Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/mpl_toolkits/axes_grid1/axes_divider.py

757 lines
25 KiB
Python

"""
Helper classes to adjust the positions of multiple axes at drawing time.
"""
import numpy as np
from matplotlib import cbook
from matplotlib.axes import SubplotBase
from matplotlib.gridspec import SubplotSpec, GridSpec
import matplotlib.transforms as mtransforms
from . import axes_size as Size
class Divider:
"""
An Axes positioning class.
The divider is initialized with lists of horizontal and vertical sizes
(:mod:`mpl_toolkits.axes_grid1.axes_size`) based on which a given
rectangular area will be divided.
The `new_locator` method then creates a callable object
that can be used as the *axes_locator* of the axes.
"""
def __init__(self, fig, pos, horizontal, vertical,
aspect=None, anchor="C"):
"""
Parameters
----------
fig : Figure
pos : tuple of 4 floats
Position of the rectangle that will be divided.
horizontal : list of :mod:`~mpl_toolkits.axes_grid1.axes_size`
Sizes for horizontal division.
vertical : list of :mod:`~mpl_toolkits.axes_grid1.axes_size`
Sizes for vertical division.
aspect : bool
Whether overall rectangular area is reduced so that the relative
part of the horizontal and vertical scales have the same scale.
anchor : {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'}
Placement of the reduced rectangle, when *aspect* is True.
"""
self._fig = fig
self._pos = pos
self._horizontal = horizontal
self._vertical = vertical
self._anchor = anchor
self._aspect = aspect
self._xrefindex = 0
self._yrefindex = 0
self._locator = None
def get_horizontal_sizes(self, renderer):
return [s.get_size(renderer) for s in self.get_horizontal()]
def get_vertical_sizes(self, renderer):
return [s.get_size(renderer) for s in self.get_vertical()]
def get_vsize_hsize(self):
vsize = Size.AddList(self.get_vertical())
hsize = Size.AddList(self.get_horizontal())
return vsize, hsize
@staticmethod
def _calc_k(l, total_size):
rs_sum, as_sum = 0., 0.
for _rs, _as in l:
rs_sum += _rs
as_sum += _as
if rs_sum != 0.:
k = (total_size - as_sum) / rs_sum
return k
else:
return 0.
@staticmethod
def _calc_offsets(l, k):
offsets = [0.]
for _rs, _as in l:
offsets.append(offsets[-1] + _rs*k + _as)
return offsets
def set_position(self, pos):
"""
Set the position of the rectangle.
Parameters
----------
pos : tuple of 4 floats
position of the rectangle that will be divided
"""
self._pos = pos
def get_position(self):
"""Return the position of the rectangle."""
return self._pos
def set_anchor(self, anchor):
"""
Parameters
----------
anchor : {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'}
anchor position
===== ============
value description
===== ============
'C' Center
'SW' bottom left
'S' bottom
'SE' bottom right
'E' right
'NE' top right
'N' top
'NW' top left
'W' left
===== ============
"""
if len(anchor) != 2:
cbook._check_in_list(mtransforms.Bbox.coefs, anchor=anchor)
self._anchor = anchor
def get_anchor(self):
"""Return the anchor."""
return self._anchor
def set_horizontal(self, h):
"""
Parameters
----------
h : list of :mod:`~mpl_toolkits.axes_grid1.axes_size`
sizes for horizontal division
"""
self._horizontal = h
def get_horizontal(self):
"""Return horizontal sizes."""
return self._horizontal
def set_vertical(self, v):
"""
Parameters
----------
v : list of :mod:`~mpl_toolkits.axes_grid1.axes_size`
sizes for vertical division
"""
self._vertical = v
def get_vertical(self):
"""Return vertical sizes."""
return self._vertical
def set_aspect(self, aspect=False):
"""
Parameters
----------
aspect : bool
"""
self._aspect = aspect
def get_aspect(self):
"""Return aspect."""
return self._aspect
def set_locator(self, _locator):
self._locator = _locator
def get_locator(self):
return self._locator
def get_position_runtime(self, ax, renderer):
if self._locator is None:
return self.get_position()
else:
return self._locator(ax, renderer).bounds
def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None):
"""
Parameters
----------
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
axes
renderer
"""
figW, figH = self._fig.get_size_inches()
x, y, w, h = self.get_position_runtime(axes, renderer)
hsizes = self.get_horizontal_sizes(renderer)
vsizes = self.get_vertical_sizes(renderer)
k_h = self._calc_k(hsizes, figW*w)
k_v = self._calc_k(vsizes, figH*h)
if self.get_aspect():
k = min(k_h, k_v)
ox = self._calc_offsets(hsizes, k)
oy = self._calc_offsets(vsizes, k)
ww = (ox[-1] - ox[0]) / figW
hh = (oy[-1] - oy[0]) / figH
pb = mtransforms.Bbox.from_bounds(x, y, w, h)
pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh)
pb1_anchored = pb1.anchored(self.get_anchor(), pb)
x0, y0 = pb1_anchored.x0, pb1_anchored.y0
else:
ox = self._calc_offsets(hsizes, k_h)
oy = self._calc_offsets(vsizes, k_v)
x0, y0 = x, y
if nx1 is None:
nx1 = nx + 1
if ny1 is None:
ny1 = ny + 1
x1, w1 = x0 + ox[nx] / figW, (ox[nx1] - ox[nx]) / figW
y1, h1 = y0 + oy[ny] / figH, (oy[ny1] - oy[ny]) / figH
return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)
def new_locator(self, nx, ny, nx1=None, ny1=None):
"""
Return a new `AxesLocator` for the specified cell.
Parameters
----------
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
"""
return AxesLocator(self, nx, ny, nx1, ny1)
def append_size(self, position, size):
if position == "left":
self._horizontal.insert(0, size)
self._xrefindex += 1
elif position == "right":
self._horizontal.append(size)
elif position == "bottom":
self._vertical.insert(0, size)
self._yrefindex += 1
elif position == "top":
self._vertical.append(size)
else:
cbook._check_in_list(["left", "right", "bottom", "top"],
position=position)
def add_auto_adjustable_area(self, use_axes, pad=0.1, adjust_dirs=None):
if adjust_dirs is None:
adjust_dirs = ["left", "right", "bottom", "top"]
from .axes_size import Padded, SizeFromFunc, GetExtentHelper
for d in adjust_dirs:
helper = GetExtentHelper(use_axes, d)
size = SizeFromFunc(helper)
padded_size = Padded(size, pad) # pad in inch
self.append_size(d, padded_size)
class AxesLocator:
"""
A simple callable object, initialized with AxesDivider class,
returns the position and size of the given cell.
"""
def __init__(self, axes_divider, nx, ny, nx1=None, ny1=None):
"""
Parameters
----------
axes_divider : AxesDivider
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
"""
self._axes_divider = axes_divider
_xrefindex = axes_divider._xrefindex
_yrefindex = axes_divider._yrefindex
self._nx, self._ny = nx - _xrefindex, ny - _yrefindex
if nx1 is None:
nx1 = nx + 1
if ny1 is None:
ny1 = ny + 1
self._nx1 = nx1 - _xrefindex
self._ny1 = ny1 - _yrefindex
def __call__(self, axes, renderer):
_xrefindex = self._axes_divider._xrefindex
_yrefindex = self._axes_divider._yrefindex
return self._axes_divider.locate(self._nx + _xrefindex,
self._ny + _yrefindex,
self._nx1 + _xrefindex,
self._ny1 + _yrefindex,
axes,
renderer)
def get_subplotspec(self):
if hasattr(self._axes_divider, "get_subplotspec"):
return self._axes_divider.get_subplotspec()
else:
return None
class SubplotDivider(Divider):
"""
The Divider class whose rectangle area is specified as a subplot geometry.
"""
def __init__(self, fig, *args, horizontal=None, vertical=None,
aspect=None, anchor='C'):
"""
Parameters
----------
fig : `matplotlib.figure.Figure`
*args : tuple (*nrows*, *ncols*, *index*) or int
The array of subplots in the figure has dimensions ``(nrows,
ncols)``, and *index* is the index of the subplot being created.
*index* starts at 1 in the upper left corner and increases to the
right.
If *nrows*, *ncols*, and *index* are all single digit numbers, then
*args* can be passed as a single 3-digit number (e.g. 234 for
(2, 3, 4)).
"""
self.figure = fig
self._subplotspec = SubplotSpec._from_subplot_args(fig, args)
self.update_params() # sets self.figbox
Divider.__init__(self, fig, pos=self.figbox.bounds,
horizontal=horizontal or [], vertical=vertical or [],
aspect=aspect, anchor=anchor)
def get_position(self):
"""Return the bounds of the subplot box."""
self.update_params() # update self.figbox
return self.figbox.bounds
def update_params(self):
"""Update the subplot position from fig.subplotpars."""
self.figbox = self.get_subplotspec().get_position(self.figure)
def get_geometry(self):
"""Get the subplot geometry, e.g., (2, 2, 3)."""
rows, cols, num1, num2 = self.get_subplotspec().get_geometry()
return rows, cols, num1 + 1 # for compatibility
# COVERAGE NOTE: Never used internally or from examples
def change_geometry(self, numrows, numcols, num):
"""Change subplot geometry, e.g., from (1, 1, 1) to (2, 2, 3)."""
self._subplotspec = GridSpec(numrows, numcols)[num-1]
self.update_params()
self.set_position(self.figbox)
def get_subplotspec(self):
"""Get the SubplotSpec instance."""
return self._subplotspec
def set_subplotspec(self, subplotspec):
"""Set the SubplotSpec instance."""
self._subplotspec = subplotspec
class AxesDivider(Divider):
"""
Divider based on the pre-existing axes.
"""
def __init__(self, axes, xref=None, yref=None):
"""
Parameters
----------
axes : :class:`~matplotlib.axes.Axes`
xref
yref
"""
self._axes = axes
if xref is None:
self._xref = Size.AxesX(axes)
else:
self._xref = xref
if yref is None:
self._yref = Size.AxesY(axes)
else:
self._yref = yref
Divider.__init__(self, fig=axes.get_figure(), pos=None,
horizontal=[self._xref], vertical=[self._yref],
aspect=None, anchor="C")
def _get_new_axes(self, *, axes_class=None, **kwargs):
axes = self._axes
if axes_class is None:
if isinstance(axes, SubplotBase):
axes_class = axes._axes_class
else:
axes_class = type(axes)
return axes_class(axes.get_figure(), axes.get_position(original=True),
**kwargs)
def new_horizontal(self, size, pad=None, pack_start=False, **kwargs):
"""
Add a new axes on the right (or left) side of the main axes.
Parameters
----------
size : :mod:`~mpl_toolkits.axes_grid1.axes_size` or float or str
A width of the axes. If float or string is given, *from_any*
function is used to create the size, with *ref_size* set to AxesX
instance of the current axes.
pad : :mod:`~mpl_toolkits.axes_grid1.axes_size` or float or str
Pad between the axes. It takes same argument as *size*.
pack_start : bool
If False, the new axes is appended at the end
of the list, i.e., it became the right-most axes. If True, it is
inserted at the start of the list, and becomes the left-most axes.
**kwargs
All extra keywords arguments are passed to the created axes.
If *axes_class* is given, the new axes will be created as an
instance of the given class. Otherwise, the same class of the
main axes will be used.
"""
if pad is None:
cbook.warn_deprecated(
"3.2", message="In a future version, 'pad' will default to "
"rcParams['figure.subplot.wspace']. Set pad=0 to keep the "
"old behavior.")
if pad:
if not isinstance(pad, Size._Base):
pad = Size.from_any(pad, fraction_ref=self._xref)
if pack_start:
self._horizontal.insert(0, pad)
self._xrefindex += 1
else:
self._horizontal.append(pad)
if not isinstance(size, Size._Base):
size = Size.from_any(size, fraction_ref=self._xref)
if pack_start:
self._horizontal.insert(0, size)
self._xrefindex += 1
locator = self.new_locator(nx=0, ny=self._yrefindex)
else:
self._horizontal.append(size)
locator = self.new_locator(
nx=len(self._horizontal) - 1, ny=self._yrefindex)
ax = self._get_new_axes(**kwargs)
ax.set_axes_locator(locator)
return ax
def new_vertical(self, size, pad=None, pack_start=False, **kwargs):
"""
Add a new axes on the top (or bottom) side of the main axes.
Parameters
----------
size : :mod:`~mpl_toolkits.axes_grid1.axes_size` or float or str
A height of the axes. If float or string is given, *from_any*
function is used to create the size, with *ref_size* set to AxesX
instance of the current axes.
pad : :mod:`~mpl_toolkits.axes_grid1.axes_size` or float or str
Pad between the axes. It takes same argument as *size*.
pack_start : bool
If False, the new axes is appended at the end
of the list, i.e., it became the right-most axes. If True, it is
inserted at the start of the list, and becomes the left-most axes.
**kwargs
All extra keywords arguments are passed to the created axes.
If *axes_class* is given, the new axes will be created as an
instance of the given class. Otherwise, the same class of the
main axes will be used.
"""
if pad is None:
cbook.warn_deprecated(
"3.2", message="In a future version, 'pad' will default to "
"rcParams['figure.subplot.hspace']. Set pad=0 to keep the "
"old behavior.")
if pad:
if not isinstance(pad, Size._Base):
pad = Size.from_any(pad, fraction_ref=self._yref)
if pack_start:
self._vertical.insert(0, pad)
self._yrefindex += 1
else:
self._vertical.append(pad)
if not isinstance(size, Size._Base):
size = Size.from_any(size, fraction_ref=self._yref)
if pack_start:
self._vertical.insert(0, size)
self._yrefindex += 1
locator = self.new_locator(nx=self._xrefindex, ny=0)
else:
self._vertical.append(size)
locator = self.new_locator(
nx=self._xrefindex, ny=len(self._vertical)-1)
ax = self._get_new_axes(**kwargs)
ax.set_axes_locator(locator)
return ax
def append_axes(self, position, size, pad=None, add_to_figure=True,
**kwargs):
"""
Create an axes at the given *position* with the same height
(or width) of the main axes.
*position*
["left"|"right"|"bottom"|"top"]
*size* and *pad* should be axes_grid.axes_size compatible.
"""
if position == "left":
ax = self.new_horizontal(size, pad, pack_start=True, **kwargs)
elif position == "right":
ax = self.new_horizontal(size, pad, pack_start=False, **kwargs)
elif position == "bottom":
ax = self.new_vertical(size, pad, pack_start=True, **kwargs)
elif position == "top":
ax = self.new_vertical(size, pad, pack_start=False, **kwargs)
else:
cbook._check_in_list(["left", "right", "bottom", "top"],
position=position)
if add_to_figure:
self._fig.add_axes(ax)
return ax
def get_aspect(self):
if self._aspect is None:
aspect = self._axes.get_aspect()
if aspect == "auto":
return False
else:
return True
else:
return self._aspect
def get_position(self):
if self._pos is None:
bbox = self._axes.get_position(original=True)
return bbox.bounds
else:
return self._pos
def get_anchor(self):
if self._anchor is None:
return self._axes.get_anchor()
else:
return self._anchor
def get_subplotspec(self):
if hasattr(self._axes, "get_subplotspec"):
return self._axes.get_subplotspec()
else:
return None
class HBoxDivider(SubplotDivider):
@staticmethod
def _determine_karray(equivalent_sizes, appended_sizes,
max_equivalent_size,
total_appended_size):
n = len(equivalent_sizes)
eq_rs, eq_as = np.asarray(equivalent_sizes).T
ap_rs, ap_as = np.asarray(appended_sizes).T
A = np.zeros((n + 1, n + 1))
B = np.zeros(n + 1)
np.fill_diagonal(A[:n, :n], eq_rs)
A[:n, -1] = -1
A[-1, :-1] = ap_rs
B[:n] = -eq_as
B[-1] = total_appended_size - sum(ap_as)
karray_H = np.linalg.solve(A, B) # A @ K = B
karray = karray_H[:-1]
H = karray_H[-1]
if H > max_equivalent_size:
karray = (max_equivalent_size - eq_as) / eq_rs
return karray
@staticmethod
def _calc_offsets(appended_sizes, karray):
offsets = [0.]
for (r, a), k in zip(appended_sizes, karray):
offsets.append(offsets[-1] + r*k + a)
return offsets
def new_locator(self, nx, nx1=None):
"""
Create a new `~mpl_toolkits.axes_grid.axes_divider.AxesLocator` for
the specified cell.
Parameters
----------
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
"""
return AxesLocator(self, nx, 0, nx1, None)
def _locate(self, x, y, w, h,
y_equivalent_sizes, x_appended_sizes,
figW, figH):
equivalent_sizes = y_equivalent_sizes
appended_sizes = x_appended_sizes
max_equivalent_size = figH * h
total_appended_size = figW * w
karray = self._determine_karray(equivalent_sizes, appended_sizes,
max_equivalent_size,
total_appended_size)
ox = self._calc_offsets(appended_sizes, karray)
ww = (ox[-1] - ox[0]) / figW
ref_h = equivalent_sizes[0]
hh = (karray[0]*ref_h[0] + ref_h[1]) / figH
pb = mtransforms.Bbox.from_bounds(x, y, w, h)
pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh)
pb1_anchored = pb1.anchored(self.get_anchor(), pb)
x0, y0 = pb1_anchored.x0, pb1_anchored.y0
return x0, y0, ox, hh
def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None):
"""
Parameters
----------
axes_divider : AxesDivider
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
axes
renderer
"""
figW, figH = self._fig.get_size_inches()
x, y, w, h = self.get_position_runtime(axes, renderer)
y_equivalent_sizes = self.get_vertical_sizes(renderer)
x_appended_sizes = self.get_horizontal_sizes(renderer)
x0, y0, ox, hh = self._locate(x, y, w, h,
y_equivalent_sizes, x_appended_sizes,
figW, figH)
if nx1 is None:
nx1 = nx + 1
x1, w1 = x0 + ox[nx] / figW, (ox[nx1] - ox[nx]) / figW
y1, h1 = y0, hh
return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)
class VBoxDivider(HBoxDivider):
"""
The Divider class whose rectangle area is specified as a subplot geometry.
"""
def new_locator(self, ny, ny1=None):
"""
Create a new `~mpl_toolkits.axes_grid.axes_divider.AxesLocator` for
the specified cell.
Parameters
----------
ny, ny1 : int
Integers specifying the row-position of the
cell. When *ny1* is None, a single *ny*-th row is
specified. Otherwise location of rows spanning between *ny*
to *ny1* (but excluding *ny1*-th row) is specified.
"""
return AxesLocator(self, 0, ny, None, ny1)
def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None):
"""
Parameters
----------
axes_divider : AxesDivider
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
axes
renderer
"""
figW, figH = self._fig.get_size_inches()
x, y, w, h = self.get_position_runtime(axes, renderer)
x_equivalent_sizes = self.get_horizontal_sizes(renderer)
y_appended_sizes = self.get_vertical_sizes(renderer)
y0, x0, oy, ww = self._locate(y, x, h, w,
x_equivalent_sizes, y_appended_sizes,
figH, figW)
if ny1 is None:
ny1 = ny + 1
x1, w1 = x0, ww
y1, h1 = y0 + oy[ny] / figH, (oy[ny1] - oy[ny]) / figH
return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)
def make_axes_locatable(axes):
divider = AxesDivider(axes)
locator = divider.new_locator(nx=0, ny=0)
axes.set_axes_locator(locator)
return divider
def make_axes_area_auto_adjustable(ax,
use_axes=None, pad=0.1,
adjust_dirs=None):
if adjust_dirs is None:
adjust_dirs = ["left", "right", "bottom", "top"]
divider = make_axes_locatable(ax)
if use_axes is None:
use_axes = ax
divider.add_auto_adjustable_area(use_axes=use_axes, pad=pad,
adjust_dirs=adjust_dirs)