12.0, 0.0], bt))
np.place(g2, mask, vals)
return mu, mu2, g1, g2
def _entropy(self, c):
return 1 + 1.0/c - np.log(c)
pareto = pareto_gen(a=1.0, name="pareto")
class lomax_gen(rv_continuous):
r"""A Lomax (Pareto of the second kind) continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `lomax` is:
.. math::
f(x, c) = \frac{c}{(1+x)^{c+1}}
for :math:`x \ge 0`, :math:`c > 0`.
`lomax` takes ``c`` as a shape parameter for :math:`c`.
`lomax` is a special case of `pareto` with ``loc=-1.0``.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, c):
# lomax.pdf(x, c) = c / (1+x)**(c+1)
return c*1.0/(1.0+x)**(c+1.0)
def _logpdf(self, x, c):
return np.log(c) - (c+1)*sc.log1p(x)
def _cdf(self, x, c):
return -sc.expm1(-c*sc.log1p(x))
def _sf(self, x, c):
return np.exp(-c*sc.log1p(x))
def _logsf(self, x, c):
return -c*sc.log1p(x)
def _ppf(self, q, c):
return sc.expm1(-sc.log1p(-q)/c)
def _stats(self, c):
mu, mu2, g1, g2 = pareto.stats(c, loc=-1.0, moments='mvsk')
return mu, mu2, g1, g2
def _entropy(self, c):
return 1+1.0/c-np.log(c)
lomax = lomax_gen(a=0.0, name="lomax")
class pearson3_gen(rv_continuous):
r"""A pearson type III continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `pearson3` is:
.. math::
f(x, skew) = \frac{|\beta|}{\Gamma(\alpha)}
(\beta (x - \zeta))^{\alpha - 1}
\exp(-\beta (x - \zeta))
where:
.. math::
\beta = \frac{2}{skew stddev}
\alpha = (stddev \beta)^2
\zeta = loc - \frac{\alpha}{\beta}
:math:`\Gamma` is the gamma function (`scipy.special.gamma`).
`pearson3` takes ``skew`` as a shape parameter for :math:`skew`.
%(after_notes)s
%(example)s
References
----------
R.W. Vogel and D.E. McMartin, "Probability Plot Goodness-of-Fit and
Skewness Estimation Procedures for the Pearson Type 3 Distribution", Water
Resources Research, Vol.27, 3149-3158 (1991).
L.R. Salvosa, "Tables of Pearson's Type III Function", Ann. Math. Statist.,
Vol.1, 191-198 (1930).
"Using Modern Computing Tools to Fit the Pearson Type III Distribution to
Aviation Loads Data", Office of Aviation Research (2003).
"""
def _preprocess(self, x, skew):
# The real 'loc' and 'scale' are handled in the calling pdf(...). The
# local variables 'loc' and 'scale' within pearson3._pdf are set to
# the defaults just to keep them as part of the equations for
# documentation.
loc = 0.0
scale = 1.0
# If skew is small, return _norm_pdf. The divide between pearson3
# and norm was found by brute force and is approximately a skew of
# 0.000016. No one, I hope, would actually use a skew value even
# close to this small.
norm2pearson_transition = 0.000016
ans, x, skew = np.broadcast_arrays([1.0], x, skew)
ans = ans.copy()
# mask is True where skew is small enough to use the normal approx.
mask = np.absolute(skew) < norm2pearson_transition
invmask = ~mask
beta = 2.0 / (skew[invmask] * scale)
alpha = (scale * beta)**2
zeta = loc - alpha / beta
transx = beta * (x[invmask] - zeta)
return ans, x, transx, mask, invmask, beta, alpha, zeta
def _argcheck(self, skew):
# The _argcheck function in rv_continuous only allows positive
# arguments. The skew argument for pearson3 can be zero (which I want
# to handle inside pearson3._pdf) or negative. So just return True
# for all skew args.
return np.ones(np.shape(skew), dtype=bool)
def _stats(self, skew):
_, _, _, _, _, beta, alpha, zeta = (
self._preprocess([1], skew))
m = zeta + alpha / beta
v = alpha / (beta**2)
s = 2.0 / (alpha**0.5) * np.sign(beta)
k = 6.0 / alpha
return m, v, s, k
def _pdf(self, x, skew):
# pearson3.pdf(x, skew) = abs(beta) / gamma(alpha) *
# (beta * (x - zeta))**(alpha - 1) * exp(-beta*(x - zeta))
# Do the calculation in _logpdf since helps to limit
# overflow/underflow problems
ans = np.exp(self._logpdf(x, skew))
if ans.ndim == 0:
if np.isnan(ans):
return 0.0
return ans
ans[np.isnan(ans)] = 0.0
return ans
def _logpdf(self, x, skew):
# PEARSON3 logpdf GAMMA logpdf
# np.log(abs(beta))
# + (alpha - 1)*np.log(beta*(x - zeta)) + (a - 1)*np.log(x)
# - beta*(x - zeta) - x
# - sc.gammalnalpha) - sc.gammalna)
ans, x, transx, mask, invmask, beta, alpha, _ = (
self._preprocess(x, skew))
ans[mask] = np.log(_norm_pdf(x[mask]))
ans[invmask] = np.log(abs(beta)) + gamma._logpdf(transx, alpha)
return ans
def _cdf(self, x, skew):
ans, x, transx, mask, invmask, _, alpha, _ = (
self._preprocess(x, skew))
ans[mask] = _norm_cdf(x[mask])
ans[invmask] = gamma._cdf(transx, alpha)
return ans
def _rvs(self, skew, size=None, random_state=None):
skew = np.broadcast_to(skew, size)
ans, _, _, mask, invmask, beta, alpha, zeta = (
self._preprocess([0], skew))
nsmall = mask.sum()
nbig = mask.size - nsmall
ans[mask] = random_state.standard_normal(nsmall)
ans[invmask] = random_state.standard_gamma(alpha, nbig)/beta + zeta
if size == ():
ans = ans[0]
return ans
def _ppf(self, q, skew):
ans, q, _, mask, invmask, beta, alpha, zeta = (
self._preprocess(q, skew))
ans[mask] = _norm_ppf(q[mask])
ans[invmask] = sc.gammaincinv(alpha, q[invmask])/beta + zeta
return ans
pearson3 = pearson3_gen(name="pearson3")
class powerlaw_gen(rv_continuous):
r"""A power-function continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `powerlaw` is:
.. math::
f(x, a) = a x^{a-1}
for :math:`0 \le x \le 1`, :math:`a > 0`.
`powerlaw` takes ``a`` as a shape parameter for :math:`a`.
%(after_notes)s
`powerlaw` is a special case of `beta` with ``b=1``.
%(example)s
"""
def _pdf(self, x, a):
# powerlaw.pdf(x, a) = a * x**(a-1)
return a*x**(a-1.0)
def _logpdf(self, x, a):
return np.log(a) + sc.xlogy(a - 1, x)
def _cdf(self, x, a):
return x**(a*1.0)
def _logcdf(self, x, a):
return a*np.log(x)
def _ppf(self, q, a):
return pow(q, 1.0/a)
def _stats(self, a):
return (a / (a + 1.0),
a / (a + 2.0) / (a + 1.0) ** 2,
-2.0 * ((a - 1.0) / (a + 3.0)) * np.sqrt((a + 2.0) / a),
6 * np.polyval([1, -1, -6, 2], a) / (a * (a + 3.0) * (a + 4)))
def _entropy(self, a):
return 1 - 1.0/a - np.log(a)
powerlaw = powerlaw_gen(a=0.0, b=1.0, name="powerlaw")
class powerlognorm_gen(rv_continuous):
r"""A power log-normal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `powerlognorm` is:
.. math::
f(x, c, s) = \frac{c}{x s} \phi(\log(x)/s)
(\Phi(-\log(x)/s))^{c-1}
where :math:`\phi` is the normal pdf, and :math:`\Phi` is the normal cdf,
and :math:`x > 0`, :math:`s, c > 0`.
`powerlognorm` takes :math:`c` and :math:`s` as shape parameters.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _pdf(self, x, c, s):
# powerlognorm.pdf(x, c, s) = c / (x*s) * phi(log(x)/s) *
# (Phi(-log(x)/s))**(c-1),
return (c/(x*s) * _norm_pdf(np.log(x)/s) *
pow(_norm_cdf(-np.log(x)/s), c*1.0-1.0))
def _cdf(self, x, c, s):
return 1.0 - pow(_norm_cdf(-np.log(x)/s), c*1.0)
def _ppf(self, q, c, s):
return np.exp(-s * _norm_ppf(pow(1.0 - q, 1.0 / c)))
powerlognorm = powerlognorm_gen(a=0.0, name="powerlognorm")
class powernorm_gen(rv_continuous):
r"""A power normal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `powernorm` is:
.. math::
f(x, c) = c \phi(x) (\Phi(-x))^{c-1}
where :math:`\phi` is the normal pdf, and :math:`\Phi` is the normal cdf,
and :math:`x >= 0`, :math:`c > 0`.
`powernorm` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, c):
# powernorm.pdf(x, c) = c * phi(x) * (Phi(-x))**(c-1)
return c*_norm_pdf(x) * (_norm_cdf(-x)**(c-1.0))
def _logpdf(self, x, c):
return np.log(c) + _norm_logpdf(x) + (c-1)*_norm_logcdf(-x)
def _cdf(self, x, c):
return 1.0-_norm_cdf(-x)**(c*1.0)
def _ppf(self, q, c):
return -_norm_ppf(pow(1.0 - q, 1.0 / c))
powernorm = powernorm_gen(name='powernorm')
class rdist_gen(rv_continuous):
r"""An R-distributed (symmetric beta) continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `rdist` is:
.. math::
f(x, c) = \frac{(1-x^2)^{c/2-1}}{B(1/2, c/2)}
for :math:`-1 \le x \le 1`, :math:`c > 0`. `rdist` is also called the
symmetric beta distribution: if B has a `beta` distribution with
parameters (c/2, c/2), then X = 2*B - 1 follows a R-distribution with
parameter c.
`rdist` takes ``c`` as a shape parameter for :math:`c`.
This distribution includes the following distribution kernels as
special cases::
c = 2: uniform
c = 3: `semicircular`
c = 4: Epanechnikov (parabolic)
c = 6: quartic (biweight)
c = 8: triweight
%(after_notes)s
%(example)s
"""
# use relation to the beta distribution for pdf, cdf, etc
def _pdf(self, x, c):
return 0.5*beta._pdf((x + 1)/2, c/2, c/2)
def _logpdf(self, x, c):
return -np.log(2) + beta._logpdf((x + 1)/2, c/2, c/2)
def _cdf(self, x, c):
return beta._cdf((x + 1)/2, c/2, c/2)
def _ppf(self, q, c):
return 2*beta._ppf(q, c/2, c/2) - 1
def _rvs(self, c, size=None, random_state=None):
return 2 * random_state.beta(c/2, c/2, size) - 1
def _munp(self, n, c):
numerator = (1 - (n % 2)) * sc.beta((n + 1.0) / 2, c / 2.0)
return numerator / sc.beta(1. / 2, c / 2.)
rdist = rdist_gen(a=-1.0, b=1.0, name="rdist")
class rayleigh_gen(rv_continuous):
r"""A Rayleigh continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `rayleigh` is:
.. math::
f(x) = x \exp(-x^2/2)
for :math:`x \ge 0`.
`rayleigh` is a special case of `chi` with ``df=2``.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, size=None, random_state=None):
return chi.rvs(2, size=size, random_state=random_state)
def _pdf(self, r):
# rayleigh.pdf(r) = r * exp(-r**2/2)
return np.exp(self._logpdf(r))
def _logpdf(self, r):
return np.log(r) - 0.5 * r * r
def _cdf(self, r):
return -sc.expm1(-0.5 * r**2)
def _ppf(self, q):
return np.sqrt(-2 * sc.log1p(-q))
def _sf(self, r):
return np.exp(self._logsf(r))
def _logsf(self, r):
return -0.5 * r * r
def _isf(self, q):
return np.sqrt(-2 * np.log(q))
def _stats(self):
val = 4 - np.pi
return (np.sqrt(np.pi/2),
val/2,
2*(np.pi-3)*np.sqrt(np.pi)/val**1.5,
6*np.pi/val-16/val**2)
def _entropy(self):
return _EULER/2.0 + 1 - 0.5*np.log(2)
rayleigh = rayleigh_gen(a=0.0, name="rayleigh")
class reciprocal_gen(rv_continuous):
r"""A loguniform or reciprocal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for this class is:
.. math::
f(x, a, b) = \frac{1}{x \log(b/a)}
for :math:`a \le x \le b`, :math:`b > a > 0`. This class takes
:math:`a` and :math:`b` as shape parameters. %(after_notes)s
%(example)s
This doesn't show the equal probability of ``0.01``, ``0.1`` and
``1``. This is best when the x-axis is log-scaled:
>>> import numpy as np
>>> fig, ax = plt.subplots(1, 1)
>>> ax.hist(np.log10(r))
>>> ax.set_ylabel("Frequency")
>>> ax.set_xlabel("Value of random variable")
>>> ax.xaxis.set_major_locator(plt.FixedLocator([-2, -1, 0]))
>>> ticks = ["$10^{{ {} }}$".format(i) for i in [-2, -1, 0]]
>>> ax.set_xticklabels(ticks) # doctest: +SKIP
>>> plt.show()
This random variable will be log-uniform regardless of the base chosen for
``a`` and ``b``. Let's specify with base ``2`` instead:
>>> rvs = %(name)s(2**-2, 2**0).rvs(size=1000)
Values of ``1/4``, ``1/2`` and ``1`` are equally likely with this random
variable. Here's the histogram:
>>> fig, ax = plt.subplots(1, 1)
>>> ax.hist(np.log2(rvs))
>>> ax.set_ylabel("Frequency")
>>> ax.set_xlabel("Value of random variable")
>>> ax.xaxis.set_major_locator(plt.FixedLocator([-2, -1, 0]))
>>> ticks = ["$2^{{ {} }}$".format(i) for i in [-2, -1, 0]]
>>> ax.set_xticklabels(ticks) # doctest: +SKIP
>>> plt.show()
"""
def _argcheck(self, a, b):
return (a > 0) & (b > a)
def _get_support(self, a, b):
return a, b
def _pdf(self, x, a, b):
# reciprocal.pdf(x, a, b) = 1 / (x*log(b/a))
return 1.0 / (x * np.log(b * 1.0 / a))
def _logpdf(self, x, a, b):
return -np.log(x) - np.log(np.log(b * 1.0 / a))
def _cdf(self, x, a, b):
return (np.log(x)-np.log(a)) / np.log(b * 1.0 / a)
def _ppf(self, q, a, b):
return a*pow(b*1.0/a, q)
def _munp(self, n, a, b):
return 1.0/np.log(b*1.0/a) / n * (pow(b*1.0, n) - pow(a*1.0, n))
def _entropy(self, a, b):
return 0.5*np.log(a*b)+np.log(np.log(b*1.0/a))
loguniform = reciprocal_gen(name="loguniform")
reciprocal = reciprocal_gen(name="reciprocal")
class rice_gen(rv_continuous):
r"""A Rice continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `rice` is:
.. math::
f(x, b) = x \exp(- \frac{x^2 + b^2}{2}) I_0(x b)
for :math:`x >= 0`, :math:`b > 0`. :math:`I_0` is the modified Bessel
function of order zero (`scipy.special.i0`).
`rice` takes ``b`` as a shape parameter for :math:`b`.
%(after_notes)s
The Rice distribution describes the length, :math:`r`, of a 2-D vector with
components :math:`(U+u, V+v)`, where :math:`U, V` are constant, :math:`u,
v` are independent Gaussian random variables with standard deviation
:math:`s`. Let :math:`R = \sqrt{U^2 + V^2}`. Then the pdf of :math:`r` is
``rice.pdf(x, R/s, scale=s)``.
%(example)s
"""
def _argcheck(self, b):
return b >= 0
def _rvs(self, b, size=None, random_state=None):
# https://en.wikipedia.org/wiki/Rice_distribution
t = b/np.sqrt(2) + random_state.standard_normal(size=(2,) + size)
return np.sqrt((t*t).sum(axis=0))
def _cdf(self, x, b):
return sc.chndtr(np.square(x), 2, np.square(b))
def _ppf(self, q, b):
return np.sqrt(sc.chndtrix(q, 2, np.square(b)))
def _pdf(self, x, b):
# rice.pdf(x, b) = x * exp(-(x**2+b**2)/2) * I[0](x*b)
#
# We use (x**2 + b**2)/2 = ((x-b)**2)/2 + xb.
# The factor of np.exp(-xb) is then included in the i0e function
# in place of the modified Bessel function, i0, improving
# numerical stability for large values of xb.
return x * np.exp(-(x-b)*(x-b)/2.0) * sc.i0e(x*b)
def _munp(self, n, b):
nd2 = n/2.0
n1 = 1 + nd2
b2 = b*b/2.0
return (2.0**(nd2) * np.exp(-b2) * sc.gamma(n1) *
sc.hyp1f1(n1, 1, b2))
rice = rice_gen(a=0.0, name="rice")
# FIXME: PPF does not work.
class recipinvgauss_gen(rv_continuous):
r"""A reciprocal inverse Gaussian continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `recipinvgauss` is:
.. math::
f(x, \mu) = \frac{1}{\sqrt{2\pi x}}
\exp\left(\frac{-(1-\mu x)^2}{2\mu^2x}\right)
for :math:`x \ge 0`.
`recipinvgauss` takes ``mu`` as a shape parameter for :math:`\mu`.
%(after_notes)s
%(example)s
"""
def _pdf(self, x, mu):
# recipinvgauss.pdf(x, mu) =
# 1/sqrt(2*pi*x) * exp(-(1-mu*x)**2/(2*x*mu**2))
return 1.0/np.sqrt(2*np.pi*x)*np.exp(-(1-mu*x)**2.0 / (2*x*mu**2.0))
def _logpdf(self, x, mu):
return -(1-mu*x)**2.0 / (2*x*mu**2.0) - 0.5*np.log(2*np.pi*x)
def _cdf(self, x, mu):
trm1 = 1.0/mu - x
trm2 = 1.0/mu + x
isqx = 1.0/np.sqrt(x)
return 1.0-_norm_cdf(isqx*trm1)-np.exp(2.0/mu)*_norm_cdf(-isqx*trm2)
def _rvs(self, mu, size=None, random_state=None):
return 1.0/random_state.wald(mu, 1.0, size=size)
recipinvgauss = recipinvgauss_gen(a=0.0, name='recipinvgauss')
class semicircular_gen(rv_continuous):
r"""A semicircular continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `semicircular` is:
.. math::
f(x) = \frac{2}{\pi} \sqrt{1-x^2}
for :math:`-1 \le x \le 1`.
The distribution is a special case of `rdist` with `c = 3`.
%(after_notes)s
See Also
--------
rdist
References
----------
.. [1] "Wigner semicircle distribution",
https://en.wikipedia.org/wiki/Wigner_semicircle_distribution
%(example)s
"""
def _pdf(self, x):
return 2.0/np.pi*np.sqrt(1-x*x)
def _logpdf(self, x):
return np.log(2/np.pi) + 0.5*np.log1p(-x*x)
def _cdf(self, x):
return 0.5+1.0/np.pi*(x*np.sqrt(1-x*x) + np.arcsin(x))
def _ppf(self, q):
return rdist._ppf(q, 3)
def _rvs(self, size=None, random_state=None):
# generate values uniformly distributed on the area under the pdf
# (semi-circle) by randomly generating the radius and angle
r = np.sqrt(random_state.uniform(size=size))
a = np.cos(np.pi * random_state.uniform(size=size))
return r * a
def _stats(self):
return 0, 0.25, 0, -1.0
def _entropy(self):
return 0.64472988584940017414
semicircular = semicircular_gen(a=-1.0, b=1.0, name="semicircular")
class skew_norm_gen(rv_continuous):
r"""A skew-normal random variable.
%(before_notes)s
Notes
-----
The pdf is::
skewnorm.pdf(x, a) = 2 * norm.pdf(x) * norm.cdf(a*x)
`skewnorm` takes a real number :math:`a` as a skewness parameter
When ``a = 0`` the distribution is identical to a normal distribution
(`norm`). `rvs` implements the method of [1]_.
%(after_notes)s
%(example)s
References
----------
.. [1] A. Azzalini and A. Capitanio (1999). Statistical applications of the
multivariate skew-normal distribution. J. Roy. Statist. Soc., B 61, 579-602.
https://arxiv.org/abs/0911.2093
"""
def _argcheck(self, a):
return np.isfinite(a)
def _pdf(self, x, a):
return 2.*_norm_pdf(x)*_norm_cdf(a*x)
def _cdf_single(self, x, *args):
_a, _b = self._get_support(*args)
if x <= 0:
cdf = integrate.quad(self._pdf, _a, x, args=args)[0]
else:
t1 = integrate.quad(self._pdf, _a, 0, args=args)[0]
t2 = integrate.quad(self._pdf, 0, x, args=args)[0]
cdf = t1 + t2
if cdf > 1:
# Presumably numerical noise, e.g. 1.0000000000000002
cdf = 1.0
return cdf
def _sf(self, x, a):
return self._cdf(-x, -a)
def _rvs(self, a, size=None, random_state=None):
u0 = random_state.normal(size=size)
v = random_state.normal(size=size)
d = a/np.sqrt(1 + a**2)
u1 = d*u0 + v*np.sqrt(1 - d**2)
return np.where(u0 >= 0, u1, -u1)
def _stats(self, a, moments='mvsk'):
output = [None, None, None, None]
const = np.sqrt(2/np.pi) * a/np.sqrt(1 + a**2)
if 'm' in moments:
output[0] = const
if 'v' in moments:
output[1] = 1 - const**2
if 's' in moments:
output[2] = ((4 - np.pi)/2) * (const/np.sqrt(1 - const**2))**3
if 'k' in moments:
output[3] = (2*(np.pi - 3)) * (const**4/(1 - const**2)**2)
return output
skewnorm = skew_norm_gen(name='skewnorm')
class trapz_gen(rv_continuous):
r"""A trapezoidal continuous random variable.
%(before_notes)s
Notes
-----
The trapezoidal distribution can be represented with an up-sloping line
from ``loc`` to ``(loc + c*scale)``, then constant to ``(loc + d*scale)``
and then downsloping from ``(loc + d*scale)`` to ``(loc+scale)``. This
defines the trapezoid base from ``loc`` to ``(loc+scale)`` and the flat
top from ``c`` to ``d`` proportional to the position along the base
with ``0 <= c <= d <= 1``. When ``c=d``, this is equivalent to `triang`
with the same values for `loc`, `scale` and `c`.
The method of [1]_ is used for computing moments.
`trapz` takes :math:`c` and :math:`d` as shape parameters.
%(after_notes)s
The standard form is in the range [0, 1] with c the mode.
The location parameter shifts the start to `loc`.
The scale parameter changes the width from 1 to `scale`.
%(example)s
References
----------
.. [1] Kacker, R.N. and Lawrence, J.F. (2007). Trapezoidal and triangular
distributions for Type B evaluation of standard uncertainty.
Metrologia 44, 117127. https://doi.org/10.1088/0026-1394/44/2/003
"""
def _argcheck(self, c, d):
return (c >= 0) & (c <= 1) & (d >= 0) & (d <= 1) & (d >= c)
def _pdf(self, x, c, d):
u = 2 / (d-c+1)
return _lazyselect([x < c,
(c <= x) & (x <= d),
x > d],
[lambda x, c, d, u: u * x / c,
lambda x, c, d, u: u,
lambda x, c, d, u: u * (1-x) / (1-d)],
(x, c, d, u))
def _cdf(self, x, c, d):
return _lazyselect([x < c,
(c <= x) & (x <= d),
x > d],
[lambda x, c, d: x**2 / c / (d-c+1),
lambda x, c, d: (c + 2 * (x-c)) / (d-c+1),
lambda x, c, d: 1-((1-x) ** 2
/ (d-c+1) / (1-d))],
(x, c, d))
def _ppf(self, q, c, d):
qc, qd = self._cdf(c, c, d), self._cdf(d, c, d)
condlist = [q < qc, q <= qd, q > qd]
choicelist = [np.sqrt(q * c * (1 + d - c)),
0.5 * q * (1 + d - c) + 0.5 * c,
1 - np.sqrt((1 - q) * (d - c + 1) * (1 - d))]
return np.select(condlist, choicelist)
def _munp(self, n, c, d):
# Using the parameterization from Kacker, 2007, with
# a=bottom left, c=top left, d=top right, b=bottom right, then
# E[X^n] = h/(n+1)/(n+2) [(b^{n+2}-d^{n+2})/(b-d)
# - ((c^{n+2} - a^{n+2})/(c-a)]
# with h = 2/((b-a) - (d-c)). The corresponding parameterization
# in scipy, has a'=loc, c'=loc+c*scale, d'=loc+d*scale, b'=loc+scale,
# which for standard form reduces to a'=0, b'=1, c'=c, d'=d.
# Substituting into E[X^n] gives the bd' term as (1 - d^{n+2})/(1 - d)
# and the ac' term as c^{n-1} for the standard form. The bd' term has
# numerical difficulties near d=1, so replace (1 - d^{n+2})/(1-d)
# with expm1((n+2)*log(d))/(d-1).
# Testing with n=18 for c=(1e-30,1-eps) shows that this is stable.
# We still require an explicit test for d=1 to prevent divide by zero,
# and now a test for d=0 to prevent log(0).
ab_term = c**(n+1)
dc_term = _lazyselect(
[d == 0.0, (0.0 < d) & (d < 1.0), d == 1.0],
[lambda d: 1.0,
lambda d: np.expm1((n+2) * np.log(d)) / (d-1.0),
lambda d: n+2],
[d])
val = 2.0 / (1.0+d-c) * (dc_term - ab_term) / ((n+1) * (n+2))
return val
def _entropy(self, c, d):
# Using the parameterization from Wikipedia (van Dorp, 2003)
# with a=bottom left, c=top left, d=top right, b=bottom right
# gives a'=loc, b'=loc+c*scale, c'=loc+d*scale, d'=loc+scale,
# which for loc=0, scale=1 is a'=0, b'=c, c'=d, d'=1.
# Substituting into the entropy formula from Wikipedia gives
# the following result.
return 0.5 * (1.0-d+c) / (1.0+d-c) + np.log(0.5 * (1.0+d-c))
trapz = trapz_gen(a=0.0, b=1.0, name="trapz")
class triang_gen(rv_continuous):
r"""A triangular continuous random variable.
%(before_notes)s
Notes
-----
The triangular distribution can be represented with an up-sloping line from
``loc`` to ``(loc + c*scale)`` and then downsloping for ``(loc + c*scale)``
to ``(loc + scale)``.
`triang` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
The standard form is in the range [0, 1] with c the mode.
The location parameter shifts the start to `loc`.
The scale parameter changes the width from 1 to `scale`.
%(example)s
"""
def _rvs(self, c, size=None, random_state=None):
return random_state.triangular(0, c, 1, size)
def _argcheck(self, c):
return (c >= 0) & (c <= 1)
def _pdf(self, x, c):
# 0: edge case where c=0
# 1: generalised case for x < c, don't use x <= c, as it doesn't cope
# with c = 0.
# 2: generalised case for x >= c, but doesn't cope with c = 1
# 3: edge case where c=1
r = _lazyselect([c == 0,
x < c,
(x >= c) & (c != 1),
c == 1],
[lambda x, c: 2 - 2 * x,
lambda x, c: 2 * x / c,
lambda x, c: 2 * (1 - x) / (1 - c),
lambda x, c: 2 * x],
(x, c))
return r
def _cdf(self, x, c):
r = _lazyselect([c == 0,
x < c,
(x >= c) & (c != 1),
c == 1],
[lambda x, c: 2*x - x*x,
lambda x, c: x * x / c,
lambda x, c: (x*x - 2*x + c) / (c-1),
lambda x, c: x * x],
(x, c))
return r
def _ppf(self, q, c):
return np.where(q < c, np.sqrt(c * q), 1-np.sqrt((1-c) * (1-q)))
def _stats(self, c):
return ((c+1.0)/3.0,
(1.0-c+c*c)/18,
np.sqrt(2)*(2*c-1)*(c+1)*(c-2) / (5*np.power((1.0-c+c*c), 1.5)),
-3.0/5.0)
def _entropy(self, c):
return 0.5-np.log(2)
triang = triang_gen(a=0.0, b=1.0, name="triang")
class truncexpon_gen(rv_continuous):
r"""A truncated exponential continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `truncexpon` is:
.. math::
f(x, b) = \frac{\exp(-x)}{1 - \exp(-b)}
for :math:`0 <= x <= b`.
`truncexpon` takes ``b`` as a shape parameter for :math:`b`.
%(after_notes)s
%(example)s
"""
def _argcheck(self, b):
return b > 0
def _get_support(self, b):
return self.a, b
def _pdf(self, x, b):
# truncexpon.pdf(x, b) = exp(-x) / (1-exp(-b))
return np.exp(-x)/(-sc.expm1(-b))
def _logpdf(self, x, b):
return -x - np.log(-sc.expm1(-b))
def _cdf(self, x, b):
return sc.expm1(-x)/sc.expm1(-b)
def _ppf(self, q, b):
return -sc.log1p(q*sc.expm1(-b))
def _munp(self, n, b):
# wrong answer with formula, same as in continuous.pdf
# return sc.gamman+1)-sc.gammainc1+n, b)
if n == 1:
return (1-(b+1)*np.exp(-b))/(-sc.expm1(-b))
elif n == 2:
return 2*(1-0.5*(b*b+2*b+2)*np.exp(-b))/(-sc.expm1(-b))
else:
# return generic for higher moments
# return rv_continuous._mom1_sc(self, n, b)
return self._mom1_sc(n, b)
def _entropy(self, b):
eB = np.exp(b)
return np.log(eB-1)+(1+eB*(b-1.0))/(1.0-eB)
truncexpon = truncexpon_gen(a=0.0, name='truncexpon')
TRUNCNORM_TAIL_X = 30
TRUNCNORM_MAX_BRENT_ITERS = 40
def _truncnorm_get_delta_scalar(a, b):
if (a > TRUNCNORM_TAIL_X) or (b < -TRUNCNORM_TAIL_X):
return 0
if a > 0:
delta = _norm_sf(a) - _norm_sf(b)
else:
delta = _norm_cdf(b) - _norm_cdf(a)
delta = max(delta, 0)
return delta
def _truncnorm_get_delta(a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_get_delta_scalar(a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_get_delta_scalar(a.item(), b.item())
delta = np.zeros(np.shape(a))
condinner = (a <= TRUNCNORM_TAIL_X) & (b >= -TRUNCNORM_TAIL_X)
conda = (a > 0) & condinner
condb = (a <= 0) & condinner
if np.any(conda):
np.place(delta, conda, _norm_sf(a[conda]) - _norm_sf(b[conda]))
if np.any(condb):
np.place(delta, condb, _norm_cdf(b[condb]) - _norm_cdf(a[condb]))
delta[delta < 0] = 0
return delta
def _truncnorm_get_logdelta_scalar(a, b):
if (a <= TRUNCNORM_TAIL_X) and (b >= -TRUNCNORM_TAIL_X):
if a > 0:
delta = _norm_sf(a) - _norm_sf(b)
else:
delta = _norm_cdf(b) - _norm_cdf(a)
delta = max(delta, 0)
if delta > 0:
return np.log(delta)
if b < 0 or (np.abs(a) >= np.abs(b)):
nla, nlb = _norm_logcdf(a), _norm_logcdf(b)
logdelta = nlb + np.log1p(-np.exp(nla - nlb))
else:
sla, slb = _norm_logsf(a), _norm_logsf(b)
logdelta = sla + np.log1p(-np.exp(slb - sla))
return logdelta
def _truncnorm_logpdf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x < a:
return -np.inf
if x > b:
return -np.inf
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlta, condgtb = (x < a), (x > b)
if np.any(condlta):
np.place(out, condlta, -np.inf)
if np.any(condgtb):
np.place(out, condgtb, -np.inf)
cond_inner = ~condlta & ~condgtb
if np.any(cond_inner):
_logdelta = _truncnorm_get_logdelta_scalar(a, b)
np.place(out, cond_inner, _norm_logpdf(x[cond_inner]) - _logdelta)
return (out[0] if (shp == ()) else out)
def _truncnorm_pdf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x < a:
return 0.0
if x > b:
return 0.0
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlta, condgtb = (x < a), (x > b)
if np.any(condlta):
np.place(out, condlta, 0.0)
if np.any(condgtb):
np.place(out, condgtb, 0.0)
cond_inner = ~condlta & ~condgtb
if np.any(cond_inner):
delta = _truncnorm_get_delta_scalar(a, b)
if delta > 0:
np.place(out, cond_inner, _norm_pdf(x[cond_inner]) / delta)
else:
np.place(out, cond_inner,
np.exp(_truncnorm_logpdf_scalar(x[cond_inner], a, b)))
return (out[0] if (shp == ()) else out)
def _truncnorm_logcdf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x <= a:
return -np.inf
if x >= b:
return 0
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlea, condgeb = (x <= a), (x >= b)
if np.any(condlea):
np.place(out, condlea, -np.inf)
if np.any(condgeb):
np.place(out, condgeb, 0.0)
cond_inner = ~condlea & ~condgeb
if np.any(cond_inner):
delta = _truncnorm_get_delta_scalar(a, b)
if delta > 0:
np.place(out, cond_inner,
np.log((_norm_cdf(x[cond_inner]) - _norm_cdf(a)) / delta))
else:
with np.errstate(divide='ignore'):
if a < 0:
nla, nlb = _norm_logcdf(a), _norm_logcdf(b)
tab = np.log1p(-np.exp(nla - nlb))
nlx = _norm_logcdf(x[cond_inner])
tax = np.log1p(-np.exp(nla - nlx))
np.place(out, cond_inner, nlx + tax - (nlb + tab))
else:
sla = _norm_logsf(a)
slb = _norm_logsf(b)
np.place(out, cond_inner,
np.log1p(-np.exp(_norm_logsf(x[cond_inner]) - sla))
- np.log1p(-np.exp(slb - sla)))
return (out[0] if (shp == ()) else out)
def _truncnorm_cdf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x <= a:
return -0
if x >= b:
return 1
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlea, condgeb = (x <= a), (x >= b)
if np.any(condlea):
np.place(out, condlea, 0)
if np.any(condgeb):
np.place(out, condgeb, 1.0)
cond_inner = ~condlea & ~condgeb
if np.any(cond_inner):
delta = _truncnorm_get_delta_scalar(a, b)
if delta > 0:
np.place(out, cond_inner,
(_norm_cdf(x[cond_inner]) - _norm_cdf(a)) / delta)
else:
with np.errstate(divide='ignore'):
np.place(out, cond_inner,
np.exp(_truncnorm_logcdf_scalar(x[cond_inner], a, b)))
return (out[0] if (shp == ()) else out)
def _truncnorm_logsf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x <= a:
return 0.0
if x >= b:
return -np.inf
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlea, condgeb = (x <= a), (x >= b)
if np.any(condlea):
np.place(out, condlea, 0)
if np.any(condgeb):
np.place(out, condgeb, -np.inf)
cond_inner = ~condlea & ~condgeb
if np.any(cond_inner):
delta = _truncnorm_get_delta_scalar(a, b)
if delta > 0:
np.place(out, cond_inner, np.log((_norm_sf(x[cond_inner]) - _norm_sf(b)) / delta))
else:
with np.errstate(divide='ignore'):
if b < 0:
nla, nlb = _norm_logcdf(a), _norm_logcdf(b)
np.place(out, cond_inner,
np.log1p(-np.exp(_norm_logcdf(x[cond_inner]) - nlb))
- np.log1p(-np.exp(nla - nlb)))
else:
sla, slb = _norm_logsf(a), _norm_logsf(b)
tab = np.log1p(-np.exp(slb - sla))
slx = _norm_logsf(x[cond_inner])
tax = np.log1p(-np.exp(slb - slx))
np.place(out, cond_inner, slx + tax - (sla + tab))
return (out[0] if (shp == ()) else out)
def _truncnorm_sf_scalar(x, a, b):
with np.errstate(invalid='ignore'):
if np.isscalar(x):
if x <= a:
return 1.0
if x >= b:
return 0.0
shp = np.shape(x)
x = np.atleast_1d(x)
out = np.full_like(x, np.nan, dtype=np.double)
condlea, condgeb = (x <= a), (x >= b)
if np.any(condlea):
np.place(out, condlea, 1.0)
if np.any(condgeb):
np.place(out, condgeb, 0.0)
cond_inner = ~condlea & ~condgeb
if np.any(cond_inner):
delta = _truncnorm_get_delta_scalar(a, b)
if delta > 0:
np.place(out, cond_inner, (_norm_sf(x[cond_inner]) - _norm_sf(b)) / delta)
else:
np.place(out, cond_inner, np.exp(_truncnorm_logsf_scalar(x[cond_inner], a, b)))
return (out[0] if (shp == ()) else out)
def _norm_logcdfprime(z):
# derivative of special.log_ndtr (See special/cephes/ndtr.c)
# Differentiate formula for log Phi(z)_truncnorm_ppf
# log Phi(z) = -z^2/2 - log(-z) - log(2pi)/2 + log(1 + sum (-1)^n (2n-1)!! / z^(2n))
# Convergence of series is slow for |z| < 10, but can use d(log Phi(z))/dz = dPhi(z)/dz / Phi(z)
# Just take the first 10 terms because that is sufficient for use in _norm_ilogcdf
assert np.all(z <= -10)
lhs = -z - 1/z
denom_cons = 1/z**2
numerator = 1
pwr = 1.0
denom_total, numerator_total = 0, 0
sign = -1
for i in range(1, 11):
pwr *= denom_cons
numerator *= 2 * i - 1
term = sign * numerator * pwr
denom_total += term
numerator_total += term * (2 * i) / z
sign = -sign
return lhs - numerator_total / (1 + denom_total)
def _norm_ilogcdf(y):
"""Inverse function to _norm_logcdf==sc.log_ndtr."""
# Apply approximate Newton-Raphson
# Only use for very negative values of y.
# At minimum requires y <= -(log(2pi)+2^2)/2 ~= -2.9
# Much better convergence for y <= -10
z = -np.sqrt(-2 * (y + np.log(2*np.pi)/2))
for _ in range(4):
z = z - (_norm_logcdf(z) - y) / _norm_logcdfprime(z)
return z
def _truncnorm_ppf_scalar(q, a, b):
shp = np.shape(q)
q = np.atleast_1d(q)
out = np.zeros(np.shape(q))
condle0, condge1 = (q <= 0), (q >= 1)
if np.any(condle0):
out[condle0] = a
if np.any(condge1):
out[condge1] = b
delta = _truncnorm_get_delta_scalar(a, b)
cond_inner = ~condle0 & ~condge1
if np.any(cond_inner):
qinner = q[cond_inner]
if delta > 0:
if a > 0:
sa, sb = _norm_sf(a), _norm_sf(b)
np.place(out, cond_inner,
_norm_isf(qinner * sb + sa * (1.0 - qinner)))
else:
na, nb = _norm_cdf(a), _norm_cdf(b)
np.place(out, cond_inner, _norm_ppf(qinner * nb + na * (1.0 - qinner)))
elif np.isinf(b):
np.place(out, cond_inner,
-_norm_ilogcdf(np.log1p(-qinner) + _norm_logsf(a)))
elif np.isinf(a):
np.place(out, cond_inner,
_norm_ilogcdf(np.log(q) + _norm_logcdf(b)))
else:
if b < 0:
# Solve norm_logcdf(x) = norm_logcdf(a) + log1p(q * (expm1(norm_logcdf(b) - norm_logcdf(a)))
# = nla + log1p(q * expm1(nlb - nla))
# = nlb + log(q) + log1p((1-q) * exp(nla - nlb)/q)
def _f_cdf(x, c):
return _norm_logcdf(x) - c
nla, nlb = _norm_logcdf(a), _norm_logcdf(b)
values = nlb + np.log(q[cond_inner])
C = np.exp(nla - nlb)
if C:
one_minus_q = (1 - q)[cond_inner]
values += np.log1p(one_minus_q * C / q[cond_inner])
x = [optimize.zeros.brentq(_f_cdf, a, b, args=(c,),
maxiter=TRUNCNORM_MAX_BRENT_ITERS)for c in values]
np.place(out, cond_inner, x)
else:
# Solve norm_logsf(x) = norm_logsf(b) + log1p((1-q) * (expm1(norm_logsf(a) - norm_logsf(b)))
# = slb + log1p((1-q)[cond_inner] * expm1(sla - slb))
# = sla + log(1-q) + log1p(q * np.exp(slb - sla)/(1-q))
def _f_sf(x, c):
return _norm_logsf(x) - c
sla, slb = _norm_logsf(a), _norm_logsf(b)
one_minus_q = (1-q)[cond_inner]
values = sla + np.log(one_minus_q)
C = np.exp(slb - sla)
if C:
values += np.log1p(q[cond_inner] * C / one_minus_q)
x = [optimize.zeros.brentq(_f_sf, a, b, args=(c,),
maxiter=TRUNCNORM_MAX_BRENT_ITERS) for c in values]
np.place(out, cond_inner, x)
out[out < a] = a
out[out > b] = b
return (out[0] if (shp == ()) else out)
class truncnorm_gen(rv_continuous):
r"""A truncated normal continuous random variable.
%(before_notes)s
Notes
-----
The standard form of this distribution is a standard normal truncated to
the range [a, b] --- notice that a and b are defined over the domain of the
standard normal. To convert clip values for a specific mean and standard
deviation, use::
a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std
`truncnorm` takes :math:`a` and :math:`b` as shape parameters.
%(after_notes)s
%(example)s
"""
def _argcheck(self, a, b):
return a < b
def _get_support(self, a, b):
return a, b
def _pdf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_pdf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_pdf_scalar(x, a.item(), b.item())
it = np.nditer([x, a, b, None], [],
[['readonly'], ['readonly'], ['readonly'], ['writeonly','allocate']])
for (_x, _a, _b, _ld) in it:
_ld[...] = _truncnorm_pdf_scalar(_x, _a, _b)
return it.operands[3]
def _logpdf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_logpdf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_logpdf_scalar(x, a.item(), b.item())
it = np.nditer([x, a, b, None], [],
[['readonly'], ['readonly'], ['readonly'], ['writeonly','allocate']])
for (_x, _a, _b, _ld) in it:
_ld[...] = _truncnorm_logpdf_scalar(_x, _a, _b)
return it.operands[3]
def _cdf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_cdf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_cdf_scalar(x, a.item(), b.item())
out = None
it = np.nditer([x, a, b, out], [],
[['readonly'], ['readonly'], ['readonly'], ['writeonly', 'allocate']])
for (_x, _a, _b, _p) in it:
_p[...] = _truncnorm_cdf_scalar(_x, _a, _b)
return it.operands[3]
def _logcdf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_logcdf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_logcdf_scalar(x, a.item(), b.item())
it = np.nditer([x, a, b, None], [],
[['readonly'], ['readonly'], ['readonly'], ['writeonly', 'allocate']])
for (_x, _a, _b, _p) in it:
_p[...] = _truncnorm_logcdf_scalar(_x, _a, _b)
return it.operands[3]
def _sf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_sf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_sf_scalar(x, a.item(), b.item())
out = None
it = np.nditer([x, a, b, out], [],
[['readonly'], ['readonly'], ['readonly'], ['writeonly', 'allocate']])
for (_x, _a, _b, _p) in it:
_p[...] = _truncnorm_sf_scalar(_x, _a, _b)
return it.operands[3]
def _logsf(self, x, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_logsf_scalar(x, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_logsf_scalar(x, a.item(), b.item())
out = None
it = np.nditer([x, a, b, out], [],
[['readonly'], ['readonly'], ['readonly'], ['writeonly', 'allocate']])
for (_x, _a, _b, _p) in it:
_p[...] = _truncnorm_logsf_scalar(_x, _a, _b)
return it.operands[3]
def _ppf(self, q, a, b):
if np.isscalar(a) and np.isscalar(b):
return _truncnorm_ppf_scalar(q, a, b)
a, b = np.atleast_1d(a), np.atleast_1d(b)
if a.size == 1 and b.size == 1:
return _truncnorm_ppf_scalar(q, a.item(), b.item())
out = None
it = np.nditer([q, a, b, out], [],
[['readonly'], ['readonly'], ['readonly'], ['writeonly', 'allocate']])
for (_q, _a, _b, _x) in it:
_x[...] = _truncnorm_ppf_scalar(_q, _a, _b)
return it.operands[3]
def _munp(self, n, a, b):
def n_th_moment(n, a, b):
"""
Returns n-th moment. Defined only if n >= 0.
Function cannot broadcast due to the loop over n
"""
pA, pB = self._pdf([a, b], a, b)
probs = [pA, -pB]
moments = [0, 1]
for k in range(1, n+1):
# a or b might be infinite, and the corresponding pdf value
# is 0 in that case, but nan is returned for the
# multiplication. However, as b->infinity, pdf(b)*b**k -> 0.
# So it is safe to use _lazywhere to avoid the nan.
vals = _lazywhere(probs, [probs, [a, b]],
lambda x, y: x * y**(k-1), fillvalue=0)
mk = np.sum(vals) + (k-1) * moments[-2]
moments.append(mk)
return moments[-1]
return _lazywhere((n >= 0) & (a == a) & (b == b), (n, a, b),
np.vectorize(n_th_moment, otypes=[np.float64]),
np.nan)
def _stats(self, a, b, moments='mv'):
pA, pB = self._pdf(np.array([a, b]), a, b)
m1 = pA - pB
mu = m1
# use _lazywhere to avoid nan (See detailed comment in _munp)
probs = [pA, -pB]
vals = _lazywhere(probs, [probs, [a, b]], lambda x, y: x*y,
fillvalue=0)
m2 = 1 + np.sum(vals)
vals = _lazywhere(probs, [probs, [a-mu, b-mu]], lambda x, y: x*y,
fillvalue=0)
# mu2 = m2 - mu**2, but not as numerically stable as:
# mu2 = (a-mu)*pA - (b-mu)*pB + 1
mu2 = 1 + np.sum(vals)
vals = _lazywhere(probs, [probs, [a, b]], lambda x, y: x*y**2,
fillvalue=0)
m3 = 2*m1 + np.sum(vals)
vals = _lazywhere(probs, [probs, [a, b]], lambda x, y: x*y**3,
fillvalue=0)
m4 = 3*m2 + np.sum(vals)
mu3 = m3 + m1 * (-3*m2 + 2*m1**2)
g1 = mu3 / np.power(mu2, 1.5)
mu4 = m4 + m1*(-4*m3 + 3*m1*(2*m2 - m1**2))
g2 = mu4 / mu2**2 - 3
return mu, mu2, g1, g2
def _rvs(self, a, b, size=None, random_state=None):
# if a and b are scalar, use _rvs_scalar, otherwise need to create
# output by iterating over parameters
if np.isscalar(a) and np.isscalar(b):
out = self._rvs_scalar(a, b, size, random_state=random_state)
elif a.size == 1 and b.size == 1:
out = self._rvs_scalar(a.item(), b.item(), size, random_state=random_state)
else:
# When this method is called, size will be a (possibly empty)
# tuple of integers. It will not be None; if `size=None` is passed
# to `rvs()`, size will be the empty tuple ().
a, b = np.broadcast_arrays(a, b)
# a and b now have the same shape.
# `shp` is the shape of the blocks of random variates that are
# generated for each combination of parameters associated with
# broadcasting a and b.
# bc is a tuple the same length as size. The values
# in bc are bools. If bc[j] is True, it means that
# entire axis is filled in for a given combination of the
# broadcast arguments.
shp, bc = _check_shape(a.shape, size)
# `numsamples` is the total number of variates to be generated
# for each combination of the input arguments.
numsamples = int(np.prod(shp))
# `out` is the array to be returned. It is filled in in the
# loop below.
out = np.empty(size)
it = np.nditer([a, b],
flags=['multi_index'],
op_flags=[['readonly'], ['readonly']])
while not it.finished:
# Convert the iterator's multi_index into an index into the
# `out` array where the call to _rvs_scalar() will be stored.
# Where bc is True, we use a full slice; otherwise we use the
# index value from it.multi_index. len(it.multi_index) might
# be less than len(bc), and in that case we want to align these
# two sequences to the right, so the loop variable j runs from
# -len(size) to 0. This doesn't cause an IndexError, as
# bc[j] will be True in those cases where it.multi_index[j]
# would cause an IndexError.
idx = tuple((it.multi_index[j] if not bc[j] else slice(None))
for j in range(-len(size), 0))
out[idx] = self._rvs_scalar(it[0], it[1], numsamples, random_state).reshape(shp)
it.iternext()
if size == ():
out = out.item()
return out
def _rvs_scalar(self, a, b, numsamples=None, random_state=None):
if not numsamples:
numsamples = 1
# prepare sampling of rvs
size1d = tuple(np.atleast_1d(numsamples))
N = np.prod(size1d) # number of rvs needed, reshape upon return
# Calculate some rvs
U = random_state.uniform(low=0, high=1, size=N)
x = self._ppf(U, a, b)
rvs = np.reshape(x, size1d)
return rvs
truncnorm = truncnorm_gen(name='truncnorm', momtype=1)
# FIXME: RVS does not work.
class tukeylambda_gen(rv_continuous):
r"""A Tukey-Lamdba continuous random variable.
%(before_notes)s
Notes
-----
A flexible distribution, able to represent and interpolate between the
following distributions:
- Cauchy (:math:`lambda = -1`)
- logistic (:math:`lambda = 0`)
- approx Normal (:math:`lambda = 0.14`)
- uniform from -1 to 1 (:math:`lambda = 1`)
`tukeylambda` takes a real number :math:`lambda` (denoted ``lam``
in the implementation) as a shape parameter.
%(after_notes)s
%(example)s
"""
def _argcheck(self, lam):
return np.ones(np.shape(lam), dtype=bool)
def _pdf(self, x, lam):
Fx = np.asarray(sc.tklmbda(x, lam))
Px = Fx**(lam-1.0) + (np.asarray(1-Fx))**(lam-1.0)
Px = 1.0/np.asarray(Px)
return np.where((lam <= 0) | (abs(x) < 1.0/np.asarray(lam)), Px, 0.0)
def _cdf(self, x, lam):
return sc.tklmbda(x, lam)
def _ppf(self, q, lam):
return sc.boxcox(q, lam) - sc.boxcox1p(-q, lam)
def _stats(self, lam):
return 0, _tlvar(lam), 0, _tlkurt(lam)
def _entropy(self, lam):
def integ(p):
return np.log(pow(p, lam-1)+pow(1-p, lam-1))
return integrate.quad(integ, 0, 1)[0]
tukeylambda = tukeylambda_gen(name='tukeylambda')
class FitUniformFixedScaleDataError(FitDataError):
def __init__(self, ptp, fscale):
self.args = (
"Invalid values in `data`. Maximum likelihood estimation with "
"the uniform distribution and fixed scale requires that "
"data.ptp() <= fscale, but data.ptp() = %r and fscale = %r." %
(ptp, fscale),
)
class uniform_gen(rv_continuous):
r"""A uniform continuous random variable.
In the standard form, the distribution is uniform on ``[0, 1]``. Using
the parameters ``loc`` and ``scale``, one obtains the uniform distribution
on ``[loc, loc + scale]``.
%(before_notes)s
%(example)s
"""
def _rvs(self, size=None, random_state=None):
return random_state.uniform(0.0, 1.0, size)
def _pdf(self, x):
return 1.0*(x == x)
def _cdf(self, x):
return x
def _ppf(self, q):
return q
def _stats(self):
return 0.5, 1.0/12, 0, -1.2
def _entropy(self):
return 0.0
def fit(self, data, *args, **kwds):
"""
Maximum likelihood estimate for the location and scale parameters.
`uniform.fit` uses only the following parameters. Because exact
formulas are used, the parameters related to optimization that are
available in the `fit` method of other distributions are ignored
here. The only positional argument accepted is `data`.
Parameters
----------
data : array_like
Data to use in calculating the maximum likelihood estimate.
floc : float, optional
Hold the location parameter fixed to the specified value.
fscale : float, optional
Hold the scale parameter fixed to the specified value.
Returns
-------
loc, scale : float
Maximum likelihood estimates for the location and scale.
Notes
-----
An error is raised if `floc` is given and any values in `data` are
less than `floc`, or if `fscale` is given and `fscale` is less
than ``data.max() - data.min()``. An error is also raised if both
`floc` and `fscale` are given.
Examples
--------
>>> from scipy.stats import uniform
We'll fit the uniform distribution to `x`:
>>> x = np.array([2, 2.5, 3.1, 9.5, 13.0])
For a uniform distribution MLE, the location is the minimum of the
data, and the scale is the maximum minus the minimum.
>>> loc, scale = uniform.fit(x)
>>> loc
2.0
>>> scale
11.0
If we know the data comes from a uniform distribution where the support
starts at 0, we can use `floc=0`:
>>> loc, scale = uniform.fit(x, floc=0)
>>> loc
0.0
>>> scale
13.0
Alternatively, if we know the length of the support is 12, we can use
`fscale=12`:
>>> loc, scale = uniform.fit(x, fscale=12)
>>> loc
1.5
>>> scale
12.0
In that last example, the support interval is [1.5, 13.5]. This
solution is not unique. For example, the distribution with ``loc=2``
and ``scale=12`` has the same likelihood as the one above. When
`fscale` is given and it is larger than ``data.max() - data.min()``,
the parameters returned by the `fit` method center the support over
the interval ``[data.min(), data.max()]``.
"""
if len(args) > 0:
raise TypeError("Too many arguments.")
floc = kwds.pop('floc', None)
fscale = kwds.pop('fscale', None)
_remove_optimizer_parameters(kwds)
if floc is not None and fscale is not None:
# This check is for consistency with `rv_continuous.fit`.
raise ValueError("All parameters fixed. There is nothing to "
"optimize.")
data = np.asarray(data)
if not np.isfinite(data).all():
raise RuntimeError("The data contains non-finite values.")
# MLE for the uniform distribution
# --------------------------------
# The PDF is
#
# f(x, loc, scale) = {1/scale for loc <= x <= loc + scale
# {0 otherwise}
#
# The likelihood function is
# L(x, loc, scale) = (1/scale)**n
# where n is len(x), assuming loc <= x <= loc + scale for all x.
# The log-likelihood is
# l(x, loc, scale) = -n*log(scale)
# The log-likelihood is maximized by making scale as small as possible,
# while keeping loc <= x <= loc + scale. So if neither loc nor scale
# are fixed, the log-likelihood is maximized by choosing
# loc = x.min()
# scale = x.ptp()
# If loc is fixed, it must be less than or equal to x.min(), and then
# the scale is
# scale = x.max() - loc
# If scale is fixed, it must not be less than x.ptp(). If scale is
# greater than x.ptp(), the solution is not unique. Note that the
# likelihood does not depend on loc, except for the requirement that
# loc <= x <= loc + scale. All choices of loc for which
# x.max() - scale <= loc <= x.min()
# have the same log-likelihood. In this case, we choose loc such that
# the support is centered over the interval [data.min(), data.max()]:
# loc = x.min() = 0.5*(scale - x.ptp())
if fscale is None:
# scale is not fixed.
if floc is None:
# loc is not fixed, scale is not fixed.
loc = data.min()
scale = data.ptp()
else:
# loc is fixed, scale is not fixed.
loc = floc
scale = data.max() - loc
if data.min() < loc:
raise FitDataError("uniform", lower=loc, upper=loc + scale)
else:
# loc is not fixed, scale is fixed.
ptp = data.ptp()
if ptp > fscale:
raise FitUniformFixedScaleDataError(ptp=ptp, fscale=fscale)
# If ptp < fscale, the ML estimate is not unique; see the comments
# above. We choose the distribution for which the support is
# centered over the interval [data.min(), data.max()].
loc = data.min() - 0.5*(fscale - ptp)
scale = fscale
# We expect the return values to be floating point, so ensure it
# by explicitly converting to float.
return float(loc), float(scale)
uniform = uniform_gen(a=0.0, b=1.0, name='uniform')
class vonmises_gen(rv_continuous):
r"""A Von Mises continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `vonmises` and `vonmises_line` is:
.. math::
f(x, \kappa) = \frac{ \exp(\kappa \cos(x)) }{ 2 \pi I_0(\kappa) }
for :math:`-\pi \le x \le \pi`, :math:`\kappa > 0`. :math:`I_0` is the
modified Bessel function of order zero (`scipy.special.i0`).
`vonmises` is a circular distribution which does not restrict the
distribution to a fixed interval. Currently, there is no circular
distribution framework in scipy. The ``cdf`` is implemented such that
``cdf(x + 2*np.pi) == cdf(x) + 1``.
`vonmises_line` is the same distribution, defined on :math:`[-\pi, \pi]`
on the real line. This is a regular (i.e. non-circular) distribution.
`vonmises` and `vonmises_line` take ``kappa`` as a shape parameter.
%(after_notes)s
%(example)s
"""
def _rvs(self, kappa, size=None, random_state=None):
return random_state.vonmises(0.0, kappa, size=size)
def _pdf(self, x, kappa):
# vonmises.pdf(x, \kappa) = exp(\kappa * cos(x)) / (2*pi*I[0](\kappa))
return np.exp(kappa * np.cos(x)) / (2*np.pi*sc.i0(kappa))
def _cdf(self, x, kappa):
return _stats.von_mises_cdf(kappa, x)
def _stats_skip(self, kappa):
return 0, None, 0, None
def _entropy(self, kappa):
return (-kappa * sc.i1(kappa) / sc.i0(kappa) +
np.log(2 * np.pi * sc.i0(kappa)))
vonmises = vonmises_gen(name='vonmises')
vonmises_line = vonmises_gen(a=-np.pi, b=np.pi, name='vonmises_line')
class wald_gen(invgauss_gen):
r"""A Wald continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `wald` is:
.. math::
f(x) = \frac{1}{\sqrt{2\pi x^3}} \exp(- \frac{ (x-1)^2 }{ 2x })
for :math:`x >= 0`.
`wald` is a special case of `invgauss` with ``mu=1``.
%(after_notes)s
%(example)s
"""
_support_mask = rv_continuous._open_support_mask
def _rvs(self, size=None, random_state=None):
return random_state.wald(1.0, 1.0, size=size)
def _pdf(self, x):
# wald.pdf(x) = 1/sqrt(2*pi*x**3) * exp(-(x-1)**2/(2*x))
return invgauss._pdf(x, 1.0)
def _logpdf(self, x):
return invgauss._logpdf(x, 1.0)
def _cdf(self, x):
return invgauss._cdf(x, 1.0)
def _stats(self):
return 1.0, 1.0, 3.0, 15.0
wald = wald_gen(a=0.0, name="wald")
class wrapcauchy_gen(rv_continuous):
r"""A wrapped Cauchy continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `wrapcauchy` is:
.. math::
f(x, c) = \frac{1-c^2}{2\pi (1+c^2 - 2c \cos(x))}
for :math:`0 \le x \le 2\pi`, :math:`0 < c < 1`.
`wrapcauchy` takes ``c`` as a shape parameter for :math:`c`.
%(after_notes)s
%(example)s
"""
def _argcheck(self, c):
return (c > 0) & (c < 1)
def _pdf(self, x, c):
# wrapcauchy.pdf(x, c) = (1-c**2) / (2*pi*(1+c**2-2*c*cos(x)))
return (1.0-c*c)/(2*np.pi*(1+c*c-2*c*np.cos(x)))
def _cdf(self, x, c):
output = np.zeros(x.shape, dtype=x.dtype)
val = (1.0+c)/(1.0-c)
c1 = x < np.pi
c2 = 1-c1
xp = np.extract(c1, x)
xn = np.extract(c2, x)
if np.any(xn):
valn = np.extract(c2, np.ones_like(x)*val)
xn = 2*np.pi - xn
yn = np.tan(xn/2.0)
on = 1.0-1.0/np.pi*np.arctan(valn*yn)
np.place(output, c2, on)
if np.any(xp):
valp = np.extract(c1, np.ones_like(x)*val)
yp = np.tan(xp/2.0)
op = 1.0/np.pi*np.arctan(valp*yp)
np.place(output, c1, op)
return output
def _ppf(self, q, c):
val = (1.0-c)/(1.0+c)
rcq = 2*np.arctan(val*np.tan(np.pi*q))
rcmq = 2*np.pi-2*np.arctan(val*np.tan(np.pi*(1-q)))
return np.where(q < 1.0/2, rcq, rcmq)
def _entropy(self, c):
return np.log(2*np.pi*(1-c*c))
wrapcauchy = wrapcauchy_gen(a=0.0, b=2*np.pi, name='wrapcauchy')
class gennorm_gen(rv_continuous):
r"""A generalized normal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `gennorm` is [1]_:
.. math::
f(x, \beta) = \frac{\beta}{2 \Gamma(1/\beta)} \exp(-|x|^\beta)
:math:`\Gamma` is the gamma function (`scipy.special.gamma`).
`gennorm` takes ``beta`` as a shape parameter for :math:`\beta`.
For :math:`\beta = 1`, it is identical to a Laplace distribution.
For :math:`\beta = 2`, it is identical to a normal distribution
(with ``scale=1/sqrt(2)``).
See Also
--------
laplace : Laplace distribution
norm : normal distribution
References
----------
.. [1] "Generalized normal distribution, Version 1",
https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
%(example)s
"""
def _pdf(self, x, beta):
return np.exp(self._logpdf(x, beta))
def _logpdf(self, x, beta):
return np.log(0.5*beta) - sc.gammaln(1.0/beta) - abs(x)**beta
def _cdf(self, x, beta):
c = 0.5 * np.sign(x)
# evaluating (.5 + c) first prevents numerical cancellation
return (0.5 + c) - c * sc.gammaincc(1.0/beta, abs(x)**beta)
def _ppf(self, x, beta):
c = np.sign(x - 0.5)
# evaluating (1. + c) first prevents numerical cancellation
return c * sc.gammainccinv(1.0/beta, (1.0 + c) - 2.0*c*x)**(1.0/beta)
def _sf(self, x, beta):
return self._cdf(-x, beta)
def _isf(self, x, beta):
return -self._ppf(x, beta)
def _stats(self, beta):
c1, c3, c5 = sc.gammaln([1.0/beta, 3.0/beta, 5.0/beta])
return 0., np.exp(c3 - c1), 0., np.exp(c5 + c1 - 2.0*c3) - 3.
def _entropy(self, beta):
return 1. / beta - np.log(.5 * beta) + sc.gammaln(1. / beta)
gennorm = gennorm_gen(name='gennorm')
class halfgennorm_gen(rv_continuous):
r"""The upper half of a generalized normal continuous random variable.
%(before_notes)s
Notes
-----
The probability density function for `halfgennorm` is:
.. math::
f(x, \beta) = \frac{\beta}{\Gamma(1/\beta)} \exp(-|x|^\beta)
for :math:`x > 0`. :math:`\Gamma` is the gamma function
(`scipy.special.gamma`).
`gennorm` takes ``beta`` as a shape parameter for :math:`\beta`.
For :math:`\beta = 1`, it is identical to an exponential distribution.
For :math:`\beta = 2`, it is identical to a half normal distribution
(with ``scale=1/sqrt(2)``).
See Also
--------
gennorm : generalized normal distribution
expon : exponential distribution
halfnorm : half normal distribution
References
----------
.. [1] "Generalized normal distribution, Version 1",
https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
%(example)s
"""
def _pdf(self, x, beta):
# beta
# halfgennorm.pdf(x, beta) = ------------- exp(-|x|**beta)
# gamma(1/beta)
return np.exp(self._logpdf(x, beta))
def _logpdf(self, x, beta):
return np.log(beta) - sc.gammaln(1.0/beta) - x**beta
def _cdf(self, x, beta):
return sc.gammainc(1.0/beta, x**beta)
def _ppf(self, x, beta):
return sc.gammaincinv(1.0/beta, x)**(1.0/beta)
def _sf(self, x, beta):
return sc.gammaincc(1.0/beta, x**beta)
def _isf(self, x, beta):
return sc.gammainccinv(1.0/beta, x)**(1.0/beta)
def _entropy(self, beta):
return 1.0/beta - np.log(beta) + sc.gammaln(1.0/beta)
halfgennorm = halfgennorm_gen(a=0, name='halfgennorm')
class crystalball_gen(rv_continuous):
r"""
Crystalball distribution
%(before_notes)s
Notes
-----
The probability density function for `crystalball` is:
.. math::
f(x, \beta, m) = \begin{cases}
N \exp(-x^2 / 2), &\text{for } x > -\beta\\
N A (B - x)^{-m} &\text{for } x \le -\beta
\end{cases}
where :math:`A = (m / |\beta|)^n \exp(-\beta^2 / 2)`,
:math:`B = m/|\beta| - |\beta|` and :math:`N` is a normalisation constant.
`crystalball` takes :math:`\beta > 0` and :math:`m > 1` as shape
parameters. :math:`\beta` defines the point where the pdf changes
from a power-law to a Gaussian distribution. :math:`m` is the power
of the power-law tail.
References
----------
.. [1] "Crystal Ball Function",
https://en.wikipedia.org/wiki/Crystal_Ball_function
%(after_notes)s
.. versionadded:: 0.19.0
%(example)s
"""
def _pdf(self, x, beta, m):
"""
Return PDF of the crystalball function.
--
| exp(-x**2 / 2), for x > -beta
crystalball.pdf(x, beta, m) = N * |
| A * (B - x)**(-m), for x <= -beta
--
"""
N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) +
_norm_pdf_C * _norm_cdf(beta))
def rhs(x, beta, m):
return np.exp(-x**2 / 2)
def lhs(x, beta, m):
return ((m/beta)**m * np.exp(-beta**2 / 2.0) *
(m/beta - beta - x)**(-m))
return N * _lazywhere(x > -beta, (x, beta, m), f=rhs, f2=lhs)
def _logpdf(self, x, beta, m):
"""
Return the log of the PDF of the crystalball function.
"""
N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) +
_norm_pdf_C * _norm_cdf(beta))
def rhs(x, beta, m):
return -x**2/2
def lhs(x, beta, m):
return m*np.log(m/beta) - beta**2/2 - m*np.log(m/beta - beta - x)
return np.log(N) + _lazywhere(x > -beta, (x, beta, m), f=rhs, f2=lhs)
def _cdf(self, x, beta, m):
"""
Return CDF of the crystalball function
"""
N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) +
_norm_pdf_C * _norm_cdf(beta))
def rhs(x, beta, m):
return ((m/beta) * np.exp(-beta**2 / 2.0) / (m-1) +
_norm_pdf_C * (_norm_cdf(x) - _norm_cdf(-beta)))
def lhs(x, beta, m):
return ((m/beta)**m * np.exp(-beta**2 / 2.0) *
(m/beta - beta - x)**(-m+1) / (m-1))
return N * _lazywhere(x > -beta, (x, beta, m), f=rhs, f2=lhs)
def _ppf(self, p, beta, m):
N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) +
_norm_pdf_C * _norm_cdf(beta))
pbeta = N * (m/beta) * np.exp(-beta**2/2) / (m - 1)
def ppf_less(p, beta, m):
eb2 = np.exp(-beta**2/2)
C = (m/beta) * eb2 / (m-1)
N = 1/(C + _norm_pdf_C * _norm_cdf(beta))
return (m/beta - beta -
((m - 1)*(m/beta)**(-m)/eb2*p/N)**(1/(1-m)))
def ppf_greater(p, beta, m):
eb2 = np.exp(-beta**2/2)
C = (m/beta) * eb2 / (m-1)
N = 1/(C + _norm_pdf_C * _norm_cdf(beta))
return _norm_ppf(_norm_cdf(-beta) + (1/_norm_pdf_C)*(p/N - C))
return _lazywhere(p < pbeta, (p, beta, m), f=ppf_less, f2=ppf_greater)
def _munp(self, n, beta, m):
"""
Returns the n-th non-central moment of the crystalball function.
"""
N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) +
_norm_pdf_C * _norm_cdf(beta))
def n_th_moment(n, beta, m):
"""
Returns n-th moment. Defined only if n+1 < m
Function cannot broadcast due to the loop over n
"""
A = (m/beta)**m * np.exp(-beta**2 / 2.0)
B = m/beta - beta
rhs = (2**((n-1)/2.0) * sc.gamma((n+1)/2) *
(1.0 + (-1)**n * sc.gammainc((n+1)/2, beta**2 / 2)))
lhs = np.zeros(rhs.shape)
for k in range(n + 1):
lhs += (sc.binom(n, k) * B**(n-k) * (-1)**k / (m - k - 1) *
(m/beta)**(-m + k + 1))
return A * lhs + rhs
return N * _lazywhere(n + 1 < m, (n, beta, m),
np.vectorize(n_th_moment, otypes=[np.float64]),
np.inf)
def _argcheck(self, beta, m):
"""
Shape parameter bounds are m > 1 and beta > 0.
"""
return (m > 1) & (beta > 0)
crystalball = crystalball_gen(name='crystalball', longname="A Crystalball Function")
def _argus_phi(chi):
"""
Utility function for the argus distribution
used in the CDF and norm of the Argus Funktion
"""
return _norm_cdf(chi) - chi * _norm_pdf(chi) - 0.5
class argus_gen(rv_continuous):
r"""
Argus distribution
%(before_notes)s
Notes
-----
The probability density function for `argus` is:
.. math::
f(x, \chi) = \frac{\chi^3}{\sqrt{2\pi} \Psi(\chi)} x \sqrt{1-x^2}
\exp(-\chi^2 (1 - x^2)/2)
for :math:`0 < x < 1` and :math:`\chi > 0`, where
.. math::
\Psi(\chi) = \Phi(\chi) - \chi \phi(\chi) - 1/2
with :math:`\Phi` and :math:`\phi` being the CDF and PDF of a standard
normal distribution, respectively.
`argus` takes :math:`\chi` as shape a parameter.
References
----------
.. [1] "ARGUS distribution",
https://en.wikipedia.org/wiki/ARGUS_distribution
%(after_notes)s
.. versionadded:: 0.19.0
%(example)s
"""
def _pdf(self, x, chi):
y = 1.0 - x**2
A = chi**3 / (_norm_pdf_C * _argus_phi(chi))
return A * x * np.sqrt(y) * np.exp(-chi**2 * y / 2)
def _cdf(self, x, chi):
return 1.0 - self._sf(x, chi)
def _sf(self, x, chi):
return _argus_phi(chi * np.sqrt(1 - x**2)) / _argus_phi(chi)
def _rvs(self, chi, size=None, random_state=None):
chi = np.asarray(chi)
if chi.size == 1:
out = self._rvs_scalar(chi, numsamples=size,
random_state=random_state)
else:
shp, bc = _check_shape(chi.shape, size)
numsamples = int(np.prod(shp))
out = np.empty(size)
it = np.nditer([chi],
flags=['multi_index'],
op_flags=[['readonly']])
while not it.finished:
idx = tuple((it.multi_index[j] if not bc[j] else slice(None))
for j in range(-len(size), 0))
r = self._rvs_scalar(it[0], numsamples=numsamples,
random_state=random_state)
out[idx] = r.reshape(shp)
it.iternext()
if size == ():
out = out[()]
return out
def _rvs_scalar(self, chi, numsamples=None, random_state=None):
# if chi <= 2.611:
# use rejection method, see Devroye:
# Non-Uniform Random Variate Generation, 1986, section II.3.2.
# write: self.pdf = c * g(x) * h(x), where
# h is [0,1]-valued and g is a density
# g(x) = d1 * chi**2 * x * exp(-chi**2 * (1 - x**2) / 2), 0 <= x <= 1
# h(x) = sqrt(1 - x**2), 0 <= x <= 1
# Integrating g, we get:
# G(x) = d1 * exp(-chi**2 * (1 - x**2) / 2) - d2
# d1 and d2 are determined by G(0) = 0 and G(1) = 1
# d1 = 1 / (1 - exp(-0.5 * chi**2))
# d2 = 1 / (exp(0.5 * chi**2) - 1)
# => G(x) = (exp(chi**2 * x**2 /2) - 1) / (exp(chi**2 / 2) - 1)
# expected number of iterations is c with
# c = -np.expm1(-0.5 * chi**2) * chi / (_norm_pdf_C * _argus_phi(chi))
# note that G can be inverted easily, so we can sample
# rvs from this distribution
# G_inv(y) = sqrt(2 * log(1 + (exp(chi**2 / 2) - 1) * y) / chi**2)
# to avoid an overflow of exp(chi**2 / 2), it is convenient to write
# G_inv(y) = sqrt(1 + 2 * log(exp(-chi**2 / 2) * (1-y) + y) / chi**2)
#
# if chi > 2.611:
# use ratio of uniforms method applied to a transformed variable of X
# (X is ARGUS with parameter chi):
# Y = chi * sqrt(1 - X**2) has density proportional to
# u**2 * exp(-u**2 / 2) on [0, chi] (Maxwell distribution conditioned
# on [0, chi]). Apply ratio of uniforms to this density to generate
# samples of Y and convert back to X
#
# The expected number of iterations using the rejection method
# increases with increasing chi, whereas the expected number of
# iterations using the ratio of uniforms method decreases with
# increasing chi. The crossover occurs where
# chi*(1 - exp(-0.5*chi**2)) = 8*sqrt(2)*exp(-1.5) => chi ~ 2.611
# Switching algorithms at chi=2.611 means that the expected number of
# iterations is always below 2.2.
if chi <= 2.611:
# use rejection method
size1d = tuple(np.atleast_1d(numsamples))
N = int(np.prod(size1d))
x = np.zeros(N)
echi = np.exp(-chi**2 / 2)
simulated = 0
while simulated < N:
k = N - simulated
u = random_state.uniform(size=k)
v = random_state.uniform(size=k)
# acceptance condition: u <= h(G_inv(v)). This simplifies to
z = 2 * np.log(echi * (1 - v) + v) / chi**2
accept = (u**2 + z <= 0)
num_accept = np.sum(accept)
if num_accept > 0:
# rvs follow a distribution with density g: rvs = G_inv(v)
rvs = np.sqrt(1 + z[accept])
x[simulated:(simulated + num_accept)] = rvs
simulated += num_accept
return np.reshape(x, size1d)
else:
# use ratio of uniforms method
def f(x):
return np.where((x >= 0) & (x <= chi),
np.exp(2*np.log(x) - x**2/2), 0)
umax = np.sqrt(2) / np.exp(0.5)
vmax = 4 / np.exp(1)
z = rvs_ratio_uniforms(f, umax, 0, vmax, size=numsamples,
random_state=random_state)
return np.sqrt(1 - z*z / chi**2)
def _stats(self, chi):
chi2 = chi**2
phi = _argus_phi(chi)
m = np.sqrt(np.pi/8) * chi * np.exp(-chi2/4) * sc.iv(1, chi2/4) / phi
v = (1 - 3 / chi2 + chi * _norm_pdf(chi) / phi) - m**2
return m, v, None, None
argus = argus_gen(name='argus', longname="An Argus Function", a=0.0, b=1.0)
class rv_histogram(rv_continuous):
"""
Generates a distribution given by a histogram.
This is useful to generate a template distribution from a binned
datasample.
As a subclass of the `rv_continuous` class, `rv_histogram` inherits from it
a collection of generic methods (see `rv_continuous` for the full list),
and implements them based on the properties of the provided binned
datasample.
Parameters
----------
histogram : tuple of array_like
Tuple containing two array_like objects
The first containing the content of n bins
The second containing the (n+1) bin boundaries
In particular the return value np.histogram is accepted
Notes
-----
There are no additional shape parameters except for the loc and scale.
The pdf is defined as a stepwise function from the provided histogram
The cdf is a linear interpolation of the pdf.
.. versionadded:: 0.19.0
Examples
--------
Create a scipy.stats distribution from a numpy histogram
>>> import scipy.stats
>>> import numpy as np
>>> data = scipy.stats.norm.rvs(size=100000, loc=0, scale=1.5, random_state=123)
>>> hist = np.histogram(data, bins=100)
>>> hist_dist = scipy.stats.rv_histogram(hist)
Behaves like an ordinary scipy rv_continuous distribution
>>> hist_dist.pdf(1.0)
0.20538577847618705
>>> hist_dist.cdf(2.0)
0.90818568543056499
PDF is zero above (below) the highest (lowest) bin of the histogram,
defined by the max (min) of the original dataset
>>> hist_dist.pdf(np.max(data))
0.0
>>> hist_dist.cdf(np.max(data))
1.0
>>> hist_dist.pdf(np.min(data))
7.7591907244498314e-05
>>> hist_dist.cdf(np.min(data))
0.0
PDF and CDF follow the histogram
>>> import matplotlib.pyplot as plt
>>> X = np.linspace(-5.0, 5.0, 100)
>>> plt.title("PDF from Template")
>>> plt.hist(data, density=True, bins=100)
>>> plt.plot(X, hist_dist.pdf(X), label='PDF')
>>> plt.plot(X, hist_dist.cdf(X), label='CDF')
>>> plt.show()
"""
_support_mask = rv_continuous._support_mask
def __init__(self, histogram, *args, **kwargs):
"""
Create a new distribution using the given histogram
Parameters
----------
histogram : tuple of array_like
Tuple containing two array_like objects
The first containing the content of n bins
The second containing the (n+1) bin boundaries
In particular the return value np.histogram is accepted
"""
self._histogram = histogram
if len(histogram) != 2:
raise ValueError("Expected length 2 for parameter histogram")
self._hpdf = np.asarray(histogram[0])
self._hbins = np.asarray(histogram[1])
if len(self._hpdf) + 1 != len(self._hbins):
raise ValueError("Number of elements in histogram content "
"and histogram boundaries do not match, "
"expected n and n+1.")
self._hbin_widths = self._hbins[1:] - self._hbins[:-1]
self._hpdf = self._hpdf / float(np.sum(self._hpdf * self._hbin_widths))
self._hcdf = np.cumsum(self._hpdf * self._hbin_widths)
self._hpdf = np.hstack([0.0, self._hpdf, 0.0])
self._hcdf = np.hstack([0.0, self._hcdf])
# Set support
kwargs['a'] = self.a = self._hbins[0]
kwargs['b'] = self.b = self._hbins[-1]
super(rv_histogram, self).__init__(*args, **kwargs)
def _pdf(self, x):
"""
PDF of the histogram
"""
return self._hpdf[np.searchsorted(self._hbins, x, side='right')]
def _cdf(self, x):
"""
CDF calculated from the histogram
"""
return np.interp(x, self._hbins, self._hcdf)
def _ppf(self, x):
"""
Percentile function calculated from the histogram
"""
return np.interp(x, self._hcdf, self._hbins)
def _munp(self, n):
"""Compute the n-th non-central moment."""
integrals = (self._hbins[1:]**(n+1) - self._hbins[:-1]**(n+1)) / (n+1)
return np.sum(self._hpdf[1:-1] * integrals)
def _entropy(self):
"""Compute entropy of distribution"""
res = _lazywhere(self._hpdf[1:-1] > 0.0,
(self._hpdf[1:-1],),
np.log,
0.0)
return -np.sum(self._hpdf[1:-1] * res * self._hbin_widths)
def _updated_ctor_param(self):
"""
Set the histogram as additional constructor argument
"""
dct = super(rv_histogram, self)._updated_ctor_param()
dct['histogram'] = self._histogram
return dct
# Collect names of classes and objects in this module.
pairs = list(globals().items())
_distn_names, _distn_gen_names = get_distribution_names(pairs, rv_continuous)
__all__ = _distn_names + _distn_gen_names + ['rv_histogram']