Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/gcloud/monitoring/_dataframe.py

116 lines
4.3 KiB
Python

# Copyright 2016 Google Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Time series as :mod:`pandas` dataframes."""
import itertools
TOP_RESOURCE_LABELS = (
'project_id',
'aws_account',
'location',
'region',
'zone',
)
def _build_dataframe(time_series_iterable,
label=None, labels=None): # pragma: NO COVER
"""Build a :mod:`pandas` dataframe out of time series.
:type time_series_iterable:
iterable over :class:`~gcloud.monitoring.timeseries.TimeSeries`
:param time_series_iterable:
An iterable (e.g., a query object) yielding time series.
:type label: string or None
:param label:
The label name to use for the dataframe header. This can be the name
of a resource label or metric label (e.g., ``"instance_name"``), or
the string ``"resource_type"``.
:type labels: list of strings, or None
:param labels:
A list or tuple of label names to use for the dataframe header.
If more than one label name is provided, the resulting dataframe
will have a multi-level column header.
Specifying neither ``label`` or ``labels`` results in a dataframe
with a multi-level column header including the resource type and
all available resource and metric labels.
Specifying both ``label`` and ``labels`` is an error.
:rtype: :class:`pandas.DataFrame`
:returns: A dataframe where each column represents one time series.
"""
import pandas # pylint: disable=import-error
if labels is not None:
if label is not None:
raise ValueError('Cannot specify both "label" and "labels".')
elif not labels:
raise ValueError('"labels" must be non-empty or None.')
columns = []
headers = []
for time_series in time_series_iterable:
pandas_series = pandas.Series(
data=[point.value for point in time_series.points],
index=[point.end_time for point in time_series.points],
)
columns.append(pandas_series)
headers.append(time_series.header())
# Implement a smart default of using all available labels.
if label is None and labels is None:
resource_labels = set(itertools.chain.from_iterable(
header.resource.labels for header in headers))
metric_labels = set(itertools.chain.from_iterable(
header.metric.labels for header in headers))
labels = (['resource_type'] +
_sorted_resource_labels(resource_labels) +
sorted(metric_labels))
# Assemble the columns into a DataFrame.
dataframe = pandas.DataFrame.from_records(columns).T
# Convert the timestamp strings into a DatetimeIndex.
dataframe.index = pandas.to_datetime(dataframe.index)
# Build a multi-level stack of column headers. Some labels may
# be undefined for some time series.
levels = []
for key in labels or [label]:
level = [header.labels.get(key, '') for header in headers]
levels.append(level)
# Build a column Index or MultiIndex. Do not include level names
# in the column header if the user requested a single-level header
# by specifying "label".
dataframe.columns = pandas.MultiIndex.from_arrays(
levels,
names=labels or None)
# Sort the rows just in case (since the API doesn't guarantee the
# ordering), and sort the columns lexicographically.
return dataframe.sort_index(axis=0).sort_index(axis=1)
def _sorted_resource_labels(labels):
"""Sort label names, putting well-known resource labels first."""
head = [label for label in TOP_RESOURCE_LABELS if label in labels]
tail = sorted(label for label in labels
if label not in TOP_RESOURCE_LABELS)
return head + tail