Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/scipy/stats/tests/test_distributions.py

4431 lines
169 KiB
Python

""" Test functions for stats module
"""
import warnings
import re
import sys
import pickle
import os
from numpy.testing import (assert_equal, assert_array_equal,
assert_almost_equal, assert_array_almost_equal,
assert_allclose, assert_, assert_warns,
assert_array_less, suppress_warnings)
import pytest
from pytest import raises as assert_raises
import numpy
import numpy as np
from numpy import typecodes, array
from numpy.lib.recfunctions import rec_append_fields
from scipy import special
from scipy._lib._util import check_random_state
from scipy.integrate import IntegrationWarning
import scipy.stats as stats
from scipy.stats._distn_infrastructure import argsreduce
import scipy.stats.distributions
from scipy.special import xlogy
from .test_continuous_basic import distcont
# python -OO strips docstrings
DOCSTRINGS_STRIPPED = sys.flags.optimize > 1
def _assert_hasattr(a, b, msg=None):
if msg is None:
msg = '%s does not have attribute %s' % (a, b)
assert_(hasattr(a, b), msg=msg)
def test_api_regression():
# https://github.com/scipy/scipy/issues/3802
_assert_hasattr(scipy.stats.distributions, 'f_gen')
def check_vonmises_pdf_periodic(k, l, s, x):
vm = stats.vonmises(k, loc=l, scale=s)
assert_almost_equal(vm.pdf(x), vm.pdf(x % (2*numpy.pi*s)))
def check_vonmises_cdf_periodic(k, l, s, x):
vm = stats.vonmises(k, loc=l, scale=s)
assert_almost_equal(vm.cdf(x) % 1, vm.cdf(x % (2*numpy.pi*s)) % 1)
def test_vonmises_pdf_periodic():
for k in [0.1, 1, 101]:
for x in [0, 1, numpy.pi, 10, 100]:
check_vonmises_pdf_periodic(k, 0, 1, x)
check_vonmises_pdf_periodic(k, 1, 1, x)
check_vonmises_pdf_periodic(k, 0, 10, x)
check_vonmises_cdf_periodic(k, 0, 1, x)
check_vonmises_cdf_periodic(k, 1, 1, x)
check_vonmises_cdf_periodic(k, 0, 10, x)
def test_vonmises_line_support():
assert_equal(stats.vonmises_line.a, -np.pi)
assert_equal(stats.vonmises_line.b, np.pi)
def test_vonmises_numerical():
vm = stats.vonmises(800)
assert_almost_equal(vm.cdf(0), 0.5)
@pytest.mark.parametrize('dist',
['alpha', 'betaprime',
'fatiguelife', 'invgamma', 'invgauss', 'invweibull',
'johnsonsb', 'levy', 'levy_l', 'lognorm', 'gilbrat',
'powerlognorm', 'rayleigh', 'wald'])
def test_support(dist):
"""gh-6235"""
dct = dict(distcont)
args = dct[dist]
dist = getattr(stats, dist)
assert_almost_equal(dist.pdf(dist.a, *args), 0)
assert_equal(dist.logpdf(dist.a, *args), -np.inf)
assert_almost_equal(dist.pdf(dist.b, *args), 0)
assert_equal(dist.logpdf(dist.b, *args), -np.inf)
class TestRandInt(object):
def setup_method(self):
np.random.seed(1234)
def test_rvs(self):
vals = stats.randint.rvs(5, 30, size=100)
assert_(numpy.all(vals < 30) & numpy.all(vals >= 5))
assert_(len(vals) == 100)
vals = stats.randint.rvs(5, 30, size=(2, 50))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.randint.rvs(15, 46)
assert_((val >= 15) & (val < 46))
assert_(isinstance(val, numpy.ScalarType), msg=repr(type(val)))
val = stats.randint(15, 46).rvs(3)
assert_(val.dtype.char in typecodes['AllInteger'])
def test_pdf(self):
k = numpy.r_[0:36]
out = numpy.where((k >= 5) & (k < 30), 1.0/(30-5), 0)
vals = stats.randint.pmf(k, 5, 30)
assert_array_almost_equal(vals, out)
def test_cdf(self):
x = np.linspace(0, 36, 100)
k = numpy.floor(x)
out = numpy.select([k >= 30, k >= 5], [1.0, (k-5.0+1)/(30-5.0)], 0)
vals = stats.randint.cdf(x, 5, 30)
assert_array_almost_equal(vals, out, decimal=12)
class TestBinom(object):
def setup_method(self):
np.random.seed(1234)
def test_rvs(self):
vals = stats.binom.rvs(10, 0.75, size=(2, 50))
assert_(numpy.all(vals >= 0) & numpy.all(vals <= 10))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.binom.rvs(10, 0.75)
assert_(isinstance(val, int))
val = stats.binom(10, 0.75).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
def test_pmf(self):
# regression test for Ticket #1842
vals1 = stats.binom.pmf(100, 100, 1)
vals2 = stats.binom.pmf(0, 100, 0)
assert_allclose(vals1, 1.0, rtol=1e-15, atol=0)
assert_allclose(vals2, 1.0, rtol=1e-15, atol=0)
def test_entropy(self):
# Basic entropy tests.
b = stats.binom(2, 0.5)
expected_p = np.array([0.25, 0.5, 0.25])
expected_h = -sum(xlogy(expected_p, expected_p))
h = b.entropy()
assert_allclose(h, expected_h)
b = stats.binom(2, 0.0)
h = b.entropy()
assert_equal(h, 0.0)
b = stats.binom(2, 1.0)
h = b.entropy()
assert_equal(h, 0.0)
def test_warns_p0(self):
# no spurious warnigns are generated for p=0; gh-3817
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
assert_equal(stats.binom(n=2, p=0).mean(), 0)
assert_equal(stats.binom(n=2, p=0).std(), 0)
class TestBernoulli(object):
def setup_method(self):
np.random.seed(1234)
def test_rvs(self):
vals = stats.bernoulli.rvs(0.75, size=(2, 50))
assert_(numpy.all(vals >= 0) & numpy.all(vals <= 1))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.bernoulli.rvs(0.75)
assert_(isinstance(val, int))
val = stats.bernoulli(0.75).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
def test_entropy(self):
# Simple tests of entropy.
b = stats.bernoulli(0.25)
expected_h = -0.25*np.log(0.25) - 0.75*np.log(0.75)
h = b.entropy()
assert_allclose(h, expected_h)
b = stats.bernoulli(0.0)
h = b.entropy()
assert_equal(h, 0.0)
b = stats.bernoulli(1.0)
h = b.entropy()
assert_equal(h, 0.0)
class TestBradford(object):
# gh-6216
def test_cdf_ppf(self):
c = 0.1
x = np.logspace(-20, -4)
q = stats.bradford.cdf(x, c)
xx = stats.bradford.ppf(q, c)
assert_allclose(x, xx)
class TestNBinom(object):
def setup_method(self):
np.random.seed(1234)
def test_rvs(self):
vals = stats.nbinom.rvs(10, 0.75, size=(2, 50))
assert_(numpy.all(vals >= 0))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.nbinom.rvs(10, 0.75)
assert_(isinstance(val, int))
val = stats.nbinom(10, 0.75).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
def test_pmf(self):
# regression test for ticket 1779
assert_allclose(np.exp(stats.nbinom.logpmf(700, 721, 0.52)),
stats.nbinom.pmf(700, 721, 0.52))
# logpmf(0,1,1) shouldn't return nan (regression test for gh-4029)
val = scipy.stats.nbinom.logpmf(0, 1, 1)
assert_equal(val, 0)
class TestGenInvGauss(object):
def setup_method(self):
np.random.seed(1234)
@pytest.mark.slow
def test_rvs_with_mode_shift(self):
# ratio_unif w/ mode shift
gig = stats.geninvgauss(2.3, 1.5)
_, p = stats.kstest(gig.rvs(size=1500, random_state=1234), gig.cdf)
assert_equal(p > 0.05, True)
@pytest.mark.slow
def test_rvs_without_mode_shift(self):
# ratio_unif w/o mode shift
gig = stats.geninvgauss(0.9, 0.75)
_, p = stats.kstest(gig.rvs(size=1500, random_state=1234), gig.cdf)
assert_equal(p > 0.05, True)
@pytest.mark.slow
def test_rvs_new_method(self):
# new algorithm of Hoermann / Leydold
gig = stats.geninvgauss(0.1, 0.2)
_, p = stats.kstest(gig.rvs(size=1500, random_state=1234), gig.cdf)
assert_equal(p > 0.05, True)
@pytest.mark.slow
def test_rvs_p_zero(self):
def my_ks_check(p, b):
gig = stats.geninvgauss(p, b)
rvs = gig.rvs(size=1500, random_state=1234)
return stats.kstest(rvs, gig.cdf)[1] > 0.05
# boundary cases when p = 0
assert_equal(my_ks_check(0, 0.2), True) # new algo
assert_equal(my_ks_check(0, 0.9), True) # ratio_unif w/o shift
assert_equal(my_ks_check(0, 1.5), True) # ratio_unif with shift
def test_rvs_negative_p(self):
# if p negative, return inverse
assert_equal(
stats.geninvgauss(-1.5, 2).rvs(size=10, random_state=1234),
1 / stats.geninvgauss(1.5, 2).rvs(size=10, random_state=1234))
def test_invgauss(self):
# test that invgauss is special case
ig = stats.geninvgauss.rvs(size=1500, p=-0.5, b=1, random_state=1234)
assert_equal(stats.kstest(ig, 'invgauss', args=[1])[1] > 0.15, True)
# test pdf and cdf
mu, x = 100, np.linspace(0.01, 1, 10)
pdf_ig = stats.geninvgauss.pdf(x, p=-0.5, b=1 / mu, scale=mu)
assert_allclose(pdf_ig, stats.invgauss(mu).pdf(x))
cdf_ig = stats.geninvgauss.cdf(x, p=-0.5, b=1 / mu, scale=mu)
assert_allclose(cdf_ig, stats.invgauss(mu).cdf(x))
def test_pdf_R(self):
# test against R package GIGrvg
# x <- seq(0.01, 5, length.out = 10)
# GIGrvg::dgig(x, 0.5, 1, 1)
vals_R = np.array([2.081176820e-21, 4.488660034e-01, 3.747774338e-01,
2.693297528e-01, 1.905637275e-01, 1.351476913e-01,
9.636538981e-02, 6.909040154e-02, 4.978006801e-02,
3.602084467e-02])
x = np.linspace(0.01, 5, 10)
assert_allclose(vals_R, stats.geninvgauss.pdf(x, 0.5, 1))
def test_pdf_zero(self):
# pdf at 0 is 0, needs special treatment to avoid 1/x in pdf
assert_equal(stats.geninvgauss.pdf(0, 0.5, 0.5), 0)
# if x is large and p is moderate, make sure that pdf does not
# overflow because of x**(p-1); exp(-b*x) forces pdf to zero
assert_equal(stats.geninvgauss.pdf(2e6, 50, 2), 0)
class TestNormInvGauss(object):
def setup_method(self):
np.random.seed(1234)
def test_cdf_R(self):
# test pdf and cdf vals against R
# require("GeneralizedHyperbolic")
# x_test <- c(-7, -5, 0, 8, 15)
# r_cdf <- GeneralizedHyperbolic::pnig(x_test, mu = 0, a = 1, b = 0.5)
# r_pdf <- GeneralizedHyperbolic::dnig(x_test, mu = 0, a = 1, b = 0.5)
r_cdf = np.array([8.034920282e-07, 2.512671945e-05, 3.186661051e-01,
9.988650664e-01, 9.999848769e-01])
x_test = np.array([-7, -5, 0, 8, 15])
vals_cdf = stats.norminvgauss.cdf(x_test, a=1, b=0.5)
assert_allclose(vals_cdf, r_cdf, atol=1e-9)
def test_pdf_R(self):
# values from R as defined in test_cdf_R
r_pdf = np.array([1.359600783e-06, 4.413878805e-05, 4.555014266e-01,
7.450485342e-04, 8.917889931e-06])
x_test = np.array([-7, -5, 0, 8, 15])
vals_pdf = stats.norminvgauss.pdf(x_test, a=1, b=0.5)
assert_allclose(vals_pdf, r_pdf, atol=1e-9)
def test_stats(self):
a, b = 1, 0.5
gamma = np.sqrt(a**2 - b**2)
v_stats = (b / gamma, a**2 / gamma**3, 3.0 * b / (a * np.sqrt(gamma)),
3.0 * (1 + 4 * b**2 / a**2) / gamma)
assert_equal(v_stats, stats.norminvgauss.stats(a, b, moments='mvsk'))
def test_ppf(self):
a, b = 1, 0.5
x_test = np.array([0.001, 0.5, 0.999])
vals = stats.norminvgauss.ppf(x_test, a, b)
assert_allclose(x_test, stats.norminvgauss.cdf(vals, a, b))
class TestGeom(object):
def setup_method(self):
np.random.seed(1234)
def test_rvs(self):
vals = stats.geom.rvs(0.75, size=(2, 50))
assert_(numpy.all(vals >= 0))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.geom.rvs(0.75)
assert_(isinstance(val, int))
val = stats.geom(0.75).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
def test_pmf(self):
vals = stats.geom.pmf([1, 2, 3], 0.5)
assert_array_almost_equal(vals, [0.5, 0.25, 0.125])
def test_logpmf(self):
# regression test for ticket 1793
vals1 = np.log(stats.geom.pmf([1, 2, 3], 0.5))
vals2 = stats.geom.logpmf([1, 2, 3], 0.5)
assert_allclose(vals1, vals2, rtol=1e-15, atol=0)
# regression test for gh-4028
val = stats.geom.logpmf(1, 1)
assert_equal(val, 0.0)
def test_cdf_sf(self):
vals = stats.geom.cdf([1, 2, 3], 0.5)
vals_sf = stats.geom.sf([1, 2, 3], 0.5)
expected = array([0.5, 0.75, 0.875])
assert_array_almost_equal(vals, expected)
assert_array_almost_equal(vals_sf, 1-expected)
def test_logcdf_logsf(self):
vals = stats.geom.logcdf([1, 2, 3], 0.5)
vals_sf = stats.geom.logsf([1, 2, 3], 0.5)
expected = array([0.5, 0.75, 0.875])
assert_array_almost_equal(vals, np.log(expected))
assert_array_almost_equal(vals_sf, np.log1p(-expected))
def test_ppf(self):
vals = stats.geom.ppf([0.5, 0.75, 0.875], 0.5)
expected = array([1.0, 2.0, 3.0])
assert_array_almost_equal(vals, expected)
def test_ppf_underflow(self):
# this should not underflow
assert_allclose(stats.geom.ppf(1e-20, 1e-20), 1.0, atol=1e-14)
class TestPlanck(object):
def setup_method(self):
np.random.seed(1234)
def test_sf(self):
vals = stats.planck.sf([1, 2, 3], 5.)
expected = array([4.5399929762484854e-05,
3.0590232050182579e-07,
2.0611536224385579e-09])
assert_array_almost_equal(vals, expected)
def test_logsf(self):
vals = stats.planck.logsf([1000., 2000., 3000.], 1000.)
expected = array([-1001000., -2001000., -3001000.])
assert_array_almost_equal(vals, expected)
class TestGennorm(object):
def test_laplace(self):
# test against Laplace (special case for beta=1)
points = [1, 2, 3]
pdf1 = stats.gennorm.pdf(points, 1)
pdf2 = stats.laplace.pdf(points)
assert_almost_equal(pdf1, pdf2)
def test_norm(self):
# test against normal (special case for beta=2)
points = [1, 2, 3]
pdf1 = stats.gennorm.pdf(points, 2)
pdf2 = stats.norm.pdf(points, scale=2**-.5)
assert_almost_equal(pdf1, pdf2)
class TestHalfgennorm(object):
def test_expon(self):
# test against exponential (special case for beta=1)
points = [1, 2, 3]
pdf1 = stats.halfgennorm.pdf(points, 1)
pdf2 = stats.expon.pdf(points)
assert_almost_equal(pdf1, pdf2)
def test_halfnorm(self):
# test against half normal (special case for beta=2)
points = [1, 2, 3]
pdf1 = stats.halfgennorm.pdf(points, 2)
pdf2 = stats.halfnorm.pdf(points, scale=2**-.5)
assert_almost_equal(pdf1, pdf2)
def test_gennorm(self):
# test against generalized normal
points = [1, 2, 3]
pdf1 = stats.halfgennorm.pdf(points, .497324)
pdf2 = stats.gennorm.pdf(points, .497324)
assert_almost_equal(pdf1, 2*pdf2)
class TestTruncnorm(object):
def setup_method(self):
np.random.seed(1234)
def test_ppf_ticket1131(self):
vals = stats.truncnorm.ppf([-0.5, 0, 1e-4, 0.5, 1-1e-4, 1, 2], -1., 1.,
loc=[3]*7, scale=2)
expected = np.array([np.nan, 1, 1.00056419, 3, 4.99943581, 5, np.nan])
assert_array_almost_equal(vals, expected)
def test_isf_ticket1131(self):
vals = stats.truncnorm.isf([-0.5, 0, 1e-4, 0.5, 1-1e-4, 1, 2], -1., 1.,
loc=[3]*7, scale=2)
expected = np.array([np.nan, 5, 4.99943581, 3, 1.00056419, 1, np.nan])
assert_array_almost_equal(vals, expected)
def test_gh_2477_small_values(self):
# Check a case that worked in the original issue.
low, high = -11, -10
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
assert_(low < x.min() < x.max() < high)
# Check a case that failed in the original issue.
low, high = 10, 11
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
assert_(low < x.min() < x.max() < high)
# @pytest.mark.xfail(reason="truncnorm rvs is know to fail at extreme tails")
def test_gh_2477_large_values(self):
# Check a case that used to fail because of extreme tailness.
low, high = 100, 101
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
assert_(low <= x.min() <= x.max() <= high), str([low, high, x])
# Check some additional extreme tails
low, high = 1000, 1001
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
assert_(low < x.min() < x.max() < high)
low, high = 10000, 10001
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
assert_(low < x.min() < x.max() < high)
low, high = -10001, -10000
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
assert_(low < x.min() < x.max() < high)
def test_gh_9403_nontail_values(self):
for low, high in [[3, 4], [-4, -3]]:
xvals = np.array([-np.inf, low, high, np.inf])
xmid = (high+low)/2.0
cdfs = stats.truncnorm.cdf(xvals, low, high)
sfs = stats.truncnorm.sf(xvals, low, high)
pdfs = stats.truncnorm.pdf(xvals, low, high)
expected_cdfs = np.array([0, 0, 1, 1])
expected_sfs = np.array([1.0, 1.0, 0.0, 0.0])
expected_pdfs = np.array([0, 3.3619772, 0.1015229, 0])
if low < 0:
expected_pdfs = np.array([0, 0.1015229, 3.3619772, 0])
assert_almost_equal(cdfs, expected_cdfs)
assert_almost_equal(sfs, expected_sfs)
assert_almost_equal(pdfs, expected_pdfs)
assert_almost_equal(np.log(expected_pdfs[1]/expected_pdfs[2]), low+0.5)
pvals = np.array([0, 0.5, 1.0])
ppfs = stats.truncnorm.ppf(pvals, low, high)
expected_ppfs = np.array([low, np.sign(low)*3.1984741, high])
assert_almost_equal(ppfs, expected_ppfs)
if low < 0:
assert_almost_equal(stats.truncnorm.sf(xmid, low, high), 0.8475544278436675)
assert_almost_equal(stats.truncnorm.cdf(xmid, low, high), 0.1524455721563326)
else:
assert_almost_equal(stats.truncnorm.cdf(xmid, low, high), 0.8475544278436675)
assert_almost_equal(stats.truncnorm.sf(xmid, low, high), 0.1524455721563326)
pdf = stats.truncnorm.pdf(xmid, low, high)
assert_almost_equal(np.log(pdf/expected_pdfs[2]), (xmid+0.25)/2)
def test_gh_9403_medium_tail_values(self):
for low, high in [[39, 40], [-40, -39]]:
xvals = np.array([-np.inf, low, high, np.inf])
xmid = (high+low)/2.0
cdfs = stats.truncnorm.cdf(xvals, low, high)
sfs = stats.truncnorm.sf(xvals, low, high)
pdfs = stats.truncnorm.pdf(xvals, low, high)
expected_cdfs = np.array([0, 0, 1, 1])
expected_sfs = np.array([1.0, 1.0, 0.0, 0.0])
expected_pdfs = np.array([0, 3.90256074e+01, 2.73349092e-16, 0])
if low < 0:
expected_pdfs = np.array([0, 2.73349092e-16, 3.90256074e+01, 0])
assert_almost_equal(cdfs, expected_cdfs)
assert_almost_equal(sfs, expected_sfs)
assert_almost_equal(pdfs, expected_pdfs)
assert_almost_equal(np.log(expected_pdfs[1]/expected_pdfs[2]), low+0.5)
pvals = np.array([0, 0.5, 1.0])
ppfs = stats.truncnorm.ppf(pvals, low, high)
expected_ppfs = np.array([low, np.sign(low)*39.01775731, high])
assert_almost_equal(ppfs, expected_ppfs)
cdfs = stats.truncnorm.cdf(ppfs, low, high)
assert_almost_equal(cdfs, pvals)
if low < 0:
assert_almost_equal(stats.truncnorm.sf(xmid, low, high), 0.9999999970389126)
assert_almost_equal(stats.truncnorm.cdf(xmid, low, high), 2.961048103554866e-09)
else:
assert_almost_equal(stats.truncnorm.cdf(xmid, low, high), 0.9999999970389126)
assert_almost_equal(stats.truncnorm.sf(xmid, low, high), 2.961048103554866e-09)
pdf = stats.truncnorm.pdf(xmid, low, high)
assert_almost_equal(np.log(pdf/expected_pdfs[2]), (xmid+0.25)/2)
xvals = np.linspace(low, high, 11)
xvals2 = -xvals[::-1]
assert_almost_equal(stats.truncnorm.cdf(xvals, low, high), stats.truncnorm.sf(xvals2, -high, -low)[::-1])
assert_almost_equal(stats.truncnorm.sf(xvals, low, high), stats.truncnorm.cdf(xvals2, -high, -low)[::-1])
assert_almost_equal(stats.truncnorm.pdf(xvals, low, high), stats.truncnorm.pdf(xvals2, -high, -low)[::-1])
def _test_moments_one_range(self, a, b, expected, decimal_s=7):
m0, v0, s0, k0 = expected[:4]
m, v, s, k = stats.truncnorm.stats(a, b, moments='mvsk')
assert_almost_equal(m, m0)
assert_almost_equal(v, v0)
assert_almost_equal(s, s0, decimal=decimal_s)
assert_almost_equal(k, k0)
@pytest.mark.xfail_on_32bit("reduced accuracy with 32bit platforms.")
def test_moments(self):
# Values validated by changing TRUNCNORM_TAIL_X so as to evaluate
# using both the _norm_XXX() and _norm_logXXX() functions, and by
# removing the _stats and _munp methods in truncnorm tp force
# numerical quadrature.
# For m,v,s,k expect k to have the largest error as it is
# constructed from powers of lower moments
self._test_moments_one_range(-30, 30, [0, 1, 0.0, 0.0])
self._test_moments_one_range(-10, 10, [0, 1, 0.0, 0.0])
self._test_moments_one_range(-3, 3, [0.0000000000000000, 0.9733369246625415, 0.0000000000000000, -0.1711144363977444])
self._test_moments_one_range(-2, 2, [0.0000000000000000, 0.7737413035499232, 0.0000000000000000, -0.6344632828703505])
self._test_moments_one_range(0, np.inf, [0.7978845608028654, 0.3633802276324186, 0.9952717464311565, 0.8691773036059725])
self._test_moments_one_range(-np.inf, 0, [-0.7978845608028654, 0.3633802276324186, -0.9952717464311565, 0.8691773036059725])
self._test_moments_one_range(-1, 3, [0.2827861107271540, 0.6161417353578292, 0.5393018494027878, -0.2058206513527461])
self._test_moments_one_range(-3, 1, [-0.2827861107271540, 0.6161417353578292, -0.5393018494027878, -0.2058206513527461])
self._test_moments_one_range(-10, -9, [-9.1084562880124764, 0.0114488058210104, -1.8985607337519652, 5.0733457094223553])
self._test_moments_one_range(-20, -19, [-19.0523439459766628, 0.0027250730180314, -1.9838694022629291, 5.8717850028287586])
self._test_moments_one_range(-30, -29, [-29.0344012377394698, 0.0011806603928891, -1.9930304534611458, 5.8854062968996566], decimal_s=6)
self._test_moments_one_range(-40, -39, [-39.0256074199326264, 0.0006548826719649, -1.9963146354109957, 5.6167758371700494])
self._test_moments_one_range(39, 40, [39.0256074199326264, 0.0006548826719649, 1.9963146354109957, 5.6167758371700494])
def test_9902_moments(self):
m, v = stats.truncnorm.stats(0, np.inf, moments='mv')
assert_almost_equal(m, 0.79788456)
assert_almost_equal(v, 0.36338023)
def test_gh_1489_trac_962_rvs(self):
# Check the original example.
low, high = 10, 15
x = stats.truncnorm.rvs(low, high, 0, 1, size=10)
assert_(low < x.min() < x.max() < high)
def test_gh_11299_rvs(self):
# Arose from investigating gh-11299
# Test multiple shape parameters simultaneously.
low = [-10, 10, -np.inf, -5, -np.inf, -np.inf, -45, -45, 40, -10, 40]
high = [-5, 11, 5, np.inf, 40, -40, 40, -40, 45, np.inf, np.inf]
x = stats.truncnorm.rvs(low, high, size=(5, len(low)))
assert np.shape(x) == (5, len(low))
assert_(np.all(low <= x.min(axis=0)))
assert_(np.all(x.max(axis=0) <= high))
def test_rvs_Generator(self):
# check that rvs can use a Generator
if hasattr(np.random, "default_rng"):
stats.truncnorm.rvs(-10, -5, size=5,
random_state=np.random.default_rng())
class TestHypergeom(object):
def setup_method(self):
np.random.seed(1234)
def test_rvs(self):
vals = stats.hypergeom.rvs(20, 10, 3, size=(2, 50))
assert_(numpy.all(vals >= 0) &
numpy.all(vals <= 3))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.hypergeom.rvs(20, 3, 10)
assert_(isinstance(val, int))
val = stats.hypergeom(20, 3, 10).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
def test_precision(self):
# comparison number from mpmath
M = 2500
n = 50
N = 500
tot = M
good = n
hgpmf = stats.hypergeom.pmf(2, tot, good, N)
assert_almost_equal(hgpmf, 0.0010114963068932233, 11)
def test_args(self):
# test correct output for corner cases of arguments
# see gh-2325
assert_almost_equal(stats.hypergeom.pmf(0, 2, 1, 0), 1.0, 11)
assert_almost_equal(stats.hypergeom.pmf(1, 2, 1, 0), 0.0, 11)
assert_almost_equal(stats.hypergeom.pmf(0, 2, 0, 2), 1.0, 11)
assert_almost_equal(stats.hypergeom.pmf(1, 2, 1, 0), 0.0, 11)
def test_cdf_above_one(self):
# for some values of parameters, hypergeom cdf was >1, see gh-2238
assert_(0 <= stats.hypergeom.cdf(30, 13397950, 4363, 12390) <= 1.0)
def test_precision2(self):
# Test hypergeom precision for large numbers. See #1218.
# Results compared with those from R.
oranges = 9.9e4
pears = 1.1e5
fruits_eaten = np.array([3, 3.8, 3.9, 4, 4.1, 4.2, 5]) * 1e4
quantile = 2e4
res = [stats.hypergeom.sf(quantile, oranges + pears, oranges, eaten)
for eaten in fruits_eaten]
expected = np.array([0, 1.904153e-114, 2.752693e-66, 4.931217e-32,
8.265601e-11, 0.1237904, 1])
assert_allclose(res, expected, atol=0, rtol=5e-7)
# Test with array_like first argument
quantiles = [1.9e4, 2e4, 2.1e4, 2.15e4]
res2 = stats.hypergeom.sf(quantiles, oranges + pears, oranges, 4.2e4)
expected2 = [1, 0.1237904, 6.511452e-34, 3.277667e-69]
assert_allclose(res2, expected2, atol=0, rtol=5e-7)
def test_entropy(self):
# Simple tests of entropy.
hg = stats.hypergeom(4, 1, 1)
h = hg.entropy()
expected_p = np.array([0.75, 0.25])
expected_h = -np.sum(xlogy(expected_p, expected_p))
assert_allclose(h, expected_h)
hg = stats.hypergeom(1, 1, 1)
h = hg.entropy()
assert_equal(h, 0.0)
def test_logsf(self):
# Test logsf for very large numbers. See issue #4982
# Results compare with those from R (v3.2.0):
# phyper(k, n, M-n, N, lower.tail=FALSE, log.p=TRUE)
# -2239.771
k = 1e4
M = 1e7
n = 1e6
N = 5e4
result = stats.hypergeom.logsf(k, M, n, N)
expected = -2239.771 # From R
assert_almost_equal(result, expected, decimal=3)
k = 1
M = 1600
n = 600
N = 300
result = stats.hypergeom.logsf(k, M, n, N)
expected = -2.566567e-68 # From R
assert_almost_equal(result, expected, decimal=15)
def test_logcdf(self):
# Test logcdf for very large numbers. See issue #8692
# Results compare with those from R (v3.3.2):
# phyper(k, n, M-n, N, lower.tail=TRUE, log.p=TRUE)
# -5273.335
k = 1
M = 1e7
n = 1e6
N = 5e4
result = stats.hypergeom.logcdf(k, M, n, N)
expected = -5273.335 # From R
assert_almost_equal(result, expected, decimal=3)
# Same example as in issue #8692
k = 40
M = 1600
n = 50
N = 300
result = stats.hypergeom.logcdf(k, M, n, N)
expected = -7.565148879229e-23 # From R
assert_almost_equal(result, expected, decimal=15)
k = 125
M = 1600
n = 250
N = 500
result = stats.hypergeom.logcdf(k, M, n, N)
expected = -4.242688e-12 # From R
assert_almost_equal(result, expected, decimal=15)
# test broadcasting robustness based on reviewer
# concerns in PR 9603; using an array version of
# the example from issue #8692
k = np.array([40, 40, 40])
M = 1600
n = 50
N = 300
result = stats.hypergeom.logcdf(k, M, n, N)
expected = np.full(3, -7.565148879229e-23) # filled from R result
assert_almost_equal(result, expected, decimal=15)
class TestLoggamma(object):
def test_stats(self):
# The following precomputed values are from the table in section 2.2
# of "A Statistical Study of Log-Gamma Distribution", by Ping Shing
# Chan (thesis, McMaster University, 1993).
table = np.array([
# c, mean, var, skew, exc. kurt.
0.5, -1.9635, 4.9348, -1.5351, 4.0000,
1.0, -0.5772, 1.6449, -1.1395, 2.4000,
12.0, 2.4427, 0.0869, -0.2946, 0.1735,
]).reshape(-1, 5)
for c, mean, var, skew, kurt in table:
computed = stats.loggamma.stats(c, moments='msvk')
assert_array_almost_equal(computed, [mean, var, skew, kurt],
decimal=4)
class TestLogistic(object):
# gh-6226
def test_cdf_ppf(self):
x = np.linspace(-20, 20)
y = stats.logistic.cdf(x)
xx = stats.logistic.ppf(y)
assert_allclose(x, xx)
def test_sf_isf(self):
x = np.linspace(-20, 20)
y = stats.logistic.sf(x)
xx = stats.logistic.isf(y)
assert_allclose(x, xx)
def test_extreme_values(self):
# p is chosen so that 1 - (1 - p) == p in double precision
p = 9.992007221626409e-16
desired = 34.53957599234088
assert_allclose(stats.logistic.ppf(1 - p), desired)
assert_allclose(stats.logistic.isf(p), desired)
class TestLogser(object):
def setup_method(self):
np.random.seed(1234)
def test_rvs(self):
vals = stats.logser.rvs(0.75, size=(2, 50))
assert_(numpy.all(vals >= 1))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.logser.rvs(0.75)
assert_(isinstance(val, int))
val = stats.logser(0.75).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
def test_pmf_small_p(self):
m = stats.logser.pmf(4, 1e-20)
# The expected value was computed using mpmath:
# >>> import mpmath
# >>> mpmath.mp.dps = 64
# >>> k = 4
# >>> p = mpmath.mpf('1e-20')
# >>> float(-(p**k)/k/mpmath.log(1-p))
# 2.5e-61
# It is also clear from noticing that for very small p,
# log(1-p) is approximately -p, and the formula becomes
# p**(k-1) / k
assert_allclose(m, 2.5e-61)
def test_mean_small_p(self):
m = stats.logser.mean(1e-8)
# The expected mean was computed using mpmath:
# >>> import mpmath
# >>> mpmath.dps = 60
# >>> p = mpmath.mpf('1e-8')
# >>> float(-p / ((1 - p)*mpmath.log(1 - p)))
# 1.000000005
assert_allclose(m, 1.000000005)
class TestPareto(object):
def test_stats(self):
# Check the stats() method with some simple values. Also check
# that the calculations do not trigger RuntimeWarnings.
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
m, v, s, k = stats.pareto.stats(0.5, moments='mvsk')
assert_equal(m, np.inf)
assert_equal(v, np.inf)
assert_equal(s, np.nan)
assert_equal(k, np.nan)
m, v, s, k = stats.pareto.stats(1.0, moments='mvsk')
assert_equal(m, np.inf)
assert_equal(v, np.inf)
assert_equal(s, np.nan)
assert_equal(k, np.nan)
m, v, s, k = stats.pareto.stats(1.5, moments='mvsk')
assert_equal(m, 3.0)
assert_equal(v, np.inf)
assert_equal(s, np.nan)
assert_equal(k, np.nan)
m, v, s, k = stats.pareto.stats(2.0, moments='mvsk')
assert_equal(m, 2.0)
assert_equal(v, np.inf)
assert_equal(s, np.nan)
assert_equal(k, np.nan)
m, v, s, k = stats.pareto.stats(2.5, moments='mvsk')
assert_allclose(m, 2.5 / 1.5)
assert_allclose(v, 2.5 / (1.5*1.5*0.5))
assert_equal(s, np.nan)
assert_equal(k, np.nan)
m, v, s, k = stats.pareto.stats(3.0, moments='mvsk')
assert_allclose(m, 1.5)
assert_allclose(v, 0.75)
assert_equal(s, np.nan)
assert_equal(k, np.nan)
m, v, s, k = stats.pareto.stats(3.5, moments='mvsk')
assert_allclose(m, 3.5 / 2.5)
assert_allclose(v, 3.5 / (2.5*2.5*1.5))
assert_allclose(s, (2*4.5/0.5)*np.sqrt(1.5/3.5))
assert_equal(k, np.nan)
m, v, s, k = stats.pareto.stats(4.0, moments='mvsk')
assert_allclose(m, 4.0 / 3.0)
assert_allclose(v, 4.0 / 18.0)
assert_allclose(s, 2*(1+4.0)/(4.0-3) * np.sqrt((4.0-2)/4.0))
assert_equal(k, np.nan)
m, v, s, k = stats.pareto.stats(4.5, moments='mvsk')
assert_allclose(m, 4.5 / 3.5)
assert_allclose(v, 4.5 / (3.5*3.5*2.5))
assert_allclose(s, (2*5.5/1.5) * np.sqrt(2.5/4.5))
assert_allclose(k, 6*(4.5**3 + 4.5**2 - 6*4.5 - 2)/(4.5*1.5*0.5))
def test_sf(self):
x = 1e9
b = 2
scale = 1.5
p = stats.pareto.sf(x, b, loc=0, scale=scale)
expected = (scale/x)**b # 2.25e-18
assert_allclose(p, expected)
class TestGenpareto(object):
def test_ab(self):
# c >= 0: a, b = [0, inf]
for c in [1., 0.]:
c = np.asarray(c)
a, b = stats.genpareto._get_support(c)
assert_equal(a, 0.)
assert_(np.isposinf(b))
# c < 0: a=0, b=1/|c|
c = np.asarray(-2.)
a, b = stats.genpareto._get_support(c)
assert_allclose([a, b], [0., 0.5])
def test_c0(self):
# with c=0, genpareto reduces to the exponential distribution
# rv = stats.genpareto(c=0.)
rv = stats.genpareto(c=0.)
x = np.linspace(0, 10., 30)
assert_allclose(rv.pdf(x), stats.expon.pdf(x))
assert_allclose(rv.cdf(x), stats.expon.cdf(x))
assert_allclose(rv.sf(x), stats.expon.sf(x))
q = np.linspace(0., 1., 10)
assert_allclose(rv.ppf(q), stats.expon.ppf(q))
def test_cm1(self):
# with c=-1, genpareto reduces to the uniform distr on [0, 1]
rv = stats.genpareto(c=-1.)
x = np.linspace(0, 10., 30)
assert_allclose(rv.pdf(x), stats.uniform.pdf(x))
assert_allclose(rv.cdf(x), stats.uniform.cdf(x))
assert_allclose(rv.sf(x), stats.uniform.sf(x))
q = np.linspace(0., 1., 10)
assert_allclose(rv.ppf(q), stats.uniform.ppf(q))
# logpdf(1., c=-1) should be zero
assert_allclose(rv.logpdf(1), 0)
def test_x_inf(self):
# make sure x=inf is handled gracefully
rv = stats.genpareto(c=0.1)
assert_allclose([rv.pdf(np.inf), rv.cdf(np.inf)], [0., 1.])
assert_(np.isneginf(rv.logpdf(np.inf)))
rv = stats.genpareto(c=0.)
assert_allclose([rv.pdf(np.inf), rv.cdf(np.inf)], [0., 1.])
assert_(np.isneginf(rv.logpdf(np.inf)))
rv = stats.genpareto(c=-1.)
assert_allclose([rv.pdf(np.inf), rv.cdf(np.inf)], [0., 1.])
assert_(np.isneginf(rv.logpdf(np.inf)))
def test_c_continuity(self):
# pdf is continuous at c=0, -1
x = np.linspace(0, 10, 30)
for c in [0, -1]:
pdf0 = stats.genpareto.pdf(x, c)
for dc in [1e-14, -1e-14]:
pdfc = stats.genpareto.pdf(x, c + dc)
assert_allclose(pdf0, pdfc, atol=1e-12)
cdf0 = stats.genpareto.cdf(x, c)
for dc in [1e-14, 1e-14]:
cdfc = stats.genpareto.cdf(x, c + dc)
assert_allclose(cdf0, cdfc, atol=1e-12)
def test_c_continuity_ppf(self):
q = np.r_[np.logspace(1e-12, 0.01, base=0.1),
np.linspace(0.01, 1, 30, endpoint=False),
1. - np.logspace(1e-12, 0.01, base=0.1)]
for c in [0., -1.]:
ppf0 = stats.genpareto.ppf(q, c)
for dc in [1e-14, -1e-14]:
ppfc = stats.genpareto.ppf(q, c + dc)
assert_allclose(ppf0, ppfc, atol=1e-12)
def test_c_continuity_isf(self):
q = np.r_[np.logspace(1e-12, 0.01, base=0.1),
np.linspace(0.01, 1, 30, endpoint=False),
1. - np.logspace(1e-12, 0.01, base=0.1)]
for c in [0., -1.]:
isf0 = stats.genpareto.isf(q, c)
for dc in [1e-14, -1e-14]:
isfc = stats.genpareto.isf(q, c + dc)
assert_allclose(isf0, isfc, atol=1e-12)
def test_cdf_ppf_roundtrip(self):
# this should pass with machine precision. hat tip @pbrod
q = np.r_[np.logspace(1e-12, 0.01, base=0.1),
np.linspace(0.01, 1, 30, endpoint=False),
1. - np.logspace(1e-12, 0.01, base=0.1)]
for c in [1e-8, -1e-18, 1e-15, -1e-15]:
assert_allclose(stats.genpareto.cdf(stats.genpareto.ppf(q, c), c),
q, atol=1e-15)
def test_logsf(self):
logp = stats.genpareto.logsf(1e10, .01, 0, 1)
assert_allclose(logp, -1842.0680753952365)
# Values in 'expected_stats' are
# [mean, variance, skewness, excess kurtosis].
@pytest.mark.parametrize(
'c, expected_stats',
[(0, [1, 1, 2, 6]),
(1/4, [4/3, 32/9, 10/np.sqrt(2), np.nan]),
(1/9, [9/8, (81/64)*(9/7), (10/9)*np.sqrt(7), 754/45]),
(-1, [1/2, 1/12, 0, -6/5])])
def test_stats(self, c, expected_stats):
result = stats.genpareto.stats(c, moments='mvsk')
assert_allclose(result, expected_stats, rtol=1e-13, atol=1e-15)
def test_var(self):
# Regression test for gh-11168.
v = stats.genpareto.var(1e-8)
assert_allclose(v, 1.000000040000001, rtol=1e-13)
class TestPearson3(object):
def setup_method(self):
np.random.seed(1234)
def test_rvs(self):
vals = stats.pearson3.rvs(0.1, size=(2, 50))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllFloat'])
val = stats.pearson3.rvs(0.5)
assert_(isinstance(val, float))
val = stats.pearson3(0.5).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllFloat'])
assert_(len(val) == 3)
def test_pdf(self):
vals = stats.pearson3.pdf(2, [0.0, 0.1, 0.2])
assert_allclose(vals, np.array([0.05399097, 0.05555481, 0.05670246]),
atol=1e-6)
vals = stats.pearson3.pdf(-3, 0.1)
assert_allclose(vals, np.array([0.00313791]), atol=1e-6)
vals = stats.pearson3.pdf([-3, -2, -1, 0, 1], 0.1)
assert_allclose(vals, np.array([0.00313791, 0.05192304, 0.25028092,
0.39885918, 0.23413173]), atol=1e-6)
def test_cdf(self):
vals = stats.pearson3.cdf(2, [0.0, 0.1, 0.2])
assert_allclose(vals, np.array([0.97724987, 0.97462004, 0.97213626]),
atol=1e-6)
vals = stats.pearson3.cdf(-3, 0.1)
assert_allclose(vals, [0.00082256], atol=1e-6)
vals = stats.pearson3.cdf([-3, -2, -1, 0, 1], 0.1)
assert_allclose(vals, [8.22563821e-04, 1.99860448e-02, 1.58550710e-01,
5.06649130e-01, 8.41442111e-01], atol=1e-6)
class TestKappa4(object):
def test_cdf_genpareto(self):
# h = 1 and k != 0 is generalized Pareto
x = [0.0, 0.1, 0.2, 0.5]
h = 1.0
for k in [-1.9, -1.0, -0.5, -0.2, -0.1, 0.1, 0.2, 0.5, 1.0,
1.9]:
vals = stats.kappa4.cdf(x, h, k)
# shape parameter is opposite what is expected
vals_comp = stats.genpareto.cdf(x, -k)
assert_allclose(vals, vals_comp)
def test_cdf_genextreme(self):
# h = 0 and k != 0 is generalized extreme value
x = np.linspace(-5, 5, 10)
h = 0.0
k = np.linspace(-3, 3, 10)
vals = stats.kappa4.cdf(x, h, k)
vals_comp = stats.genextreme.cdf(x, k)
assert_allclose(vals, vals_comp)
def test_cdf_expon(self):
# h = 1 and k = 0 is exponential
x = np.linspace(0, 10, 10)
h = 1.0
k = 0.0
vals = stats.kappa4.cdf(x, h, k)
vals_comp = stats.expon.cdf(x)
assert_allclose(vals, vals_comp)
def test_cdf_gumbel_r(self):
# h = 0 and k = 0 is gumbel_r
x = np.linspace(-5, 5, 10)
h = 0.0
k = 0.0
vals = stats.kappa4.cdf(x, h, k)
vals_comp = stats.gumbel_r.cdf(x)
assert_allclose(vals, vals_comp)
def test_cdf_logistic(self):
# h = -1 and k = 0 is logistic
x = np.linspace(-5, 5, 10)
h = -1.0
k = 0.0
vals = stats.kappa4.cdf(x, h, k)
vals_comp = stats.logistic.cdf(x)
assert_allclose(vals, vals_comp)
def test_cdf_uniform(self):
# h = 1 and k = 1 is uniform
x = np.linspace(-5, 5, 10)
h = 1.0
k = 1.0
vals = stats.kappa4.cdf(x, h, k)
vals_comp = stats.uniform.cdf(x)
assert_allclose(vals, vals_comp)
def test_integers_ctor(self):
# regression test for gh-7416: _argcheck fails for integer h and k
# in numpy 1.12
stats.kappa4(1, 2)
class TestPoisson(object):
def setup_method(self):
np.random.seed(1234)
def test_pmf_basic(self):
# Basic case
ln2 = np.log(2)
vals = stats.poisson.pmf([0, 1, 2], ln2)
expected = [0.5, ln2/2, ln2**2/4]
assert_allclose(vals, expected)
def test_mu0(self):
# Edge case: mu=0
vals = stats.poisson.pmf([0, 1, 2], 0)
expected = [1, 0, 0]
assert_array_equal(vals, expected)
interval = stats.poisson.interval(0.95, 0)
assert_equal(interval, (0, 0))
def test_rvs(self):
vals = stats.poisson.rvs(0.5, size=(2, 50))
assert_(numpy.all(vals >= 0))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.poisson.rvs(0.5)
assert_(isinstance(val, int))
val = stats.poisson(0.5).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
def test_stats(self):
mu = 16.0
result = stats.poisson.stats(mu, moments='mvsk')
assert_allclose(result, [mu, mu, np.sqrt(1.0/mu), 1.0/mu])
mu = np.array([0.0, 1.0, 2.0])
result = stats.poisson.stats(mu, moments='mvsk')
expected = (mu, mu, [np.inf, 1, 1/np.sqrt(2)], [np.inf, 1, 0.5])
assert_allclose(result, expected)
class TestKSTwo(object):
def setup_method(self):
np.random.seed(1234)
def test_cdf(self):
for n in [1, 2, 3, 10, 100, 1000]:
# Test x-values:
# 0, 1/2n, where the cdf should be 0
# 1/n, where the cdf should be n!/n^n
# 0.5, where the cdf should match ksone.cdf
# 1-1/n, where cdf = 1-2/n^n
# 1, where cdf == 1
# (E.g. Exact values given by Eqn 1 in Simard / L'Ecuyer)
x = np.array([0, 0.5/n, 1/n, 0.5, 1-1.0/n, 1])
v1 = (1.0/n)**n
lg = scipy.special.gammaln(n+1)
elg = (np.exp(lg) if v1 != 0 else 0)
expected = np.array([0, 0, v1 * elg,
1 - 2*stats.ksone.sf(0.5, n),
max(1 - 2*v1, 0.0),
1.0])
vals_cdf = stats.kstwo.cdf(x, n)
assert_allclose(vals_cdf, expected)
def test_sf(self):
x = np.linspace(0, 1, 11)
for n in [1, 2, 3, 10, 100, 1000]:
# Same x values as in test_cdf, and use sf = 1 - cdf
x = np.array([0, 0.5/n, 1/n, 0.5, 1-1.0/n, 1])
v1 = (1.0/n)**n
lg = scipy.special.gammaln(n+1)
elg = (np.exp(lg) if v1 != 0 else 0)
expected = np.array([1.0, 1.0,
1 - v1 * elg,
2*stats.ksone.sf(0.5, n),
min(2*v1, 1.0), 0])
vals_sf = stats.kstwo.sf(x, n)
assert_allclose(vals_sf, expected)
def test_cdf_sqrtn(self):
# For fixed a, cdf(a/sqrt(n), n) -> kstwobign(a) as n->infinity
# cdf(a/sqrt(n), n) is an increasing function of n (and a)
# Check that the function is indeed increasing (allowing for some
# small floating point and algorithm differences.)
x = np.linspace(0, 2, 11)[1:]
ns = [50, 100, 200, 400, 1000, 2000]
for _x in x:
xn = _x / np.sqrt(ns)
probs = stats.kstwo.cdf(xn, ns)
diffs = np.diff(probs)
assert_array_less(diffs, 1e-8)
def test_cdf_sf(self):
x = np.linspace(0, 1, 11)
for n in [1, 2, 3, 10, 100, 1000]:
vals_cdf = stats.kstwo.cdf(x, n)
vals_sf = stats.kstwo.sf(x, n)
assert_array_almost_equal(vals_cdf, 1 - vals_sf)
def test_cdf_sf_sqrtn(self):
x = np.linspace(0, 1, 11)
for n in [1, 2, 3, 10, 100, 1000]:
xn = x / np.sqrt(n)
vals_cdf = stats.kstwo.cdf(xn, n)
vals_sf = stats.kstwo.sf(xn, n)
assert_array_almost_equal(vals_cdf, 1 - vals_sf)
def test_ppf_of_cdf(self):
x = np.linspace(0, 1, 11)
for n in [1, 2, 3, 10, 100, 1000]:
xn = x[x > 0.5/n]
vals_cdf = stats.kstwo.cdf(xn, n)
# CDFs close to 1 are better dealt with using the SF
cond = (0 < vals_cdf) & (vals_cdf < 0.99)
vals = stats.kstwo.ppf(vals_cdf, n)
assert_allclose(vals[cond], xn[cond], rtol=1e-4)
def test_isf_of_sf(self):
x = np.linspace(0, 1, 11)
for n in [1, 2, 3, 10, 100, 1000]:
xn = x[x > 0.5/n]
vals_isf = stats.kstwo.isf(xn, n)
cond = (0 < vals_isf) & (vals_isf < 1.0)
vals = stats.kstwo.sf(vals_isf, n)
assert_allclose(vals[cond], xn[cond], rtol=1e-4)
def test_ppf_of_cdf_sqrtn(self):
x = np.linspace(0, 1, 11)
for n in [1, 2, 3, 10, 100, 1000]:
xn = (x / np.sqrt(n))[x > 0.5/n]
vals_cdf = stats.kstwo.cdf(xn, n)
cond = (0 < vals_cdf) & (vals_cdf < 1.0)
vals = stats.kstwo.ppf(vals_cdf, n)
assert_allclose(vals[cond], xn[cond])
def test_isf_of_sf_sqrtn(self):
x = np.linspace(0, 1, 11)
for n in [1, 2, 3, 10, 100, 1000]:
xn = (x / np.sqrt(n))[x > 0.5/n]
vals_sf = stats.kstwo.sf(xn, n)
# SFs close to 1 are better dealt with using the CDF
cond = (0 < vals_sf) & (vals_sf < 0.95)
vals = stats.kstwo.isf(vals_sf, n)
assert_allclose(vals[cond], xn[cond])
def test_ppf(self):
probs = np.linspace(0, 1, 11)[1:]
for n in [1, 2, 3, 10, 100, 1000]:
xn = stats.kstwo.ppf(probs, n)
vals_cdf = stats.kstwo.cdf(xn, n)
assert_allclose(vals_cdf, probs)
def test_simard_lecuyer_table1(self):
# Compute the cdf for values near the mean of the distribution.
# The mean u ~ log(2)*sqrt(pi/(2n))
# Compute for x in [u/4, u/3, u/2, u, 2u, 3u]
# This is the computation of Table 1 of Simard, R., L'Ecuyer, P. (2011)
# "Computing the Two-Sided Kolmogorov-Smirnov Distribution".
# Except that the values below are not from the published table, but
# were generated using an independent SageMath implementation of
# Durbin's algorithm (with the exponentiation and scaling of
# Marsaglia/Tsang/Wang's version) using 500 bit arithmetic.
# Some of the values in the published table have relative
# errors greater than 1e-4.
ns = [10, 50, 100, 200, 500, 1000]
ratios = np.array([1.0/4, 1.0/3, 1.0/2, 1, 2, 3])
expected = np.array([
[1.92155292e-08, 5.72933228e-05, 2.15233226e-02, 6.31566589e-01, 9.97685592e-01, 9.99999942e-01],
[2.28096224e-09, 1.99142563e-05, 1.42617934e-02, 5.95345542e-01, 9.96177701e-01, 9.99998662e-01],
[1.00201886e-09, 1.32673079e-05, 1.24608594e-02, 5.86163220e-01, 9.95866877e-01, 9.99998240e-01],
[4.93313022e-10, 9.52658029e-06, 1.12123138e-02, 5.79486872e-01, 9.95661824e-01, 9.99997964e-01],
[2.37049293e-10, 6.85002458e-06, 1.01309221e-02, 5.73427224e-01, 9.95491207e-01, 9.99997750e-01],
[1.56990874e-10, 5.71738276e-06, 9.59725430e-03, 5.70322692e-01, 9.95409545e-01, 9.99997657e-01]
])
for idx, n in enumerate(ns):
x = ratios * np.log(2) * np.sqrt(np.pi/2/n)
vals_cdf = stats.kstwo.cdf(x, n)
assert_allclose(vals_cdf, expected[idx], rtol=1e-5)
class TestZipf(object):
def setup_method(self):
np.random.seed(1234)
def test_rvs(self):
vals = stats.zipf.rvs(1.5, size=(2, 50))
assert_(numpy.all(vals >= 1))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.zipf.rvs(1.5)
assert_(isinstance(val, int))
val = stats.zipf(1.5).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
def test_moments(self):
# n-th moment is finite iff a > n + 1
m, v = stats.zipf.stats(a=2.8)
assert_(np.isfinite(m))
assert_equal(v, np.inf)
s, k = stats.zipf.stats(a=4.8, moments='sk')
assert_(not np.isfinite([s, k]).all())
class TestDLaplace(object):
def setup_method(self):
np.random.seed(1234)
def test_rvs(self):
vals = stats.dlaplace.rvs(1.5, size=(2, 50))
assert_(numpy.shape(vals) == (2, 50))
assert_(vals.dtype.char in typecodes['AllInteger'])
val = stats.dlaplace.rvs(1.5)
assert_(isinstance(val, int))
val = stats.dlaplace(1.5).rvs(3)
assert_(isinstance(val, numpy.ndarray))
assert_(val.dtype.char in typecodes['AllInteger'])
assert_(stats.dlaplace.rvs(0.8) is not None)
def test_stats(self):
# compare the explicit formulas w/ direct summation using pmf
a = 1.
dl = stats.dlaplace(a)
m, v, s, k = dl.stats('mvsk')
N = 37
xx = np.arange(-N, N+1)
pp = dl.pmf(xx)
m2, m4 = np.sum(pp*xx**2), np.sum(pp*xx**4)
assert_equal((m, s), (0, 0))
assert_allclose((v, k), (m2, m4/m2**2 - 3.), atol=1e-14, rtol=1e-8)
def test_stats2(self):
a = np.log(2.)
dl = stats.dlaplace(a)
m, v, s, k = dl.stats('mvsk')
assert_equal((m, s), (0., 0.))
assert_allclose((v, k), (4., 3.25))
class TestLaplace(object):
@pytest.mark.parametrize("rvs_loc", [-5, 0, 1, 2])
@pytest.mark.parametrize("rvs_scale", [1, 2, 3, 10])
def test_fit(self, rvs_loc, rvs_scale):
# tests that various inputs follow expected behavior
# for a variety of `loc` and `scale`.
data = stats.laplace.rvs(size=100, loc=rvs_loc, scale=rvs_scale)
# MLE estimates are given by
loc_mle = np.median(data)
scale_mle = np.sum(np.abs(data - loc_mle)) / len(data)
# standard outputs should match MLE
loc, scale = stats.laplace.fit(data)
assert_allclose(loc, loc_mle, atol=1e-15, rtol=1e-15)
assert_allclose(scale, scale_mle, atol=1e-15, rtol=1e-15)
# fixed parameter should use MLE for other
loc, scale = stats.laplace.fit(data, floc=loc_mle)
assert_allclose(scale, scale_mle, atol=1e-15, rtol=1e-15)
loc, scale = stats.laplace.fit(data, fscale=scale_mle)
assert_allclose(loc, loc_mle)
# test with non-mle fixed parameter
# create scale with non-median loc
loc = rvs_loc * 2
scale_mle = np.sum(np.abs(data - loc)) / len(data)
# fixed loc to non median, scale should match
# scale calculation with modified loc
loc, scale = stats.laplace.fit(data, floc=loc)
assert_allclose(scale, scale_mle, atol=1e-15, rtol=1e-15)
# fixed scale created with non median loc,
# loc output should still be the data median.
loc, scale = stats.laplace.fit(data, fscale=scale_mle)
assert_allclose(loc_mle, loc, atol=1e-15, rtol=1e-15)
# error raised when both `floc` and `fscale` are fixed
assert_raises(RuntimeError, stats.laplace.fit, data, floc=loc_mle,
fscale=scale_mle)
# error is raised with non-finite values
assert_raises(RuntimeError, stats.laplace.fit, [np.nan])
assert_raises(RuntimeError, stats.laplace.fit, [np.inf])
@pytest.mark.parametrize("rvs_scale,rvs_loc", [(10, -5),
(5, 10),
(.2, .5)])
def test_fit_MLE_comp_optimzer(self, rvs_loc, rvs_scale):
data = stats.laplace.rvs(size=1000, loc=rvs_loc, scale=rvs_scale)
# the log-likelihood function for laplace is given by
def ll(loc, scale, data):
return -1 * (- (len(data)) * np.log(2*scale) -
(1/scale)*np.sum(np.abs(data - loc)))
# test that the objective function result of the analytical MLEs is
# less than or equal to that of the numerically optimized estimate
loc, scale = stats.laplace.fit(data)
loc_opt, scale_opt = super(type(stats.laplace),
stats.laplace).fit(data)
ll_mle = ll(loc, scale, data)
ll_opt = ll(loc_opt, scale_opt, data)
assert ll_mle < ll_opt or np.allclose(ll_mle, ll_opt,
atol=1e-15, rtol=1e-15)
def test_fit_simple_non_random_data(self):
data = np.array([1.0, 1.0, 3.0, 5.0, 8.0, 14.0])
# with `floc` fixed to 6, scale should be 4.
loc, scale = stats.laplace.fit(data, floc=6)
assert_allclose(scale, 4, atol=1e-15, rtol=1e-15)
# with `fscale` fixed to 6, loc should be 4.
loc, scale = stats.laplace.fit(data, fscale=6)
assert_allclose(loc, 4, atol=1e-15, rtol=1e-15)
class TestInvGamma(object):
def test_invgamma_inf_gh_1866(self):
# invgamma's moments are only finite for a>n
# specific numbers checked w/ boost 1.54
with warnings.catch_warnings():
warnings.simplefilter('error', RuntimeWarning)
mvsk = stats.invgamma.stats(a=19.31, moments='mvsk')
expected = [0.05461496450, 0.0001723162534, 1.020362676,
2.055616582]
assert_allclose(mvsk, expected)
a = [1.1, 3.1, 5.6]
mvsk = stats.invgamma.stats(a=a, moments='mvsk')
expected = ([10., 0.476190476, 0.2173913043], # mmm
[np.inf, 0.2061430632, 0.01312749422], # vvv
[np.nan, 41.95235392, 2.919025532], # sss
[np.nan, np.nan, 24.51923076]) # kkk
for x, y in zip(mvsk, expected):
assert_almost_equal(x, y)
def test_cdf_ppf(self):
# gh-6245
x = np.logspace(-2.6, 0)
y = stats.invgamma.cdf(x, 1)
xx = stats.invgamma.ppf(y, 1)
assert_allclose(x, xx)
def test_sf_isf(self):
# gh-6245
if sys.maxsize > 2**32:
x = np.logspace(2, 100)
else:
# Invgamme roundtrip on 32-bit systems has relative accuracy
# ~1e-15 until x=1e+15, and becomes inf above x=1e+18
x = np.logspace(2, 18)
y = stats.invgamma.sf(x, 1)
xx = stats.invgamma.isf(y, 1)
assert_allclose(x, xx, rtol=1.0)
class TestF(object):
def test_endpoints(self):
# Compute the pdf at the left endpoint dst.a.
data = [[stats.f, (2, 1), 1.0]]
for _f, _args, _correct in data:
ans = _f.pdf(_f.a, *_args)
print(_f, (_args), ans, _correct, ans == _correct)
ans = [_f.pdf(_f.a, *_args) for _f, _args, _ in data]
correct = [_correct_ for _f, _args, _correct_ in data]
assert_array_almost_equal(ans, correct)
def test_f_moments(self):
# n-th moment of F distributions is only finite for n < dfd / 2
m, v, s, k = stats.f.stats(11, 6.5, moments='mvsk')
assert_(np.isfinite(m))
assert_(np.isfinite(v))
assert_(np.isfinite(s))
assert_(not np.isfinite(k))
def test_moments_warnings(self):
# no warnings should be generated for dfd = 2, 4, 6, 8 (div by zero)
with warnings.catch_warnings():
warnings.simplefilter('error', RuntimeWarning)
stats.f.stats(dfn=[11]*4, dfd=[2, 4, 6, 8], moments='mvsk')
def test_stats_broadcast(self):
dfn = np.array([[3], [11]])
dfd = np.array([11, 12])
m, v, s, k = stats.f.stats(dfn=dfn, dfd=dfd, moments='mvsk')
m2 = [dfd / (dfd - 2)]*2
assert_allclose(m, m2)
v2 = 2 * dfd**2 * (dfn + dfd - 2) / dfn / (dfd - 2)**2 / (dfd - 4)
assert_allclose(v, v2)
s2 = ((2*dfn + dfd - 2) * np.sqrt(8*(dfd - 4)) /
((dfd - 6) * np.sqrt(dfn*(dfn + dfd - 2))))
assert_allclose(s, s2)
k2num = 12 * (dfn * (5*dfd - 22) * (dfn + dfd - 2) +
(dfd - 4) * (dfd - 2)**2)
k2den = dfn * (dfd - 6) * (dfd - 8) * (dfn + dfd - 2)
k2 = k2num / k2den
assert_allclose(k, k2)
def test_rvgeneric_std():
# Regression test for #1191
assert_array_almost_equal(stats.t.std([5, 6]), [1.29099445, 1.22474487])
def test_moments_t():
# regression test for #8786
assert_equal(stats.t.stats(df=1, moments='mvsk'),
(np.inf, np.nan, np.nan, np.nan))
assert_equal(stats.t.stats(df=1.01, moments='mvsk'),
(0.0, np.inf, np.nan, np.nan))
assert_equal(stats.t.stats(df=2, moments='mvsk'),
(0.0, np.inf, np.nan, np.nan))
assert_equal(stats.t.stats(df=2.01, moments='mvsk'),
(0.0, 2.01/(2.01-2.0), np.nan, np.inf))
assert_equal(stats.t.stats(df=3, moments='sk'), (np.nan, np.inf))
assert_equal(stats.t.stats(df=3.01, moments='sk'), (0.0, np.inf))
assert_equal(stats.t.stats(df=4, moments='sk'), (0.0, np.inf))
assert_equal(stats.t.stats(df=4.01, moments='sk'), (0.0, 6.0/(4.01 - 4.0)))
class TestRvDiscrete(object):
def setup_method(self):
np.random.seed(1234)
def test_rvs(self):
states = [-1, 0, 1, 2, 3, 4]
probability = [0.0, 0.3, 0.4, 0.0, 0.3, 0.0]
samples = 1000
r = stats.rv_discrete(name='sample', values=(states, probability))
x = r.rvs(size=samples)
assert_(isinstance(x, numpy.ndarray))
for s, p in zip(states, probability):
assert_(abs(sum(x == s)/float(samples) - p) < 0.05)
x = r.rvs()
assert_(isinstance(x, int))
def test_entropy(self):
# Basic tests of entropy.
pvals = np.array([0.25, 0.45, 0.3])
p = stats.rv_discrete(values=([0, 1, 2], pvals))
expected_h = -sum(xlogy(pvals, pvals))
h = p.entropy()
assert_allclose(h, expected_h)
p = stats.rv_discrete(values=([0, 1, 2], [1.0, 0, 0]))
h = p.entropy()
assert_equal(h, 0.0)
def test_pmf(self):
xk = [1, 2, 4]
pk = [0.5, 0.3, 0.2]
rv = stats.rv_discrete(values=(xk, pk))
x = [[1., 4.],
[3., 2]]
assert_allclose(rv.pmf(x),
[[0.5, 0.2],
[0., 0.3]], atol=1e-14)
def test_cdf(self):
xk = [1, 2, 4]
pk = [0.5, 0.3, 0.2]
rv = stats.rv_discrete(values=(xk, pk))
x_values = [-2, 1., 1.1, 1.5, 2.0, 3.0, 4, 5]
expected = [0, 0.5, 0.5, 0.5, 0.8, 0.8, 1, 1]
assert_allclose(rv.cdf(x_values), expected, atol=1e-14)
# also check scalar arguments
assert_allclose([rv.cdf(xx) for xx in x_values],
expected, atol=1e-14)
def test_ppf(self):
xk = [1, 2, 4]
pk = [0.5, 0.3, 0.2]
rv = stats.rv_discrete(values=(xk, pk))
q_values = [0.1, 0.5, 0.6, 0.8, 0.9, 1.]
expected = [1, 1, 2, 2, 4, 4]
assert_allclose(rv.ppf(q_values), expected, atol=1e-14)
# also check scalar arguments
assert_allclose([rv.ppf(q) for q in q_values],
expected, atol=1e-14)
def test_cdf_ppf_next(self):
# copied and special cased from test_discrete_basic
vals = ([1, 2, 4, 7, 8], [0.1, 0.2, 0.3, 0.3, 0.1])
rv = stats.rv_discrete(values=vals)
assert_array_equal(rv.ppf(rv.cdf(rv.xk[:-1]) + 1e-8),
rv.xk[1:])
def test_expect(self):
xk = [1, 2, 4, 6, 7, 11]
pk = [0.1, 0.2, 0.2, 0.2, 0.2, 0.1]
rv = stats.rv_discrete(values=(xk, pk))
assert_allclose(rv.expect(), np.sum(rv.xk * rv.pk), atol=1e-14)
def test_multidimension(self):
xk = np.arange(12).reshape((3, 4))
pk = np.array([[0.1, 0.1, 0.15, 0.05],
[0.1, 0.1, 0.05, 0.05],
[0.1, 0.1, 0.05, 0.05]])
rv = stats.rv_discrete(values=(xk, pk))
assert_allclose(rv.expect(), np.sum(rv.xk * rv.pk), atol=1e-14)
def test_bad_input(self):
xk = [1, 2, 3]
pk = [0.5, 0.5]
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
pk = [1, 2, 3]
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
xk = [1, 2, 3]
pk = [0.5, 1.2, -0.7]
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
xk = [1, 2, 3, 4, 5]
pk = [0.3, 0.3, 0.3, 0.3, -0.2]
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
def test_shape_rv_sample(self):
# tests added for gh-9565
# mismatch of 2d inputs
xk, pk = np.arange(4).reshape((2, 2)), np.full((2, 3), 1/6)
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
# same number of elements, but shapes not compatible
xk, pk = np.arange(6).reshape((3, 2)), np.full((2, 3), 1/6)
assert_raises(ValueError, stats.rv_discrete, **dict(values=(xk, pk)))
# same shapes => no error
xk, pk = np.arange(6).reshape((3, 2)), np.full((3, 2), 1/6)
assert_equal(stats.rv_discrete(values=(xk, pk)).pmf(0), 1/6)
class TestSkewNorm(object):
def setup_method(self):
self.rng = check_random_state(1234)
def test_normal(self):
# When the skewness is 0 the distribution is normal
x = np.linspace(-5, 5, 100)
assert_array_almost_equal(stats.skewnorm.pdf(x, a=0),
stats.norm.pdf(x))
def test_rvs(self):
shape = (3, 4, 5)
x = stats.skewnorm.rvs(a=0.75, size=shape, random_state=self.rng)
assert_equal(shape, x.shape)
x = stats.skewnorm.rvs(a=-3, size=shape, random_state=self.rng)
assert_equal(shape, x.shape)
def test_moments(self):
X = stats.skewnorm.rvs(a=4, size=int(1e6), loc=5, scale=2,
random_state=self.rng)
expected = [np.mean(X), np.var(X), stats.skew(X), stats.kurtosis(X)]
computed = stats.skewnorm.stats(a=4, loc=5, scale=2, moments='mvsk')
assert_array_almost_equal(computed, expected, decimal=2)
X = stats.skewnorm.rvs(a=-4, size=int(1e6), loc=5, scale=2,
random_state=self.rng)
expected = [np.mean(X), np.var(X), stats.skew(X), stats.kurtosis(X)]
computed = stats.skewnorm.stats(a=-4, loc=5, scale=2, moments='mvsk')
assert_array_almost_equal(computed, expected, decimal=2)
def test_cdf_large_x(self):
# Regression test for gh-7746.
# The x values are large enough that the closest 64 bit floating
# point representation of the exact CDF is 1.0.
p = stats.skewnorm.cdf([10, 20, 30], -1)
assert_allclose(p, np.ones(3), rtol=1e-14)
p = stats.skewnorm.cdf(25, 2.5)
assert_allclose(p, 1.0, rtol=1e-14)
def test_cdf_sf_small_values(self):
# Triples are [x, a, cdf(x, a)]. These values were computed
# using CDF[SkewNormDistribution[0, 1, a], x] in Wolfram Alpha.
cdfvals = [
[-8, 1, 3.870035046664392611e-31],
[-4, 2, 8.1298399188811398e-21],
[-2, 5, 1.55326826787106273e-26],
[-9, -1, 2.257176811907681295e-19],
[-10, -4, 1.523970604832105213e-23],
]
for x, a, cdfval in cdfvals:
p = stats.skewnorm.cdf(x, a)
assert_allclose(p, cdfval, rtol=1e-8)
# For the skew normal distribution, sf(-x, -a) = cdf(x, a).
p = stats.skewnorm.sf(-x, -a)
assert_allclose(p, cdfval, rtol=1e-8)
class TestExpon(object):
def test_zero(self):
assert_equal(stats.expon.pdf(0), 1)
def test_tail(self): # Regression test for ticket 807
assert_equal(stats.expon.cdf(1e-18), 1e-18)
assert_equal(stats.expon.isf(stats.expon.sf(40)), 40)
def test_nan_raises_error(self):
# see gh-issue 10300
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.nan])
assert_raises(RuntimeError, stats.expon.fit, x)
def test_inf_raises_error(self):
# see gh-issue 10300
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.inf])
assert_raises(RuntimeError, stats.expon.fit, x)
class TestNorm(object):
def test_nan_raises_error(self):
# see gh-issue 10300
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.nan])
assert_raises(RuntimeError, stats.norm.fit, x)
def test_inf_raises_error(self):
# see gh-issue 10300
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.inf])
assert_raises(RuntimeError, stats.norm.fit, x)
def test_bad_keyword_arg(self):
x = [1, 2, 3]
assert_raises(TypeError, stats.norm.fit, x, plate="shrimp")
class TestUniform(object):
"""gh-10300"""
def test_nan_raises_error(self):
# see gh-issue 10300
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.nan])
assert_raises(RuntimeError, stats.uniform.fit, x)
def test_inf_raises_error(self):
# see gh-issue 10300
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.inf])
assert_raises(RuntimeError, stats.uniform.fit, x)
class TestExponNorm(object):
def test_moments(self):
# Some moment test cases based on non-loc/scaled formula
def get_moms(lam, sig, mu):
# See wikipedia for these formulae
# where it is listed as an exponentially modified gaussian
opK2 = 1.0 + 1 / (lam*sig)**2
exp_skew = 2 / (lam * sig)**3 * opK2**(-1.5)
exp_kurt = 6.0 * (1 + (lam * sig)**2)**(-2)
return [mu + 1/lam, sig*sig + 1.0/(lam*lam), exp_skew, exp_kurt]
mu, sig, lam = 0, 1, 1
K = 1.0 / (lam * sig)
sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
assert_almost_equal(sts, get_moms(lam, sig, mu))
mu, sig, lam = -3, 2, 0.1
K = 1.0 / (lam * sig)
sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
assert_almost_equal(sts, get_moms(lam, sig, mu))
mu, sig, lam = 0, 3, 1
K = 1.0 / (lam * sig)
sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
assert_almost_equal(sts, get_moms(lam, sig, mu))
mu, sig, lam = -5, 11, 3.5
K = 1.0 / (lam * sig)
sts = stats.exponnorm.stats(K, loc=mu, scale=sig, moments='mvsk')
assert_almost_equal(sts, get_moms(lam, sig, mu))
def test_nan_raises_error(self):
# see gh-issue 10300
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.nan])
assert_raises(RuntimeError, stats.exponnorm.fit, x, floc=0, fscale=1)
def test_inf_raises_error(self):
# see gh-issue 10300
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.inf])
assert_raises(RuntimeError, stats.exponnorm.fit, x, floc=0, fscale=1)
def test_extremes_x(self):
# Test for extreme values against overflows
assert_almost_equal(stats.exponnorm.pdf(-900, 1), 0.0)
assert_almost_equal(stats.exponnorm.pdf(+900, 1), 0.0)
assert_almost_equal(stats.exponnorm.pdf(1, 0.01), 0.0)
assert_almost_equal(stats.exponnorm.pdf(-900, 0.01), 0.0)
assert_almost_equal(stats.exponnorm.pdf(+900, 0.01), 0.0)
class TestGenExpon(object):
def test_pdf_unity_area(self):
from scipy.integrate import simps
# PDF should integrate to one
p = stats.genexpon.pdf(numpy.arange(0, 10, 0.01), 0.5, 0.5, 2.0)
assert_almost_equal(simps(p, dx=0.01), 1, 1)
def test_cdf_bounds(self):
# CDF should always be positive
cdf = stats.genexpon.cdf(numpy.arange(0, 10, 0.01), 0.5, 0.5, 2.0)
assert_(numpy.all((0 <= cdf) & (cdf <= 1)))
class TestExponpow(object):
def test_tail(self):
assert_almost_equal(stats.exponpow.cdf(1e-10, 2.), 1e-20)
assert_almost_equal(stats.exponpow.isf(stats.exponpow.sf(5, .8), .8),
5)
class TestSkellam(object):
def test_pmf(self):
# comparison to R
k = numpy.arange(-10, 15)
mu1, mu2 = 10, 5
skpmfR = numpy.array(
[4.2254582961926893e-005, 1.1404838449648488e-004,
2.8979625801752660e-004, 6.9177078182101231e-004,
1.5480716105844708e-003, 3.2412274963433889e-003,
6.3373707175123292e-003, 1.1552351566696643e-002,
1.9606152375042644e-002, 3.0947164083410337e-002,
4.5401737566767360e-002, 6.1894328166820688e-002,
7.8424609500170578e-002, 9.2418812533573133e-002,
1.0139793148019728e-001, 1.0371927988298846e-001,
9.9076583077406091e-002, 8.8546660073089561e-002,
7.4187842052486810e-002, 5.8392772862200251e-002,
4.3268692953013159e-002, 3.0248159818374226e-002,
1.9991434305603021e-002, 1.2516877303301180e-002,
7.4389876226229707e-003])
assert_almost_equal(stats.skellam.pmf(k, mu1, mu2), skpmfR, decimal=15)
def test_cdf(self):
# comparison to R, only 5 decimals
k = numpy.arange(-10, 15)
mu1, mu2 = 10, 5
skcdfR = numpy.array(
[6.4061475386192104e-005, 1.7810985988267694e-004,
4.6790611790020336e-004, 1.1596768997212152e-003,
2.7077485103056847e-003, 5.9489760066490718e-003,
1.2286346724161398e-002, 2.3838698290858034e-002,
4.3444850665900668e-002, 7.4392014749310995e-002,
1.1979375231607835e-001, 1.8168808048289900e-001,
2.6011268998306952e-001, 3.5253150251664261e-001,
4.5392943399683988e-001, 5.5764871387982828e-001,
6.5672529695723436e-001, 7.4527195703032389e-001,
8.1945979908281064e-001, 8.7785257194501087e-001,
9.2112126489802404e-001, 9.5136942471639818e-001,
9.7136085902200120e-001, 9.8387773632530240e-001,
9.9131672394792536e-001])
assert_almost_equal(stats.skellam.cdf(k, mu1, mu2), skcdfR, decimal=5)
class TestLognorm(object):
def test_pdf(self):
# Regression test for Ticket #1471: avoid nan with 0/0 situation
# Also make sure there are no warnings at x=0, cf gh-5202
with warnings.catch_warnings():
warnings.simplefilter('error', RuntimeWarning)
pdf = stats.lognorm.pdf([0, 0.5, 1], 1)
assert_array_almost_equal(pdf, [0.0, 0.62749608, 0.39894228])
def test_logcdf(self):
# Regression test for gh-5940: sf et al would underflow too early
x2, mu, sigma = 201.68, 195, 0.149
assert_allclose(stats.lognorm.sf(x2-mu, s=sigma),
stats.norm.sf(np.log(x2-mu)/sigma))
assert_allclose(stats.lognorm.logsf(x2-mu, s=sigma),
stats.norm.logsf(np.log(x2-mu)/sigma))
class TestBeta(object):
def test_logpdf(self):
# Regression test for Ticket #1326: avoid nan with 0*log(0) situation
logpdf = stats.beta.logpdf(0, 1, 0.5)
assert_almost_equal(logpdf, -0.69314718056)
logpdf = stats.beta.logpdf(0, 0.5, 1)
assert_almost_equal(logpdf, np.inf)
def test_logpdf_ticket_1866(self):
alpha, beta = 267, 1472
x = np.array([0.2, 0.5, 0.6])
b = stats.beta(alpha, beta)
assert_allclose(b.logpdf(x).sum(), -1201.699061824062)
assert_allclose(b.pdf(x), np.exp(b.logpdf(x)))
def test_fit_bad_keyword_args(self):
x = [0.1, 0.5, 0.6]
assert_raises(TypeError, stats.beta.fit, x, floc=0, fscale=1,
plate="shrimp")
def test_fit_duplicated_fixed_parameter(self):
# At most one of 'f0', 'fa' or 'fix_a' can be given to the fit method.
# More than one raises a ValueError.
x = [0.1, 0.5, 0.6]
assert_raises(ValueError, stats.beta.fit, x, fa=0.5, fix_a=0.5)
class TestBetaPrime(object):
def test_logpdf(self):
alpha, beta = 267, 1472
x = np.array([0.2, 0.5, 0.6])
b = stats.betaprime(alpha, beta)
assert_(np.isfinite(b.logpdf(x)).all())
assert_allclose(b.pdf(x), np.exp(b.logpdf(x)))
def test_cdf(self):
# regression test for gh-4030: Implementation of
# scipy.stats.betaprime.cdf()
x = stats.betaprime.cdf(0, 0.2, 0.3)
assert_equal(x, 0.0)
alpha, beta = 267, 1472
x = np.array([0.2, 0.5, 0.6])
cdfs = stats.betaprime.cdf(x, alpha, beta)
assert_(np.isfinite(cdfs).all())
# check the new cdf implementation vs generic one:
gen_cdf = stats.rv_continuous._cdf_single
cdfs_g = [gen_cdf(stats.betaprime, val, alpha, beta) for val in x]
assert_allclose(cdfs, cdfs_g, atol=0, rtol=2e-12)
class TestGamma(object):
def test_pdf(self):
# a few test cases to compare with R
pdf = stats.gamma.pdf(90, 394, scale=1./5)
assert_almost_equal(pdf, 0.002312341)
pdf = stats.gamma.pdf(3, 10, scale=1./5)
assert_almost_equal(pdf, 0.1620358)
def test_logpdf(self):
# Regression test for Ticket #1326: cornercase avoid nan with 0*log(0)
# situation
logpdf = stats.gamma.logpdf(0, 1)
assert_almost_equal(logpdf, 0)
def test_fit_bad_keyword_args(self):
x = [0.1, 0.5, 0.6]
assert_raises(TypeError, stats.gamma.fit, x, floc=0, plate="shrimp")
class TestChi2(object):
# regression tests after precision improvements, ticket:1041, not verified
def test_precision(self):
assert_almost_equal(stats.chi2.pdf(1000, 1000), 8.919133934753128e-003,
decimal=14)
assert_almost_equal(stats.chi2.pdf(100, 100), 0.028162503162596778,
decimal=14)
def test_ppf(self):
# Expected values computed with mpmath.
df = 4.8
x = stats.chi2.ppf(2e-47, df)
assert_allclose(x, 1.098472479575179840604902808e-19, rtol=1e-10)
x = stats.chi2.ppf(0.5, df)
assert_allclose(x, 4.15231407598589358660093156, rtol=1e-10)
df = 13
x = stats.chi2.ppf(2e-77, df)
assert_allclose(x, 1.0106330688195199050507943e-11, rtol=1e-10)
x = stats.chi2.ppf(0.1, df)
assert_allclose(x, 7.041504580095461859307179763, rtol=1e-10)
class TestGumbelL(object):
# gh-6228
def test_cdf_ppf(self):
x = np.linspace(-100, -4)
y = stats.gumbel_l.cdf(x)
xx = stats.gumbel_l.ppf(y)
assert_allclose(x, xx)
def test_logcdf_logsf(self):
x = np.linspace(-100, -4)
y = stats.gumbel_l.logcdf(x)
z = stats.gumbel_l.logsf(x)
u = np.exp(y)
v = -special.expm1(z)
assert_allclose(u, v)
def test_sf_isf(self):
x = np.linspace(-20, 5)
y = stats.gumbel_l.sf(x)
xx = stats.gumbel_l.isf(y)
assert_allclose(x, xx)
class TestLevyStable(object):
def test_fit(self):
# construct data to have percentiles that match
# example in McCulloch 1986.
x = [-.05413,-.05413,
0.,0.,0.,0.,
.00533,.00533,.00533,.00533,.00533,
.03354,.03354,.03354,.03354,.03354,
.05309,.05309,.05309,.05309,.05309]
alpha1, beta1, loc1, scale1 = stats.levy_stable._fitstart(x)
assert_allclose(alpha1, 1.48, rtol=0, atol=0.01)
assert_almost_equal(beta1, -.22, 2)
assert_almost_equal(scale1, 0.01717, 4)
assert_almost_equal(loc1, 0.00233, 2) # to 2 dps due to rounding error in McCulloch86
# cover alpha=2 scenario
x2 = x + [.05309,.05309,.05309,.05309,.05309]
alpha2, beta2, loc2, scale2 = stats.levy_stable._fitstart(x2)
assert_equal(alpha2, 2)
assert_equal(beta2, -1)
assert_almost_equal(scale2, .02503, 4)
assert_almost_equal(loc2, .03354, 4)
@pytest.mark.slow
def test_pdf_nolan_samples(self):
""" Test pdf values against Nolan's stablec.exe output
see - http://fs2.american.edu/jpnolan/www/stable/stable.html
There's a known limitation of Nolan's executable for alpha < 0.2.
Repeat following with beta = -1, -.5, 0, .5 and 1
stablec.exe <<
1 # pdf
1 # Nolan S equivalent to S0 in scipy
.25,2,.25 # alpha
-1,-1,0 # beta
-10,10,1 # x
1,0 # gamma, delta
2 # output file
"""
data = np.load(os.path.abspath(os.path.join(os.path.dirname(__file__),
'data/stable-pdf-sample-data.npy')))
data = np.core.records.fromarrays(data.T, names='x,p,alpha,beta')
# support numpy 1.8.2 for travis
npisin = np.isin if hasattr(np, "isin") else np.in1d
tests = [
# best selects
['best', None, 8, None],
# quadrature is accurate for most alpha except 0.25; perhaps limitation of Nolan stablec?
# we reduce size of x to speed up computation as numerical integration slow.
['quadrature', None, 8, lambda r: (r['alpha'] > 0.25) & (npisin(r['x'], [-10,-5,0,5,10]))],
# zolatarev is accurate except at alpha==1, beta != 0
['zolotarev', None, 8, lambda r: r['alpha'] != 1],
['zolotarev', None, 8, lambda r: (r['alpha'] == 1) & (r['beta'] == 0)],
['zolotarev', None, 1, lambda r: (r['alpha'] == 1) & (r['beta'] != 0)],
# fft accuracy reduces as alpha decreases, fails at low values of alpha and x=0
['fft', 0, 4, lambda r: r['alpha'] > 1],
['fft', 0, 3, lambda r: (r['alpha'] < 1) & (r['alpha'] > 0.25)],
['fft', 0, 1, lambda r: (r['alpha'] == 0.25) & (r['x'] != 0)], # not useful here
]
for ix, (default_method, fft_min_points, decimal_places, filter_func) in enumerate(tests):
stats.levy_stable.pdf_default_method = default_method
stats.levy_stable.pdf_fft_min_points_threshold = fft_min_points
subdata = data[filter_func(data)] if filter_func is not None else data
with suppress_warnings() as sup:
sup.record(RuntimeWarning, "Density calculation unstable for alpha=1 and beta!=0.*")
sup.record(RuntimeWarning, "Density calculations experimental for FFT method.*")
p = stats.levy_stable.pdf(subdata['x'], subdata['alpha'], subdata['beta'], scale=1, loc=0)
subdata2 = rec_append_fields(subdata, 'calc', p)
failures = subdata2[(np.abs(p-subdata['p']) >= 1.5*10.**(-decimal_places)) | np.isnan(p)]
assert_almost_equal(p, subdata['p'], decimal_places, "pdf test %s failed with method '%s'\n%s" % (ix, default_method, failures), verbose=False)
@pytest.mark.slow
def test_cdf_nolan_samples(self):
""" Test cdf values against Nolan's stablec.exe output
see - http://fs2.american.edu/jpnolan/www/stable/stable.html
There's a known limitation of Nolan's executable for alpha < 0.2.
Repeat following with beta = -1, -.5, 0, .5 and 1
stablec.exe <<
2 # cdf
1 # Nolan S equivalent to S0 in scipy
.25,2,.25 # alpha
-1,-1,0 # beta
-10,10,1 # x
1,0 # gamma, delta
2 # output file
"""
data = np.load(os.path.abspath(os.path.join(os.path.dirname(__file__),
'data/stable-cdf-sample-data.npy')))
data = np.core.records.fromarrays(data.T, names='x,p,alpha,beta')
tests = [
# zolatarev is accurate for all values
['zolotarev', None, 8, None],
# fft accuracy poor, very poor alpha < 1
['fft', 0, 2, lambda r: r['alpha'] > 1],
]
for ix, (default_method, fft_min_points, decimal_places, filter_func) in enumerate(tests):
stats.levy_stable.pdf_default_method = default_method
stats.levy_stable.pdf_fft_min_points_threshold = fft_min_points
subdata = data[filter_func(data)] if filter_func is not None else data
with suppress_warnings() as sup:
sup.record(RuntimeWarning, 'FFT method is considered ' +
'experimental for cumulative distribution ' +
'function evaluations.*')
p = stats.levy_stable.cdf(subdata['x'], subdata['alpha'], subdata['beta'], scale=1, loc=0)
subdata2 = rec_append_fields(subdata, 'calc', p)
failures = subdata2[(np.abs(p-subdata['p']) >= 1.5*10.**(-decimal_places)) | np.isnan(p)]
assert_almost_equal(p, subdata['p'], decimal_places, "cdf test %s failed with method '%s'\n%s" % (ix, default_method, failures), verbose=False)
def test_pdf_alpha_equals_one_beta_non_zero(self):
""" sample points extracted from Tables and Graphs of Stable Probability
Density Functions - Donald R Holt - 1973 - p 187.
"""
xs = np.array([0, 0, 0, 0,
1, 1, 1, 1,
2, 2, 2, 2,
3, 3, 3, 3,
4, 4, 4, 4])
density = np.array([.3183, .3096, .2925, .2622,
.1591, .1587, .1599, .1635,
.0637, .0729, .0812, .0955,
.0318, .0390, .0458, .0586,
.0187, .0236, .0285, .0384])
betas = np.array([0, .25, .5, 1,
0, .25, .5, 1,
0, .25, .5, 1,
0, .25, .5, 1,
0, .25, .5, 1])
tests = [
['quadrature', None, 4],
#['fft', 0, 4],
['zolotarev', None, 1],
]
with np.errstate(all='ignore'), suppress_warnings() as sup:
sup.filter(category=RuntimeWarning, message="Density calculation unstable.*")
for default_method, fft_min_points, decimal_places in tests:
stats.levy_stable.pdf_default_method = default_method
stats.levy_stable.pdf_fft_min_points_threshold = fft_min_points
#stats.levy_stable.fft_grid_spacing = 0.0001
pdf = stats.levy_stable.pdf(xs, 1, betas, scale=1, loc=0)
assert_almost_equal(pdf, density, decimal_places, default_method)
def test_stats(self):
param_sets = [
[(1.48,-.22, 0, 1), (0,np.inf,np.NaN,np.NaN)],
[(2,.9, 10, 1.5), (10,4.5,0,0)]
]
for args, exp_stats in param_sets:
calc_stats = stats.levy_stable.stats(args[0], args[1], loc=args[2], scale=args[3], moments='mvsk')
assert_almost_equal(calc_stats, exp_stats)
class TestArrayArgument(object): # test for ticket:992
def setup_method(self):
np.random.seed(1234)
def test_noexception(self):
rvs = stats.norm.rvs(loc=(np.arange(5)), scale=np.ones(5),
size=(10, 5))
assert_equal(rvs.shape, (10, 5))
class TestDocstring(object):
def test_docstrings(self):
# See ticket #761
if stats.rayleigh.__doc__ is not None:
assert_("rayleigh" in stats.rayleigh.__doc__.lower())
if stats.bernoulli.__doc__ is not None:
assert_("bernoulli" in stats.bernoulli.__doc__.lower())
def test_no_name_arg(self):
# If name is not given, construction shouldn't fail. See #1508.
stats.rv_continuous()
stats.rv_discrete()
class TestEntropy(object):
def test_entropy_positive(self):
# See ticket #497
pk = [0.5, 0.2, 0.3]
qk = [0.1, 0.25, 0.65]
eself = stats.entropy(pk, pk)
edouble = stats.entropy(pk, qk)
assert_(0.0 == eself)
assert_(edouble >= 0.0)
def test_entropy_base(self):
pk = np.ones(16, float)
S = stats.entropy(pk, base=2.)
assert_(abs(S - 4.) < 1.e-5)
qk = np.ones(16, float)
qk[:8] = 2.
S = stats.entropy(pk, qk)
S2 = stats.entropy(pk, qk, base=2.)
assert_(abs(S/S2 - np.log(2.)) < 1.e-5)
def test_entropy_zero(self):
# Test for PR-479
assert_almost_equal(stats.entropy([0, 1, 2]), 0.63651416829481278,
decimal=12)
def test_entropy_2d(self):
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]
assert_array_almost_equal(stats.entropy(pk, qk),
[0.1933259, 0.18609809])
def test_entropy_2d_zero(self):
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
qk = [[0.0, 0.1], [0.3, 0.6], [0.5, 0.3]]
assert_array_almost_equal(stats.entropy(pk, qk),
[np.inf, 0.18609809])
pk[0][0] = 0.0
assert_array_almost_equal(stats.entropy(pk, qk),
[0.17403988, 0.18609809])
def test_entropy_base_2d_nondefault_axis(self):
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
assert_array_almost_equal(stats.entropy(pk, axis=1),
[0.63651417, 0.63651417, 0.66156324])
def test_entropy_2d_nondefault_axis(self):
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]
assert_array_almost_equal(stats.entropy(pk, qk, axis=1),
[0.231049, 0.231049, 0.127706])
def test_entropy_raises_value_error(self):
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
qk = [[0.1, 0.2], [0.6, 0.3]]
assert_raises(ValueError, stats.entropy, pk, qk)
def test_base_entropy_with_axis_0_is_equal_to_default(self):
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
assert_array_almost_equal(stats.entropy(pk, axis=0),
stats.entropy(pk))
def test_entropy_with_axis_0_is_equal_to_default(self):
pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]
assert_array_almost_equal(stats.entropy(pk, qk, axis=0),
stats.entropy(pk, qk))
def test_base_entropy_transposed(self):
pk = np.array([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]])
assert_array_almost_equal(stats.entropy(pk.T).T,
stats.entropy(pk, axis=1))
def test_entropy_transposed(self):
pk = np.array([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]])
qk = np.array([[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]])
assert_array_almost_equal(stats.entropy(pk.T, qk.T).T,
stats.entropy(pk, qk, axis=1))
def TestArgsreduce():
a = array([1, 3, 2, 1, 2, 3, 3])
b, c = argsreduce(a > 1, a, 2)
assert_array_equal(b, [3, 2, 2, 3, 3])
assert_array_equal(c, [2, 2, 2, 2, 2])
b, c = argsreduce(2 > 1, a, 2)
assert_array_equal(b, a[0])
assert_array_equal(c, [2])
b, c = argsreduce(a > 0, a, 2)
assert_array_equal(b, a)
assert_array_equal(c, [2] * numpy.size(a))
class TestFitMethod(object):
skip = ['ncf', 'ksone', 'kstwo']
def setup_method(self):
np.random.seed(1234)
# skip these b/c deprecated, or only loc and scale arguments
fitSkipNonFinite = ['frechet_l', 'frechet_r', 'expon', 'norm', 'uniform', ]
@pytest.mark.parametrize('dist,args', distcont)
def test_fit_w_non_finite_data_values(self, dist, args):
"""gh-10300"""
if dist in self.fitSkipNonFinite:
pytest.skip("%s fit known to fail or deprecated" % dist)
x = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.nan])
y = np.array([1.6483, 2.7169, 2.4667, 1.1791, 3.5433, np.inf])
distfunc = getattr(stats, dist)
assert_raises(RuntimeError, distfunc.fit, x, floc=0, fscale=1)
assert_raises(RuntimeError, distfunc.fit, y, floc=0, fscale=1)
def test_fix_fit_2args_lognorm(self):
# Regression test for #1551.
np.random.seed(12345)
with np.errstate(all='ignore'):
x = stats.lognorm.rvs(0.25, 0., 20.0, size=20)
expected_shape = np.sqrt(((np.log(x) - np.log(20))**2).mean())
assert_allclose(np.array(stats.lognorm.fit(x, floc=0, fscale=20)),
[expected_shape, 0, 20], atol=1e-8)
def test_fix_fit_norm(self):
x = np.arange(1, 6)
loc, scale = stats.norm.fit(x)
assert_almost_equal(loc, 3)
assert_almost_equal(scale, np.sqrt(2))
loc, scale = stats.norm.fit(x, floc=2)
assert_equal(loc, 2)
assert_equal(scale, np.sqrt(3))
loc, scale = stats.norm.fit(x, fscale=2)
assert_almost_equal(loc, 3)
assert_equal(scale, 2)
def test_fix_fit_gamma(self):
x = np.arange(1, 6)
meanlog = np.log(x).mean()
# A basic test of gamma.fit with floc=0.
floc = 0
a, loc, scale = stats.gamma.fit(x, floc=floc)
s = np.log(x.mean()) - meanlog
assert_almost_equal(np.log(a) - special.digamma(a), s, decimal=5)
assert_equal(loc, floc)
assert_almost_equal(scale, x.mean()/a, decimal=8)
# Regression tests for gh-2514.
# The problem was that if `floc=0` was given, any other fixed
# parameters were ignored.
f0 = 1
floc = 0
a, loc, scale = stats.gamma.fit(x, f0=f0, floc=floc)
assert_equal(a, f0)
assert_equal(loc, floc)
assert_almost_equal(scale, x.mean()/a, decimal=8)
f0 = 2
floc = 0
a, loc, scale = stats.gamma.fit(x, f0=f0, floc=floc)
assert_equal(a, f0)
assert_equal(loc, floc)
assert_almost_equal(scale, x.mean()/a, decimal=8)
# loc and scale fixed.
floc = 0
fscale = 2
a, loc, scale = stats.gamma.fit(x, floc=floc, fscale=fscale)
assert_equal(loc, floc)
assert_equal(scale, fscale)
c = meanlog - np.log(fscale)
assert_almost_equal(special.digamma(a), c)
def test_fix_fit_beta(self):
# Test beta.fit when both floc and fscale are given.
def mlefunc(a, b, x):
# Zeros of this function are critical points of
# the maximum likelihood function.
n = len(x)
s1 = np.log(x).sum()
s2 = np.log(1-x).sum()
psiab = special.psi(a + b)
func = [s1 - n * (-psiab + special.psi(a)),
s2 - n * (-psiab + special.psi(b))]
return func
# Basic test with floc and fscale given.
x = np.array([0.125, 0.25, 0.5])
a, b, loc, scale = stats.beta.fit(x, floc=0, fscale=1)
assert_equal(loc, 0)
assert_equal(scale, 1)
assert_allclose(mlefunc(a, b, x), [0, 0], atol=1e-6)
# Basic test with f0, floc and fscale given.
# This is also a regression test for gh-2514.
x = np.array([0.125, 0.25, 0.5])
a, b, loc, scale = stats.beta.fit(x, f0=2, floc=0, fscale=1)
assert_equal(a, 2)
assert_equal(loc, 0)
assert_equal(scale, 1)
da, db = mlefunc(a, b, x)
assert_allclose(db, 0, atol=1e-5)
# Same floc and fscale values as above, but reverse the data
# and fix b (f1).
x2 = 1 - x
a2, b2, loc2, scale2 = stats.beta.fit(x2, f1=2, floc=0, fscale=1)
assert_equal(b2, 2)
assert_equal(loc2, 0)
assert_equal(scale2, 1)
da, db = mlefunc(a2, b2, x2)
assert_allclose(da, 0, atol=1e-5)
# a2 of this test should equal b from above.
assert_almost_equal(a2, b)
# Check for detection of data out of bounds when floc and fscale
# are given.
assert_raises(ValueError, stats.beta.fit, x, floc=0.5, fscale=1)
y = np.array([0, .5, 1])
assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1)
assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1, f0=2)
assert_raises(ValueError, stats.beta.fit, y, floc=0, fscale=1, f1=2)
# Check that attempting to fix all the parameters raises a ValueError.
assert_raises(ValueError, stats.beta.fit, y, f0=0, f1=1,
floc=2, fscale=3)
def test_expon_fit(self):
x = np.array([2, 2, 4, 4, 4, 4, 4, 8])
loc, scale = stats.expon.fit(x)
assert_equal(loc, 2) # x.min()
assert_equal(scale, 2) # x.mean() - x.min()
loc, scale = stats.expon.fit(x, fscale=3)
assert_equal(loc, 2) # x.min()
assert_equal(scale, 3) # fscale
loc, scale = stats.expon.fit(x, floc=0)
assert_equal(loc, 0) # floc
assert_equal(scale, 4) # x.mean() - loc
def test_lognorm_fit(self):
x = np.array([1.5, 3, 10, 15, 23, 59])
lnxm1 = np.log(x - 1)
shape, loc, scale = stats.lognorm.fit(x, floc=1)
assert_allclose(shape, lnxm1.std(), rtol=1e-12)
assert_equal(loc, 1)
assert_allclose(scale, np.exp(lnxm1.mean()), rtol=1e-12)
shape, loc, scale = stats.lognorm.fit(x, floc=1, fscale=6)
assert_allclose(shape, np.sqrt(((lnxm1 - np.log(6))**2).mean()),
rtol=1e-12)
assert_equal(loc, 1)
assert_equal(scale, 6)
shape, loc, scale = stats.lognorm.fit(x, floc=1, fix_s=0.75)
assert_equal(shape, 0.75)
assert_equal(loc, 1)
assert_allclose(scale, np.exp(lnxm1.mean()), rtol=1e-12)
def test_uniform_fit(self):
x = np.array([1.0, 1.1, 1.2, 9.0])
loc, scale = stats.uniform.fit(x)
assert_equal(loc, x.min())
assert_equal(scale, x.ptp())
loc, scale = stats.uniform.fit(x, floc=0)
assert_equal(loc, 0)
assert_equal(scale, x.max())
loc, scale = stats.uniform.fit(x, fscale=10)
assert_equal(loc, 0)
assert_equal(scale, 10)
assert_raises(ValueError, stats.uniform.fit, x, floc=2.0)
assert_raises(ValueError, stats.uniform.fit, x, fscale=5.0)
def test_fshapes(self):
# take a beta distribution, with shapes='a, b', and make sure that
# fa is equivalent to f0, and fb is equivalent to f1
a, b = 3., 4.
x = stats.beta.rvs(a, b, size=100, random_state=1234)
res_1 = stats.beta.fit(x, f0=3.)
res_2 = stats.beta.fit(x, fa=3.)
assert_allclose(res_1, res_2, atol=1e-12, rtol=1e-12)
res_2 = stats.beta.fit(x, fix_a=3.)
assert_allclose(res_1, res_2, atol=1e-12, rtol=1e-12)
res_3 = stats.beta.fit(x, f1=4.)
res_4 = stats.beta.fit(x, fb=4.)
assert_allclose(res_3, res_4, atol=1e-12, rtol=1e-12)
res_4 = stats.beta.fit(x, fix_b=4.)
assert_allclose(res_3, res_4, atol=1e-12, rtol=1e-12)
# cannot specify both positional and named args at the same time
assert_raises(ValueError, stats.beta.fit, x, fa=1, f0=2)
# check that attempting to fix all parameters raises a ValueError
assert_raises(ValueError, stats.beta.fit, x, fa=0, f1=1,
floc=2, fscale=3)
# check that specifying floc, fscale and fshapes works for
# beta and gamma which override the generic fit method
res_5 = stats.beta.fit(x, fa=3., floc=0, fscale=1)
aa, bb, ll, ss = res_5
assert_equal([aa, ll, ss], [3., 0, 1])
# gamma distribution
a = 3.
data = stats.gamma.rvs(a, size=100)
aa, ll, ss = stats.gamma.fit(data, fa=a)
assert_equal(aa, a)
def test_extra_params(self):
# unknown parameters should raise rather than be silently ignored
dist = stats.exponnorm
data = dist.rvs(K=2, size=100)
dct = dict(enikibeniki=-101)
assert_raises(TypeError, dist.fit, data, **dct)
class TestFrozen(object):
def setup_method(self):
np.random.seed(1234)
# Test that a frozen distribution gives the same results as the original
# object.
#
# Only tested for the normal distribution (with loc and scale specified)
# and for the gamma distribution (with a shape parameter specified).
def test_norm(self):
dist = stats.norm
frozen = stats.norm(loc=10.0, scale=3.0)
result_f = frozen.pdf(20.0)
result = dist.pdf(20.0, loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.cdf(20.0)
result = dist.cdf(20.0, loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.ppf(0.25)
result = dist.ppf(0.25, loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.isf(0.25)
result = dist.isf(0.25, loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.sf(10.0)
result = dist.sf(10.0, loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.median()
result = dist.median(loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.mean()
result = dist.mean(loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.var()
result = dist.var(loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.std()
result = dist.std(loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.entropy()
result = dist.entropy(loc=10.0, scale=3.0)
assert_equal(result_f, result)
result_f = frozen.moment(2)
result = dist.moment(2, loc=10.0, scale=3.0)
assert_equal(result_f, result)
assert_equal(frozen.a, dist.a)
assert_equal(frozen.b, dist.b)
def test_gamma(self):
a = 2.0
dist = stats.gamma
frozen = stats.gamma(a)
result_f = frozen.pdf(20.0)
result = dist.pdf(20.0, a)
assert_equal(result_f, result)
result_f = frozen.cdf(20.0)
result = dist.cdf(20.0, a)
assert_equal(result_f, result)
result_f = frozen.ppf(0.25)
result = dist.ppf(0.25, a)
assert_equal(result_f, result)
result_f = frozen.isf(0.25)
result = dist.isf(0.25, a)
assert_equal(result_f, result)
result_f = frozen.sf(10.0)
result = dist.sf(10.0, a)
assert_equal(result_f, result)
result_f = frozen.median()
result = dist.median(a)
assert_equal(result_f, result)
result_f = frozen.mean()
result = dist.mean(a)
assert_equal(result_f, result)
result_f = frozen.var()
result = dist.var(a)
assert_equal(result_f, result)
result_f = frozen.std()
result = dist.std(a)
assert_equal(result_f, result)
result_f = frozen.entropy()
result = dist.entropy(a)
assert_equal(result_f, result)
result_f = frozen.moment(2)
result = dist.moment(2, a)
assert_equal(result_f, result)
assert_equal(frozen.a, frozen.dist.a)
assert_equal(frozen.b, frozen.dist.b)
def test_regression_ticket_1293(self):
# Create a frozen distribution.
frozen = stats.lognorm(1)
# Call one of its methods that does not take any keyword arguments.
m1 = frozen.moment(2)
# Now call a method that takes a keyword argument.
frozen.stats(moments='mvsk')
# Call moment(2) again.
# After calling stats(), the following was raising an exception.
# So this test passes if the following does not raise an exception.
m2 = frozen.moment(2)
# The following should also be true, of course. But it is not
# the focus of this test.
assert_equal(m1, m2)
def test_ab(self):
# test that the support of a frozen distribution
# (i) remains frozen even if it changes for the original one
# (ii) is actually correct if the shape parameters are such that
# the values of [a, b] are not the default [0, inf]
# take a genpareto as an example where the support
# depends on the value of the shape parameter:
# for c > 0: a, b = 0, inf
# for c < 0: a, b = 0, -1/c
c = -0.1
rv = stats.genpareto(c=c)
a, b = rv.dist._get_support(c)
assert_equal([a, b], [0., 10.])
c = 0.1
stats.genpareto.pdf(0, c=c)
assert_equal(rv.dist._get_support(c), [0, np.inf])
c = -0.1
rv = stats.genpareto(c=c)
a, b = rv.dist._get_support(c)
assert_equal([a, b], [0., 10.])
c = 0.1
stats.genpareto.pdf(0, c) # this should NOT change genpareto.b
assert_equal((rv.dist.a, rv.dist.b), stats.genpareto._get_support(c))
rv1 = stats.genpareto(c=0.1)
assert_(rv1.dist is not rv.dist)
# c >= 0: a, b = [0, inf]
for c in [1., 0.]:
c = np.asarray(c)
rv = stats.genpareto(c=c)
a, b = rv.a, rv.b
assert_equal(a, 0.)
assert_(np.isposinf(b))
# c < 0: a=0, b=1/|c|
c = np.asarray(-2.)
a, b = stats.genpareto._get_support(c)
assert_allclose([a, b], [0., 0.5])
def test_rv_frozen_in_namespace(self):
# Regression test for gh-3522
assert_(hasattr(stats.distributions, 'rv_frozen'))
def test_random_state(self):
# only check that the random_state attribute exists,
frozen = stats.norm()
assert_(hasattr(frozen, 'random_state'))
# ... that it can be set,
frozen.random_state = 42
assert_equal(frozen.random_state.get_state(),
np.random.RandomState(42).get_state())
# ... and that .rvs method accepts it as an argument
rndm = np.random.RandomState(1234)
frozen.rvs(size=8, random_state=rndm)
def test_pickling(self):
# test that a frozen instance pickles and unpickles
# (this method is a clone of common_tests.check_pickling)
beta = stats.beta(2.3098496451481823, 0.62687954300963677)
poiss = stats.poisson(3.)
sample = stats.rv_discrete(values=([0, 1, 2, 3],
[0.1, 0.2, 0.3, 0.4]))
for distfn in [beta, poiss, sample]:
distfn.random_state = 1234
distfn.rvs(size=8)
s = pickle.dumps(distfn)
r0 = distfn.rvs(size=8)
unpickled = pickle.loads(s)
r1 = unpickled.rvs(size=8)
assert_equal(r0, r1)
# also smoke test some methods
medians = [distfn.ppf(0.5), unpickled.ppf(0.5)]
assert_equal(medians[0], medians[1])
assert_equal(distfn.cdf(medians[0]),
unpickled.cdf(medians[1]))
def test_expect(self):
# smoke test the expect method of the frozen distribution
# only take a gamma w/loc and scale and poisson with loc specified
def func(x):
return x
gm = stats.gamma(a=2, loc=3, scale=4)
gm_val = gm.expect(func, lb=1, ub=2, conditional=True)
gamma_val = stats.gamma.expect(func, args=(2,), loc=3, scale=4,
lb=1, ub=2, conditional=True)
assert_allclose(gm_val, gamma_val)
p = stats.poisson(3, loc=4)
p_val = p.expect(func)
poisson_val = stats.poisson.expect(func, args=(3,), loc=4)
assert_allclose(p_val, poisson_val)
class TestExpect(object):
# Test for expect method.
#
# Uses normal distribution and beta distribution for finite bounds, and
# hypergeom for discrete distribution with finite support
def test_norm(self):
v = stats.norm.expect(lambda x: (x-5)*(x-5), loc=5, scale=2)
assert_almost_equal(v, 4, decimal=14)
m = stats.norm.expect(lambda x: (x), loc=5, scale=2)
assert_almost_equal(m, 5, decimal=14)
lb = stats.norm.ppf(0.05, loc=5, scale=2)
ub = stats.norm.ppf(0.95, loc=5, scale=2)
prob90 = stats.norm.expect(lambda x: 1, loc=5, scale=2, lb=lb, ub=ub)
assert_almost_equal(prob90, 0.9, decimal=14)
prob90c = stats.norm.expect(lambda x: 1, loc=5, scale=2, lb=lb, ub=ub,
conditional=True)
assert_almost_equal(prob90c, 1., decimal=14)
def test_beta(self):
# case with finite support interval
v = stats.beta.expect(lambda x: (x-19/3.)*(x-19/3.), args=(10, 5),
loc=5, scale=2)
assert_almost_equal(v, 1./18., decimal=13)
m = stats.beta.expect(lambda x: x, args=(10, 5), loc=5., scale=2.)
assert_almost_equal(m, 19/3., decimal=13)
ub = stats.beta.ppf(0.95, 10, 10, loc=5, scale=2)
lb = stats.beta.ppf(0.05, 10, 10, loc=5, scale=2)
prob90 = stats.beta.expect(lambda x: 1., args=(10, 10), loc=5.,
scale=2., lb=lb, ub=ub, conditional=False)
assert_almost_equal(prob90, 0.9, decimal=13)
prob90c = stats.beta.expect(lambda x: 1, args=(10, 10), loc=5,
scale=2, lb=lb, ub=ub, conditional=True)
assert_almost_equal(prob90c, 1., decimal=13)
def test_hypergeom(self):
# test case with finite bounds
# without specifying bounds
m_true, v_true = stats.hypergeom.stats(20, 10, 8, loc=5.)
m = stats.hypergeom.expect(lambda x: x, args=(20, 10, 8), loc=5.)
assert_almost_equal(m, m_true, decimal=13)
v = stats.hypergeom.expect(lambda x: (x-9.)**2, args=(20, 10, 8),
loc=5.)
assert_almost_equal(v, v_true, decimal=14)
# with bounds, bounds equal to shifted support
v_bounds = stats.hypergeom.expect(lambda x: (x-9.)**2,
args=(20, 10, 8),
loc=5., lb=5, ub=13)
assert_almost_equal(v_bounds, v_true, decimal=14)
# drop boundary points
prob_true = 1-stats.hypergeom.pmf([5, 13], 20, 10, 8, loc=5).sum()
prob_bounds = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8),
loc=5., lb=6, ub=12)
assert_almost_equal(prob_bounds, prob_true, decimal=13)
# conditional
prob_bc = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8), loc=5.,
lb=6, ub=12, conditional=True)
assert_almost_equal(prob_bc, 1, decimal=14)
# check simple integral
prob_b = stats.hypergeom.expect(lambda x: 1, args=(20, 10, 8),
lb=0, ub=8)
assert_almost_equal(prob_b, 1, decimal=13)
def test_poisson(self):
# poisson, use lower bound only
prob_bounds = stats.poisson.expect(lambda x: 1, args=(2,), lb=3,
conditional=False)
prob_b_true = 1-stats.poisson.cdf(2, 2)
assert_almost_equal(prob_bounds, prob_b_true, decimal=14)
prob_lb = stats.poisson.expect(lambda x: 1, args=(2,), lb=2,
conditional=True)
assert_almost_equal(prob_lb, 1, decimal=14)
def test_genhalflogistic(self):
# genhalflogistic, changes upper bound of support in _argcheck
# regression test for gh-2622
halflog = stats.genhalflogistic
# check consistency when calling expect twice with the same input
res1 = halflog.expect(args=(1.5,))
halflog.expect(args=(0.5,))
res2 = halflog.expect(args=(1.5,))
assert_almost_equal(res1, res2, decimal=14)
def test_rice_overflow(self):
# rice.pdf(999, 0.74) was inf since special.i0 silentyly overflows
# check that using i0e fixes it
assert_(np.isfinite(stats.rice.pdf(999, 0.74)))
assert_(np.isfinite(stats.rice.expect(lambda x: 1, args=(0.74,))))
assert_(np.isfinite(stats.rice.expect(lambda x: 2, args=(0.74,))))
assert_(np.isfinite(stats.rice.expect(lambda x: 3, args=(0.74,))))
def test_logser(self):
# test a discrete distribution with infinite support and loc
p, loc = 0.3, 3
res_0 = stats.logser.expect(lambda k: k, args=(p,))
# check against the correct answer (sum of a geom series)
assert_allclose(res_0,
p / (p - 1.) / np.log(1. - p), atol=1e-15)
# now check it with `loc`
res_l = stats.logser.expect(lambda k: k, args=(p,), loc=loc)
assert_allclose(res_l, res_0 + loc, atol=1e-15)
def test_skellam(self):
# Use a discrete distribution w/ bi-infinite support. Compute two first
# moments and compare to known values (cf skellam.stats)
p1, p2 = 18, 22
m1 = stats.skellam.expect(lambda x: x, args=(p1, p2))
m2 = stats.skellam.expect(lambda x: x**2, args=(p1, p2))
assert_allclose(m1, p1 - p2, atol=1e-12)
assert_allclose(m2 - m1**2, p1 + p2, atol=1e-12)
def test_randint(self):
# Use a discrete distribution w/ parameter-dependent support, which
# is larger than the default chunksize
lo, hi = 0, 113
res = stats.randint.expect(lambda x: x, (lo, hi))
assert_allclose(res,
sum(_ for _ in range(lo, hi)) / (hi - lo), atol=1e-15)
def test_zipf(self):
# Test that there is no infinite loop even if the sum diverges
assert_warns(RuntimeWarning, stats.zipf.expect,
lambda x: x**2, (2,))
def test_discrete_kwds(self):
# check that discrete expect accepts keywords to control the summation
n0 = stats.poisson.expect(lambda x: 1, args=(2,))
n1 = stats.poisson.expect(lambda x: 1, args=(2,),
maxcount=1001, chunksize=32, tolerance=1e-8)
assert_almost_equal(n0, n1, decimal=14)
def test_moment(self):
# test the .moment() method: compute a higher moment and compare to
# a known value
def poiss_moment5(mu):
return mu**5 + 10*mu**4 + 25*mu**3 + 15*mu**2 + mu
for mu in [5, 7]:
m5 = stats.poisson.moment(5, mu)
assert_allclose(m5, poiss_moment5(mu), rtol=1e-10)
class TestNct(object):
def test_nc_parameter(self):
# Parameter values c<=0 were not enabled (gh-2402).
# For negative values c and for c=0 results of rv.cdf(0) below were nan
rv = stats.nct(5, 0)
assert_equal(rv.cdf(0), 0.5)
rv = stats.nct(5, -1)
assert_almost_equal(rv.cdf(0), 0.841344746069, decimal=10)
def test_broadcasting(self):
res = stats.nct.pdf(5, np.arange(4, 7)[:, None],
np.linspace(0.1, 1, 4))
expected = array([[0.00321886, 0.00557466, 0.00918418, 0.01442997],
[0.00217142, 0.00395366, 0.00683888, 0.01126276],
[0.00153078, 0.00291093, 0.00525206, 0.00900815]])
assert_allclose(res, expected, rtol=1e-5)
def test_variance_gh_issue_2401(self):
# Computation of the variance of a non-central t-distribution resulted
# in a TypeError: ufunc 'isinf' not supported for the input types,
# and the inputs could not be safely coerced to any supported types
# according to the casting rule 'safe'
rv = stats.nct(4, 0)
assert_equal(rv.var(), 2.0)
def test_nct_inf_moments(self):
# n-th moment of nct only exists for df > n
m, v, s, k = stats.nct.stats(df=1.9, nc=0.3, moments='mvsk')
assert_(np.isfinite(m))
assert_equal([v, s, k], [np.inf, np.nan, np.nan])
m, v, s, k = stats.nct.stats(df=3.1, nc=0.3, moments='mvsk')
assert_(np.isfinite([m, v, s]).all())
assert_equal(k, np.nan)
class TestRice(object):
def test_rice_zero_b(self):
# rice distribution should work with b=0, cf gh-2164
x = [0.2, 1., 5.]
assert_(np.isfinite(stats.rice.pdf(x, b=0.)).all())
assert_(np.isfinite(stats.rice.logpdf(x, b=0.)).all())
assert_(np.isfinite(stats.rice.cdf(x, b=0.)).all())
assert_(np.isfinite(stats.rice.logcdf(x, b=0.)).all())
q = [0.1, 0.1, 0.5, 0.9]
assert_(np.isfinite(stats.rice.ppf(q, b=0.)).all())
mvsk = stats.rice.stats(0, moments='mvsk')
assert_(np.isfinite(mvsk).all())
# furthermore, pdf is continuous as b\to 0
# rice.pdf(x, b\to 0) = x exp(-x^2/2) + O(b^2)
# see e.g. Abramovich & Stegun 9.6.7 & 9.6.10
b = 1e-8
assert_allclose(stats.rice.pdf(x, 0), stats.rice.pdf(x, b),
atol=b, rtol=0)
def test_rice_rvs(self):
rvs = stats.rice.rvs
assert_equal(rvs(b=3.).size, 1)
assert_equal(rvs(b=3., size=(3, 5)).shape, (3, 5))
class TestErlang(object):
def setup_method(self):
np.random.seed(1234)
def test_erlang_runtimewarning(self):
# erlang should generate a RuntimeWarning if a non-integer
# shape parameter is used.
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
# The non-integer shape parameter 1.3 should trigger a
# RuntimeWarning
assert_raises(RuntimeWarning,
stats.erlang.rvs, 1.3, loc=0, scale=1, size=4)
# Calling the fit method with `f0` set to an integer should
# *not* trigger a RuntimeWarning. It should return the same
# values as gamma.fit(...).
data = [0.5, 1.0, 2.0, 4.0]
result_erlang = stats.erlang.fit(data, f0=1)
result_gamma = stats.gamma.fit(data, f0=1)
assert_allclose(result_erlang, result_gamma, rtol=1e-3)
def test_gh_pr_10949_argcheck(self):
assert_equal(stats.erlang.pdf(0.5, a=[1, -1]), stats.gamma.pdf(0.5, a=[1, -1]))
class TestRayleigh(object):
# gh-6227
def test_logpdf(self):
y = stats.rayleigh.logpdf(50)
assert_allclose(y, -1246.0879769945718)
def test_logsf(self):
y = stats.rayleigh.logsf(50)
assert_allclose(y, -1250)
class TestExponWeib(object):
def test_pdf_logpdf(self):
# Regression test for gh-3508.
x = 0.1
a = 1.0
c = 100.0
p = stats.exponweib.pdf(x, a, c)
logp = stats.exponweib.logpdf(x, a, c)
# Expected values were computed with mpmath.
assert_allclose([p, logp],
[1.0000000000000054e-97, -223.35075402042244])
def test_a_is_1(self):
# For issue gh-3508.
# Check that when a=1, the pdf and logpdf methods of exponweib are the
# same as those of weibull_min.
x = np.logspace(-4, -1, 4)
a = 1
c = 100
p = stats.exponweib.pdf(x, a, c)
expected = stats.weibull_min.pdf(x, c)
assert_allclose(p, expected)
logp = stats.exponweib.logpdf(x, a, c)
expected = stats.weibull_min.logpdf(x, c)
assert_allclose(logp, expected)
def test_a_is_1_c_is_1(self):
# When a = 1 and c = 1, the distribution is exponential.
x = np.logspace(-8, 1, 10)
a = 1
c = 1
p = stats.exponweib.pdf(x, a, c)
expected = stats.expon.pdf(x)
assert_allclose(p, expected)
logp = stats.exponweib.logpdf(x, a, c)
expected = stats.expon.logpdf(x)
assert_allclose(logp, expected)
class TestWeibull(object):
def test_logpdf(self):
# gh-6217
y = stats.weibull_min.logpdf(0, 1)
assert_equal(y, 0)
def test_with_maxima_distrib(self):
# Tests for weibull_min and weibull_max.
# The expected values were computed using the symbolic algebra
# program 'maxima' with the package 'distrib', which has
# 'pdf_weibull' and 'cdf_weibull'. The mapping between the
# scipy and maxima functions is as follows:
# -----------------------------------------------------------------
# scipy maxima
# --------------------------------- ------------------------------
# weibull_min.pdf(x, a, scale=b) pdf_weibull(x, a, b)
# weibull_min.logpdf(x, a, scale=b) log(pdf_weibull(x, a, b))
# weibull_min.cdf(x, a, scale=b) cdf_weibull(x, a, b)
# weibull_min.logcdf(x, a, scale=b) log(cdf_weibull(x, a, b))
# weibull_min.sf(x, a, scale=b) 1 - cdf_weibull(x, a, b)
# weibull_min.logsf(x, a, scale=b) log(1 - cdf_weibull(x, a, b))
#
# weibull_max.pdf(x, a, scale=b) pdf_weibull(-x, a, b)
# weibull_max.logpdf(x, a, scale=b) log(pdf_weibull(-x, a, b))
# weibull_max.cdf(x, a, scale=b) 1 - cdf_weibull(-x, a, b)
# weibull_max.logcdf(x, a, scale=b) log(1 - cdf_weibull(-x, a, b))
# weibull_max.sf(x, a, scale=b) cdf_weibull(-x, a, b)
# weibull_max.logsf(x, a, scale=b) log(cdf_weibull(-x, a, b))
# -----------------------------------------------------------------
x = 1.5
a = 2.0
b = 3.0
# weibull_min
p = stats.weibull_min.pdf(x, a, scale=b)
assert_allclose(p, np.exp(-0.25)/3)
lp = stats.weibull_min.logpdf(x, a, scale=b)
assert_allclose(lp, -0.25 - np.log(3))
c = stats.weibull_min.cdf(x, a, scale=b)
assert_allclose(c, -special.expm1(-0.25))
lc = stats.weibull_min.logcdf(x, a, scale=b)
assert_allclose(lc, np.log(-special.expm1(-0.25)))
s = stats.weibull_min.sf(x, a, scale=b)
assert_allclose(s, np.exp(-0.25))
ls = stats.weibull_min.logsf(x, a, scale=b)
assert_allclose(ls, -0.25)
# Also test using a large value x, for which computing the survival
# function using the CDF would result in 0.
s = stats.weibull_min.sf(30, 2, scale=3)
assert_allclose(s, np.exp(-100))
ls = stats.weibull_min.logsf(30, 2, scale=3)
assert_allclose(ls, -100)
# weibull_max
x = -1.5
p = stats.weibull_max.pdf(x, a, scale=b)
assert_allclose(p, np.exp(-0.25)/3)
lp = stats.weibull_max.logpdf(x, a, scale=b)
assert_allclose(lp, -0.25 - np.log(3))
c = stats.weibull_max.cdf(x, a, scale=b)
assert_allclose(c, np.exp(-0.25))
lc = stats.weibull_max.logcdf(x, a, scale=b)
assert_allclose(lc, -0.25)
s = stats.weibull_max.sf(x, a, scale=b)
assert_allclose(s, -special.expm1(-0.25))
ls = stats.weibull_max.logsf(x, a, scale=b)
assert_allclose(ls, np.log(-special.expm1(-0.25)))
# Also test using a value of x close to 0, for which computing the
# survival function using the CDF would result in 0.
s = stats.weibull_max.sf(-1e-9, 2, scale=3)
assert_allclose(s, -special.expm1(-1/9000000000000000000))
ls = stats.weibull_max.logsf(-1e-9, 2, scale=3)
assert_allclose(ls, np.log(-special.expm1(-1/9000000000000000000)))
class TestRdist(object):
def test_rdist_cdf_gh1285(self):
# check workaround in rdist._cdf for issue gh-1285.
distfn = stats.rdist
values = [0.001, 0.5, 0.999]
assert_almost_equal(distfn.cdf(distfn.ppf(values, 541.0), 541.0),
values, decimal=5)
def test_rdist_beta(self):
# rdist is a special case of stats.beta
x = np.linspace(-0.99, 0.99, 10)
c = 2.7
assert_almost_equal(0.5*stats.beta(c/2, c/2).pdf((x + 1)/2),
stats.rdist(c).pdf(x))
class TestTrapz(object):
def test_reduces_to_triang(self):
modes = [0, 0.3, 0.5, 1]
for mode in modes:
x = [0, mode, 1]
assert_almost_equal(stats.trapz.pdf(x, mode, mode),
stats.triang.pdf(x, mode))
assert_almost_equal(stats.trapz.cdf(x, mode, mode),
stats.triang.cdf(x, mode))
def test_reduces_to_uniform(self):
x = np.linspace(0, 1, 10)
assert_almost_equal(stats.trapz.pdf(x, 0, 1), stats.uniform.pdf(x))
assert_almost_equal(stats.trapz.cdf(x, 0, 1), stats.uniform.cdf(x))
def test_cases(self):
# edge cases
assert_almost_equal(stats.trapz.pdf(0, 0, 0), 2)
assert_almost_equal(stats.trapz.pdf(1, 1, 1), 2)
assert_almost_equal(stats.trapz.pdf(0.5, 0, 0.8),
1.11111111111111111)
assert_almost_equal(stats.trapz.pdf(0.5, 0.2, 1.0),
1.11111111111111111)
# straightforward case
assert_almost_equal(stats.trapz.pdf(0.1, 0.2, 0.8), 0.625)
assert_almost_equal(stats.trapz.pdf(0.5, 0.2, 0.8), 1.25)
assert_almost_equal(stats.trapz.pdf(0.9, 0.2, 0.8), 0.625)
assert_almost_equal(stats.trapz.cdf(0.1, 0.2, 0.8), 0.03125)
assert_almost_equal(stats.trapz.cdf(0.2, 0.2, 0.8), 0.125)
assert_almost_equal(stats.trapz.cdf(0.5, 0.2, 0.8), 0.5)
assert_almost_equal(stats.trapz.cdf(0.9, 0.2, 0.8), 0.96875)
assert_almost_equal(stats.trapz.cdf(1.0, 0.2, 0.8), 1.0)
def test_moments_and_entropy(self):
# issue #11795: improve precision of trapz stats
# Apply formulas from Wikipedia for the following parameters:
a, b, c, d = -3, -1, 2, 3 # => 1/3, 5/6, -3, 6
p1, p2, loc, scale = (b-a) / (d-a), (c-a) / (d-a), a, d-a
h = 2 / (d+c-b-a)
moment = lambda n: h * ((d**(n+2) - c**(n+2)) / (d-c)
- (b**(n+2) - a**(n+2)) / (b-a)) / (n+1) / (n+2)
mean = moment(1)
var = moment(2) - mean**2
entropy = 0.5 * (d-c+b-a) / (d+c-b-a) + np.log(0.5 * (d+c-b-a))
assert_almost_equal(stats.trapz.mean(p1, p2, loc, scale),
mean, decimal=13)
assert_almost_equal(stats.trapz.var(p1, p2, loc, scale),
var, decimal=13)
assert_almost_equal(stats.trapz.entropy(p1, p2, loc, scale),
entropy, decimal=13)
# Check boundary cases where scipy d=0 or d=1.
assert_almost_equal(stats.trapz.mean(0, 0, -3, 6), -1, decimal=13)
assert_almost_equal(stats.trapz.mean(0, 1, -3, 6), 0, decimal=13)
assert_almost_equal(stats.trapz.var(0, 1, -3, 6), 3, decimal=13)
def test_trapz_vect(self):
# test that array-valued shapes and arguments are handled
c = np.array([0.1, 0.2, 0.3])
d = np.array([0.5, 0.6])[:, None]
x = np.array([0.15, 0.25, 0.9])
v = stats.trapz.pdf(x, c, d)
cc, dd, xx = np.broadcast_arrays(c, d, x)
res = np.empty(xx.size, dtype=xx.dtype)
ind = np.arange(xx.size)
for i, x1, c1, d1 in zip(ind, xx.ravel(), cc.ravel(), dd.ravel()):
res[i] = stats.trapz.pdf(x1, c1, d1)
assert_allclose(v, res.reshape(v.shape), atol=1e-15)
# Check that the stats() method supports vector arguments.
v = np.asarray(stats.trapz.stats(c, d, moments="mvsk"))
cc, dd = np.broadcast_arrays(c, d)
res = np.empty((cc.size, 4)) # 4 stats returned per value
ind = np.arange(cc.size)
for i, c1, d1 in zip(ind, cc.ravel(), dd.ravel()):
res[i] = stats.trapz.stats(c1, d1, moments="mvsk")
assert_allclose(v, res.T.reshape(v.shape), atol=1e-15)
class TestTriang(object):
def test_edge_cases(self):
with np.errstate(all='raise'):
assert_equal(stats.triang.pdf(0, 0), 2.)
assert_equal(stats.triang.pdf(0.5, 0), 1.)
assert_equal(stats.triang.pdf(1, 0), 0.)
assert_equal(stats.triang.pdf(0, 1), 0)
assert_equal(stats.triang.pdf(0.5, 1), 1.)
assert_equal(stats.triang.pdf(1, 1), 2)
assert_equal(stats.triang.cdf(0., 0.), 0.)
assert_equal(stats.triang.cdf(0.5, 0.), 0.75)
assert_equal(stats.triang.cdf(1.0, 0.), 1.0)
assert_equal(stats.triang.cdf(0., 1.), 0.)
assert_equal(stats.triang.cdf(0.5, 1.), 0.25)
assert_equal(stats.triang.cdf(1., 1.), 1)
class TestMielke(object):
def test_moments(self):
k, s = 4.642, 0.597
# n-th moment exists only if n < s
assert_equal(stats.mielke(k, s).moment(1), np.inf)
assert_equal(stats.mielke(k, 1.0).moment(1), np.inf)
assert_(np.isfinite(stats.mielke(k, 1.01).moment(1)))
def test_burr_equivalence(self):
x = np.linspace(0.01, 100, 50)
k, s = 2.45, 5.32
assert_allclose(stats.burr.pdf(x, s, k/s), stats.mielke.pdf(x, k, s))
class TestBurr(object):
def test_endpoints_7491(self):
# gh-7491
# Compute the pdf at the left endpoint dst.a.
data = [
[stats.fisk, (1,), 1],
[stats.burr, (0.5, 2), 1],
[stats.burr, (1, 1), 1],
[stats.burr, (2, 0.5), 1],
[stats.burr12, (1, 0.5), 0.5],
[stats.burr12, (1, 1), 1.0],
[stats.burr12, (1, 2), 2.0]]
ans = [_f.pdf(_f.a, *_args) for _f, _args, _ in data]
correct = [_correct_ for _f, _args, _correct_ in data]
assert_array_almost_equal(ans, correct)
ans = [_f.logpdf(_f.a, *_args) for _f, _args, _ in data]
correct = [np.log(_correct_) for _f, _args, _correct_ in data]
assert_array_almost_equal(ans, correct)
def test_burr_stats_9544(self):
# gh-9544. Test from gh-9978
c, d = 5.0, 3
mean, variance = stats.burr(c, d).stats()
# mean = sc.beta(3 + 1/5, 1. - 1/5) * 3 = 1.4110263...
# var = sc.beta(3 + 2 / 5, 1. - 2 / 5) * 3 - (sc.beta(3 + 1 / 5, 1. - 1 / 5) * 3) ** 2
mean_hc, variance_hc = 1.4110263183925857, 0.22879948026191643
assert_allclose(mean, mean_hc)
assert_allclose(variance, variance_hc)
def test_burr_nan_mean_var_9544(self):
# gh-9544. Test from gh-9978
c, d = 0.5, 3
mean, variance = stats.burr(c, d).stats()
assert_(np.isnan(mean))
assert_(np.isnan(variance))
c, d = 1.5, 3
mean, variance = stats.burr(c, d).stats()
assert_(np.isfinite(mean))
assert_(np.isnan(variance))
c, d = 0.5, 3
e1, e2, e3, e4 = stats.burr._munp(np.array([1, 2, 3, 4]), c, d)
assert_(np.isnan(e1))
assert_(np.isnan(e2))
assert_(np.isnan(e3))
assert_(np.isnan(e4))
c, d = 1.5, 3
e1, e2, e3, e4 = stats.burr._munp([1, 2, 3, 4], c, d)
assert_(np.isfinite(e1))
assert_(np.isnan(e2))
assert_(np.isnan(e3))
assert_(np.isnan(e4))
c, d = 2.5, 3
e1, e2, e3, e4 = stats.burr._munp([1, 2, 3, 4], c, d)
assert_(np.isfinite(e1))
assert_(np.isfinite(e2))
assert_(np.isnan(e3))
assert_(np.isnan(e4))
c, d = 3.5, 3
e1, e2, e3, e4 = stats.burr._munp([1, 2, 3, 4], c, d)
assert_(np.isfinite(e1))
assert_(np.isfinite(e2))
assert_(np.isfinite(e3))
assert_(np.isnan(e4))
c, d = 4.5, 3
e1, e2, e3, e4 = stats.burr._munp([1, 2, 3, 4], c, d)
assert_(np.isfinite(e1))
assert_(np.isfinite(e2))
assert_(np.isfinite(e3))
assert_(np.isfinite(e4))
def test_540_567():
# test for nan returned in tickets 540, 567
assert_almost_equal(stats.norm.cdf(-1.7624320982), 0.03899815971089126,
decimal=10, err_msg='test_540_567')
assert_almost_equal(stats.norm.cdf(-1.7624320983), 0.038998159702449846,
decimal=10, err_msg='test_540_567')
assert_almost_equal(stats.norm.cdf(1.38629436112, loc=0.950273420309,
scale=0.204423758009),
0.98353464004309321,
decimal=10, err_msg='test_540_567')
def test_regression_ticket_1316():
# The following was raising an exception, because _construct_default_doc()
# did not handle the default keyword extradoc=None. See ticket #1316.
stats._continuous_distns.gamma_gen(name='gamma')
def test_regression_ticket_1326():
# adjust to avoid nan with 0*log(0)
assert_almost_equal(stats.chi2.pdf(0.0, 2), 0.5, 14)
def test_regression_tukey_lambda():
# Make sure that Tukey-Lambda distribution correctly handles
# non-positive lambdas.
x = np.linspace(-5.0, 5.0, 101)
with np.errstate(divide='ignore'):
for lam in [0.0, -1.0, -2.0, np.array([[-1.0], [0.0], [-2.0]])]:
p = stats.tukeylambda.pdf(x, lam)
assert_((p != 0.0).all())
assert_(~np.isnan(p).all())
lam = np.array([[-1.0], [0.0], [2.0]])
p = stats.tukeylambda.pdf(x, lam)
assert_(~np.isnan(p).all())
assert_((p[0] != 0.0).all())
assert_((p[1] != 0.0).all())
assert_((p[2] != 0.0).any())
assert_((p[2] == 0.0).any())
@pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstrings stripped")
def test_regression_ticket_1421():
assert_('pdf(x, mu, loc=0, scale=1)' not in stats.poisson.__doc__)
assert_('pmf(x,' in stats.poisson.__doc__)
def test_nan_arguments_gh_issue_1362():
with np.errstate(invalid='ignore'):
assert_(np.isnan(stats.t.logcdf(1, np.nan)))
assert_(np.isnan(stats.t.cdf(1, np.nan)))
assert_(np.isnan(stats.t.logsf(1, np.nan)))
assert_(np.isnan(stats.t.sf(1, np.nan)))
assert_(np.isnan(stats.t.pdf(1, np.nan)))
assert_(np.isnan(stats.t.logpdf(1, np.nan)))
assert_(np.isnan(stats.t.ppf(1, np.nan)))
assert_(np.isnan(stats.t.isf(1, np.nan)))
assert_(np.isnan(stats.bernoulli.logcdf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.cdf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.logsf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.sf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.pmf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.logpmf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.ppf(np.nan, 0.5)))
assert_(np.isnan(stats.bernoulli.isf(np.nan, 0.5)))
def test_frozen_fit_ticket_1536():
np.random.seed(5678)
true = np.array([0.25, 0., 0.5])
x = stats.lognorm.rvs(true[0], true[1], true[2], size=100)
with np.errstate(divide='ignore'):
params = np.array(stats.lognorm.fit(x, floc=0.))
assert_almost_equal(params, true, decimal=2)
params = np.array(stats.lognorm.fit(x, fscale=0.5, loc=0))
assert_almost_equal(params, true, decimal=2)
params = np.array(stats.lognorm.fit(x, f0=0.25, loc=0))
assert_almost_equal(params, true, decimal=2)
params = np.array(stats.lognorm.fit(x, f0=0.25, floc=0))
assert_almost_equal(params, true, decimal=2)
np.random.seed(5678)
loc = 1
floc = 0.9
x = stats.norm.rvs(loc, 2., size=100)
params = np.array(stats.norm.fit(x, floc=floc))
expected = np.array([floc, np.sqrt(((x-floc)**2).mean())])
assert_almost_equal(params, expected, decimal=4)
def test_regression_ticket_1530():
# Check the starting value works for Cauchy distribution fit.
np.random.seed(654321)
rvs = stats.cauchy.rvs(size=100)
params = stats.cauchy.fit(rvs)
expected = (0.045, 1.142)
assert_almost_equal(params, expected, decimal=1)
def test_gh_pr_4806():
# Check starting values for Cauchy distribution fit.
np.random.seed(1234)
x = np.random.randn(42)
for offset in 10000.0, 1222333444.0:
loc, scale = stats.cauchy.fit(x + offset)
assert_allclose(loc, offset, atol=1.0)
assert_allclose(scale, 0.6, atol=1.0)
def test_tukeylambda_stats_ticket_1545():
# Some test for the variance and kurtosis of the Tukey Lambda distr.
# See test_tukeylamdba_stats.py for more tests.
mv = stats.tukeylambda.stats(0, moments='mvsk')
# Known exact values:
expected = [0, np.pi**2/3, 0, 1.2]
assert_almost_equal(mv, expected, decimal=10)
mv = stats.tukeylambda.stats(3.13, moments='mvsk')
# 'expected' computed with mpmath.
expected = [0, 0.0269220858861465102, 0, -0.898062386219224104]
assert_almost_equal(mv, expected, decimal=10)
mv = stats.tukeylambda.stats(0.14, moments='mvsk')
# 'expected' computed with mpmath.
expected = [0, 2.11029702221450250, 0, -0.02708377353223019456]
assert_almost_equal(mv, expected, decimal=10)
def test_poisson_logpmf_ticket_1436():
assert_(np.isfinite(stats.poisson.logpmf(1500, 200)))
def test_powerlaw_stats():
"""Test the powerlaw stats function.
This unit test is also a regression test for ticket 1548.
The exact values are:
mean:
mu = a / (a + 1)
variance:
sigma**2 = a / ((a + 2) * (a + 1) ** 2)
skewness:
One formula (see https://en.wikipedia.org/wiki/Skewness) is
gamma_1 = (E[X**3] - 3*mu*E[X**2] + 2*mu**3) / sigma**3
A short calculation shows that E[X**k] is a / (a + k), so gamma_1
can be implemented as
n = a/(a+3) - 3*(a/(a+1))*a/(a+2) + 2*(a/(a+1))**3
d = sqrt(a/((a+2)*(a+1)**2)) ** 3
gamma_1 = n/d
Either by simplifying, or by a direct calculation of mu_3 / sigma**3,
one gets the more concise formula:
gamma_1 = -2.0 * ((a - 1) / (a + 3)) * sqrt((a + 2) / a)
kurtosis: (See https://en.wikipedia.org/wiki/Kurtosis)
The excess kurtosis is
gamma_2 = mu_4 / sigma**4 - 3
A bit of calculus and algebra (sympy helps) shows that
mu_4 = 3*a*(3*a**2 - a + 2) / ((a+1)**4 * (a+2) * (a+3) * (a+4))
so
gamma_2 = 3*(3*a**2 - a + 2) * (a+2) / (a*(a+3)*(a+4)) - 3
which can be rearranged to
gamma_2 = 6 * (a**3 - a**2 - 6*a + 2) / (a*(a+3)*(a+4))
"""
cases = [(1.0, (0.5, 1./12, 0.0, -1.2)),
(2.0, (2./3, 2./36, -0.56568542494924734, -0.6))]
for a, exact_mvsk in cases:
mvsk = stats.powerlaw.stats(a, moments="mvsk")
assert_array_almost_equal(mvsk, exact_mvsk)
def test_powerlaw_edge():
# Regression test for gh-3986.
p = stats.powerlaw.logpdf(0, 1)
assert_equal(p, 0.0)
def test_exponpow_edge():
# Regression test for gh-3982.
p = stats.exponpow.logpdf(0, 1)
assert_equal(p, 0.0)
# Check pdf and logpdf at x = 0 for other values of b.
p = stats.exponpow.pdf(0, [0.25, 1.0, 1.5])
assert_equal(p, [np.inf, 1.0, 0.0])
p = stats.exponpow.logpdf(0, [0.25, 1.0, 1.5])
assert_equal(p, [np.inf, 0.0, -np.inf])
def test_gengamma_edge():
# Regression test for gh-3985.
p = stats.gengamma.pdf(0, 1, 1)
assert_equal(p, 1.0)
# Regression tests for gh-4724.
p = stats.gengamma._munp(-2, 200, 1.)
assert_almost_equal(p, 1./199/198)
p = stats.gengamma._munp(-2, 10, 1.)
assert_almost_equal(p, 1./9/8)
def test_ksone_fit_freeze():
# Regression test for ticket #1638.
d = np.array(
[-0.18879233, 0.15734249, 0.18695107, 0.27908787, -0.248649,
-0.2171497, 0.12233512, 0.15126419, 0.03119282, 0.4365294,
0.08930393, -0.23509903, 0.28231224, -0.09974875, -0.25196048,
0.11102028, 0.1427649, 0.10176452, 0.18754054, 0.25826724,
0.05988819, 0.0531668, 0.21906056, 0.32106729, 0.2117662,
0.10886442, 0.09375789, 0.24583286, -0.22968366, -0.07842391,
-0.31195432, -0.21271196, 0.1114243, -0.13293002, 0.01331725,
-0.04330977, -0.09485776, -0.28434547, 0.22245721, -0.18518199,
-0.10943985, -0.35243174, 0.06897665, -0.03553363, -0.0701746,
-0.06037974, 0.37670779, -0.21684405])
with np.errstate(invalid='ignore'):
with suppress_warnings() as sup:
sup.filter(IntegrationWarning,
"The maximum number of subdivisions .50. has been "
"achieved.")
sup.filter(RuntimeWarning,
"floating point number truncated to an integer")
stats.ksone.fit(d)
def test_norm_logcdf():
# Test precision of the logcdf of the normal distribution.
# This precision was enhanced in ticket 1614.
x = -np.asarray(list(range(0, 120, 4)))
# Values from R
expected = [-0.69314718, -10.36010149, -35.01343716, -75.41067300,
-131.69539607, -203.91715537, -292.09872100, -396.25241451,
-516.38564863, -652.50322759, -804.60844201, -972.70364403,
-1156.79057310, -1356.87055173, -1572.94460885, -1805.01356068,
-2053.07806561, -2317.13866238, -2597.19579746, -2893.24984493,
-3205.30112136, -3533.34989701, -3877.39640444, -4237.44084522,
-4613.48339520, -5005.52420869, -5413.56342187, -5837.60115548,
-6277.63751711, -6733.67260303]
assert_allclose(stats.norm().logcdf(x), expected, atol=1e-8)
# also test the complex-valued code path
assert_allclose(stats.norm().logcdf(x + 1e-14j).real, expected, atol=1e-8)
# test the accuracy: d(logcdf)/dx = pdf / cdf \equiv exp(logpdf - logcdf)
deriv = (stats.norm.logcdf(x + 1e-10j)/1e-10).imag
deriv_expected = np.exp(stats.norm.logpdf(x) - stats.norm.logcdf(x))
assert_allclose(deriv, deriv_expected, atol=1e-10)
def test_levy_cdf_ppf():
# Test levy.cdf, including small arguments.
x = np.array([1000, 1.0, 0.5, 0.1, 0.01, 0.001])
# Expected values were calculated separately with mpmath.
# E.g.
# >>> mpmath.mp.dps = 100
# >>> x = mpmath.mp.mpf('0.01')
# >>> cdf = mpmath.erfc(mpmath.sqrt(1/(2*x)))
expected = np.array([0.9747728793699604,
0.3173105078629141,
0.1572992070502851,
0.0015654022580025495,
1.523970604832105e-23,
1.795832784800726e-219])
y = stats.levy.cdf(x)
assert_allclose(y, expected, rtol=1e-10)
# ppf(expected) should get us back to x.
xx = stats.levy.ppf(expected)
assert_allclose(xx, x, rtol=1e-13)
def test_hypergeom_interval_1802():
# these two had endless loops
assert_equal(stats.hypergeom.interval(.95, 187601, 43192, 757),
(152.0, 197.0))
assert_equal(stats.hypergeom.interval(.945, 187601, 43192, 757),
(152.0, 197.0))
# this was working also before
assert_equal(stats.hypergeom.interval(.94, 187601, 43192, 757),
(153.0, 196.0))
# degenerate case .a == .b
assert_equal(stats.hypergeom.ppf(0.02, 100, 100, 8), 8)
assert_equal(stats.hypergeom.ppf(1, 100, 100, 8), 8)
def test_distribution_too_many_args():
np.random.seed(1234)
# Check that a TypeError is raised when too many args are given to a method
# Regression test for ticket 1815.
x = np.linspace(0.1, 0.7, num=5)
assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, loc=1.0)
assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, 4, loc=1.0)
assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, 4, 5)
assert_raises(TypeError, stats.gamma.pdf, x, 2, 3, loc=1.0, scale=0.5)
assert_raises(TypeError, stats.gamma.rvs, 2., 3, loc=1.0, scale=0.5)
assert_raises(TypeError, stats.gamma.cdf, x, 2., 3, loc=1.0, scale=0.5)
assert_raises(TypeError, stats.gamma.ppf, x, 2., 3, loc=1.0, scale=0.5)
assert_raises(TypeError, stats.gamma.stats, 2., 3, loc=1.0, scale=0.5)
assert_raises(TypeError, stats.gamma.entropy, 2., 3, loc=1.0, scale=0.5)
assert_raises(TypeError, stats.gamma.fit, x, 2., 3, loc=1.0, scale=0.5)
# These should not give errors
stats.gamma.pdf(x, 2, 3) # loc=3
stats.gamma.pdf(x, 2, 3, 4) # loc=3, scale=4
stats.gamma.stats(2., 3)
stats.gamma.stats(2., 3, 4)
stats.gamma.stats(2., 3, 4, 'mv')
stats.gamma.rvs(2., 3, 4, 5)
stats.gamma.fit(stats.gamma.rvs(2., size=7), 2.)
# Also for a discrete distribution
stats.geom.pmf(x, 2, loc=3) # no error, loc=3
assert_raises(TypeError, stats.geom.pmf, x, 2, 3, 4)
assert_raises(TypeError, stats.geom.pmf, x, 2, 3, loc=4)
# And for distributions with 0, 2 and 3 args respectively
assert_raises(TypeError, stats.expon.pdf, x, 3, loc=1.0)
assert_raises(TypeError, stats.exponweib.pdf, x, 3, 4, 5, loc=1.0)
assert_raises(TypeError, stats.exponweib.pdf, x, 3, 4, 5, 0.1, 0.1)
assert_raises(TypeError, stats.ncf.pdf, x, 3, 4, 5, 6, loc=1.0)
assert_raises(TypeError, stats.ncf.pdf, x, 3, 4, 5, 6, 1.0, scale=0.5)
stats.ncf.pdf(x, 3, 4, 5, 6, 1.0) # 3 args, plus loc/scale
def test_ncx2_tails_ticket_955():
# Trac #955 -- check that the cdf computed by special functions
# matches the integrated pdf
a = stats.ncx2.cdf(np.arange(20, 25, 0.2), 2, 1.07458615e+02)
b = stats.ncx2._cdfvec(np.arange(20, 25, 0.2), 2, 1.07458615e+02)
assert_allclose(a, b, rtol=1e-3, atol=0)
def test_ncx2_tails_pdf():
# ncx2.pdf does not return nans in extreme tails(example from gh-1577)
# NB: this is to check that nan_to_num is not needed in ncx2.pdf
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "divide by zero encountered in log")
assert_equal(stats.ncx2.pdf(1, np.arange(340, 350), 2), 0)
logval = stats.ncx2.logpdf(1, np.arange(340, 350), 2)
assert_(np.isneginf(logval).all())
@pytest.mark.parametrize('method, expected', [
('cdf', np.array([2.497951336e-09, 3.437288941e-10])),
('pdf', np.array([1.238579980e-07, 1.710041145e-08])),
('logpdf', np.array([-15.90413011, -17.88416331])),
('ppf', np.array([4.865182052, 7.017182271]))
])
def test_ncx2_zero_nc(method, expected):
# gh-5441
# ncx2 with nc=0 is identical to chi2
# Comparison to R (v3.5.1)
# > options(digits=10)
# > pchisq(0.1, df=10, ncp=c(0,4))
# > dchisq(0.1, df=10, ncp=c(0,4))
# > dchisq(0.1, df=10, ncp=c(0,4), log=TRUE)
# > qchisq(0.1, df=10, ncp=c(0,4))
result = getattr(stats.ncx2, method)(0.1, nc=[0, 4], df=10)
assert_allclose(result, expected, atol=1e-15)
def test_ncx2_zero_nc_rvs():
# gh-5441
# ncx2 with nc=0 is identical to chi2
result = stats.ncx2.rvs(df=10, nc=0, random_state=1)
expected = stats.chi2.rvs(df=10, random_state=1)
assert_allclose(result, expected, atol=1e-15)
def test_foldnorm_zero():
# Parameter value c=0 was not enabled, see gh-2399.
rv = stats.foldnorm(0, scale=1)
assert_equal(rv.cdf(0), 0) # rv.cdf(0) previously resulted in: nan
def test_stats_shapes_argcheck():
# stats method was failing for vector shapes if some of the values
# were outside of the allowed range, see gh-2678
mv3 = stats.invgamma.stats([0.0, 0.5, 1.0], 1, 0.5) # 0 is not a legal `a`
mv2 = stats.invgamma.stats([0.5, 1.0], 1, 0.5)
mv2_augmented = tuple(np.r_[np.nan, _] for _ in mv2)
assert_equal(mv2_augmented, mv3)
# -1 is not a legal shape parameter
mv3 = stats.lognorm.stats([2, 2.4, -1])
mv2 = stats.lognorm.stats([2, 2.4])
mv2_augmented = tuple(np.r_[_, np.nan] for _ in mv2)
assert_equal(mv2_augmented, mv3)
# FIXME: this is only a quick-and-dirty test of a quick-and-dirty bugfix.
# stats method with multiple shape parameters is not properly vectorized
# anyway, so some distributions may or may not fail.
# Test subclassing distributions w/ explicit shapes
class _distr_gen(stats.rv_continuous):
def _pdf(self, x, a):
return 42
class _distr2_gen(stats.rv_continuous):
def _cdf(self, x, a):
return 42 * a + x
class _distr3_gen(stats.rv_continuous):
def _pdf(self, x, a, b):
return a + b
def _cdf(self, x, a):
# Different # of shape params from _pdf, to be able to check that
# inspection catches the inconsistency."""
return 42 * a + x
class _distr6_gen(stats.rv_continuous):
# Two shape parameters (both _pdf and _cdf defined, consistent shapes.)
def _pdf(self, x, a, b):
return a*x + b
def _cdf(self, x, a, b):
return 42 * a + x
class TestSubclassingExplicitShapes(object):
# Construct a distribution w/ explicit shapes parameter and test it.
def test_correct_shapes(self):
dummy_distr = _distr_gen(name='dummy', shapes='a')
assert_equal(dummy_distr.pdf(1, a=1), 42)
def test_wrong_shapes_1(self):
dummy_distr = _distr_gen(name='dummy', shapes='A')
assert_raises(TypeError, dummy_distr.pdf, 1, **dict(a=1))
def test_wrong_shapes_2(self):
dummy_distr = _distr_gen(name='dummy', shapes='a, b, c')
dct = dict(a=1, b=2, c=3)
assert_raises(TypeError, dummy_distr.pdf, 1, **dct)
def test_shapes_string(self):
# shapes must be a string
dct = dict(name='dummy', shapes=42)
assert_raises(TypeError, _distr_gen, **dct)
def test_shapes_identifiers_1(self):
# shapes must be a comma-separated list of valid python identifiers
dct = dict(name='dummy', shapes='(!)')
assert_raises(SyntaxError, _distr_gen, **dct)
def test_shapes_identifiers_2(self):
dct = dict(name='dummy', shapes='4chan')
assert_raises(SyntaxError, _distr_gen, **dct)
def test_shapes_identifiers_3(self):
dct = dict(name='dummy', shapes='m(fti)')
assert_raises(SyntaxError, _distr_gen, **dct)
def test_shapes_identifiers_nodefaults(self):
dct = dict(name='dummy', shapes='a=2')
assert_raises(SyntaxError, _distr_gen, **dct)
def test_shapes_args(self):
dct = dict(name='dummy', shapes='*args')
assert_raises(SyntaxError, _distr_gen, **dct)
def test_shapes_kwargs(self):
dct = dict(name='dummy', shapes='**kwargs')
assert_raises(SyntaxError, _distr_gen, **dct)
def test_shapes_keywords(self):
# python keywords cannot be used for shape parameters
dct = dict(name='dummy', shapes='a, b, c, lambda')
assert_raises(SyntaxError, _distr_gen, **dct)
def test_shapes_signature(self):
# test explicit shapes which agree w/ the signature of _pdf
class _dist_gen(stats.rv_continuous):
def _pdf(self, x, a):
return stats.norm._pdf(x) * a
dist = _dist_gen(shapes='a')
assert_equal(dist.pdf(0.5, a=2), stats.norm.pdf(0.5)*2)
def test_shapes_signature_inconsistent(self):
# test explicit shapes which do not agree w/ the signature of _pdf
class _dist_gen(stats.rv_continuous):
def _pdf(self, x, a):
return stats.norm._pdf(x) * a
dist = _dist_gen(shapes='a, b')
assert_raises(TypeError, dist.pdf, 0.5, **dict(a=1, b=2))
def test_star_args(self):
# test _pdf with only starargs
# NB: **kwargs of pdf will never reach _pdf
class _dist_gen(stats.rv_continuous):
def _pdf(self, x, *args):
extra_kwarg = args[0]
return stats.norm._pdf(x) * extra_kwarg
dist = _dist_gen(shapes='extra_kwarg')
assert_equal(dist.pdf(0.5, extra_kwarg=33), stats.norm.pdf(0.5)*33)
assert_equal(dist.pdf(0.5, 33), stats.norm.pdf(0.5)*33)
assert_raises(TypeError, dist.pdf, 0.5, **dict(xxx=33))
def test_star_args_2(self):
# test _pdf with named & starargs
# NB: **kwargs of pdf will never reach _pdf
class _dist_gen(stats.rv_continuous):
def _pdf(self, x, offset, *args):
extra_kwarg = args[0]
return stats.norm._pdf(x) * extra_kwarg + offset
dist = _dist_gen(shapes='offset, extra_kwarg')
assert_equal(dist.pdf(0.5, offset=111, extra_kwarg=33),
stats.norm.pdf(0.5)*33 + 111)
assert_equal(dist.pdf(0.5, 111, 33),
stats.norm.pdf(0.5)*33 + 111)
def test_extra_kwarg(self):
# **kwargs to _pdf are ignored.
# this is a limitation of the framework (_pdf(x, *goodargs))
class _distr_gen(stats.rv_continuous):
def _pdf(self, x, *args, **kwargs):
# _pdf should handle *args, **kwargs itself. Here "handling"
# is ignoring *args and looking for ``extra_kwarg`` and using
# that.
extra_kwarg = kwargs.pop('extra_kwarg', 1)
return stats.norm._pdf(x) * extra_kwarg
dist = _distr_gen(shapes='extra_kwarg')
assert_equal(dist.pdf(1, extra_kwarg=3), stats.norm.pdf(1))
def shapes_empty_string(self):
# shapes='' is equivalent to shapes=None
class _dist_gen(stats.rv_continuous):
def _pdf(self, x):
return stats.norm.pdf(x)
dist = _dist_gen(shapes='')
assert_equal(dist.pdf(0.5), stats.norm.pdf(0.5))
class TestSubclassingNoShapes(object):
# Construct a distribution w/o explicit shapes parameter and test it.
def test_only__pdf(self):
dummy_distr = _distr_gen(name='dummy')
assert_equal(dummy_distr.pdf(1, a=1), 42)
def test_only__cdf(self):
# _pdf is determined from _cdf by taking numerical derivative
dummy_distr = _distr2_gen(name='dummy')
assert_almost_equal(dummy_distr.pdf(1, a=1), 1)
@pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstring stripped")
def test_signature_inspection(self):
# check that _pdf signature inspection works correctly, and is used in
# the class docstring
dummy_distr = _distr_gen(name='dummy')
assert_equal(dummy_distr.numargs, 1)
assert_equal(dummy_distr.shapes, 'a')
res = re.findall(r'logpdf\(x, a, loc=0, scale=1\)',
dummy_distr.__doc__)
assert_(len(res) == 1)
@pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstring stripped")
def test_signature_inspection_2args(self):
# same for 2 shape params and both _pdf and _cdf defined
dummy_distr = _distr6_gen(name='dummy')
assert_equal(dummy_distr.numargs, 2)
assert_equal(dummy_distr.shapes, 'a, b')
res = re.findall(r'logpdf\(x, a, b, loc=0, scale=1\)',
dummy_distr.__doc__)
assert_(len(res) == 1)
def test_signature_inspection_2args_incorrect_shapes(self):
# both _pdf and _cdf defined, but shapes are inconsistent: raises
assert_raises(TypeError, _distr3_gen, name='dummy')
def test_defaults_raise(self):
# default arguments should raise
class _dist_gen(stats.rv_continuous):
def _pdf(self, x, a=42):
return 42
assert_raises(TypeError, _dist_gen, **dict(name='dummy'))
def test_starargs_raise(self):
# without explicit shapes, *args are not allowed
class _dist_gen(stats.rv_continuous):
def _pdf(self, x, a, *args):
return 42
assert_raises(TypeError, _dist_gen, **dict(name='dummy'))
def test_kwargs_raise(self):
# without explicit shapes, **kwargs are not allowed
class _dist_gen(stats.rv_continuous):
def _pdf(self, x, a, **kwargs):
return 42
assert_raises(TypeError, _dist_gen, **dict(name='dummy'))
@pytest.mark.skipif(DOCSTRINGS_STRIPPED, reason="docstring stripped")
def test_docstrings():
badones = [r',\s*,', r'\(\s*,', r'^\s*:']
for distname in stats.__all__:
dist = getattr(stats, distname)
if isinstance(dist, (stats.rv_discrete, stats.rv_continuous)):
for regex in badones:
assert_(re.search(regex, dist.__doc__) is None)
def test_infinite_input():
assert_almost_equal(stats.skellam.sf(np.inf, 10, 11), 0)
assert_almost_equal(stats.ncx2._cdf(np.inf, 8, 0.1), 1)
def test_lomax_accuracy():
# regression test for gh-4033
p = stats.lomax.ppf(stats.lomax.cdf(1e-100, 1), 1)
assert_allclose(p, 1e-100)
def test_gompertz_accuracy():
# Regression test for gh-4031
p = stats.gompertz.ppf(stats.gompertz.cdf(1e-100, 1), 1)
assert_allclose(p, 1e-100)
def test_truncexpon_accuracy():
# regression test for gh-4035
p = stats.truncexpon.ppf(stats.truncexpon.cdf(1e-100, 1), 1)
assert_allclose(p, 1e-100)
def test_rayleigh_accuracy():
# regression test for gh-4034
p = stats.rayleigh.isf(stats.rayleigh.sf(9, 1), 1)
assert_almost_equal(p, 9.0, decimal=15)
def test_genextreme_give_no_warnings():
"""regression test for gh-6219"""
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
stats.genextreme.cdf(.5, 0)
stats.genextreme.pdf(.5, 0)
stats.genextreme.ppf(.5, 0)
stats.genextreme.logpdf(-np.inf, 0.0)
number_of_warnings_thrown = len(w)
assert_equal(number_of_warnings_thrown, 0)
def test_genextreme_entropy():
# regression test for gh-5181
euler_gamma = 0.5772156649015329
h = stats.genextreme.entropy(-1.0)
assert_allclose(h, 2*euler_gamma + 1, rtol=1e-14)
h = stats.genextreme.entropy(0)
assert_allclose(h, euler_gamma + 1, rtol=1e-14)
h = stats.genextreme.entropy(1.0)
assert_equal(h, 1)
h = stats.genextreme.entropy(-2.0, scale=10)
assert_allclose(h, euler_gamma*3 + np.log(10) + 1, rtol=1e-14)
h = stats.genextreme.entropy(10)
assert_allclose(h, -9*euler_gamma + 1, rtol=1e-14)
h = stats.genextreme.entropy(-10)
assert_allclose(h, 11*euler_gamma + 1, rtol=1e-14)
def test_genextreme_sf_isf():
# Expected values were computed using mpmath:
#
# import mpmath
#
# def mp_genextreme_sf(x, xi, mu=0, sigma=1):
# # Formula from wikipedia, which has a sign convention for xi that
# # is the opposite of scipy's shape parameter.
# if xi != 0:
# t = mpmath.power(1 + ((x - mu)/sigma)*xi, -1/xi)
# else:
# t = mpmath.exp(-(x - mu)/sigma)
# return 1 - mpmath.exp(-t)
#
# >>> mpmath.mp.dps = 1000
# >>> s = mp_genextreme_sf(mpmath.mp.mpf("1e8"), mpmath.mp.mpf("0.125"))
# >>> float(s)
# 1.6777205262585625e-57
# >>> s = mp_genextreme_sf(mpmath.mp.mpf("7.98"), mpmath.mp.mpf("-0.125"))
# >>> float(s)
# 1.52587890625e-21
# >>> s = mp_genextreme_sf(mpmath.mp.mpf("7.98"), mpmath.mp.mpf("0"))
# >>> float(s)
# 0.00034218086528426593
x = 1e8
s = stats.genextreme.sf(x, -0.125)
assert_allclose(s, 1.6777205262585625e-57)
x2 = stats.genextreme.isf(s, -0.125)
assert_allclose(x2, x)
x = 7.98
s = stats.genextreme.sf(x, 0.125)
assert_allclose(s, 1.52587890625e-21)
x2 = stats.genextreme.isf(s, 0.125)
assert_allclose(x2, x)
x = 7.98
s = stats.genextreme.sf(x, 0)
assert_allclose(s, 0.00034218086528426593)
x2 = stats.genextreme.isf(s, 0)
assert_allclose(x2, x)
def test_burr12_ppf_small_arg():
prob = 1e-16
quantile = stats.burr12.ppf(prob, 2, 3)
# The expected quantile was computed using mpmath:
# >>> import mpmath
# >>> mpmath.mp.dps = 100
# >>> prob = mpmath.mpf('1e-16')
# >>> c = mpmath.mpf(2)
# >>> d = mpmath.mpf(3)
# >>> float(((1-prob)**(-1/d) - 1)**(1/c))
# 5.7735026918962575e-09
assert_allclose(quantile, 5.7735026918962575e-09)
def test_crystalball_function():
"""
All values are calculated using the independent implementation of the
ROOT framework (see https://root.cern.ch/).
Corresponding ROOT code is given in the comments.
"""
X = np.linspace(-5.0, 5.0, 21)[:-1]
# for(float x = -5.0; x < 5.0; x+=0.5)
# std::cout << ROOT::Math::crystalball_pdf(x, 1.0, 2.0, 1.0) << ", ";
calculated = stats.crystalball.pdf(X, beta=1.0, m=2.0)
expected = np.array([0.0202867, 0.0241428, 0.0292128, 0.0360652, 0.045645,
0.059618, 0.0811467, 0.116851, 0.18258, 0.265652,
0.301023, 0.265652, 0.18258, 0.097728, 0.0407391,
0.013226, 0.00334407, 0.000658486, 0.000100982,
1.20606e-05])
assert_allclose(expected, calculated, rtol=0.001)
# for(float x = -5.0; x < 5.0; x+=0.5)
# std::cout << ROOT::Math::crystalball_pdf(x, 2.0, 3.0, 1.0) << ", ";
calculated = stats.crystalball.pdf(X, beta=2.0, m=3.0)
expected = np.array([0.0019648, 0.00279754, 0.00417592, 0.00663121,
0.0114587, 0.0223803, 0.0530497, 0.12726, 0.237752,
0.345928, 0.391987, 0.345928, 0.237752, 0.12726,
0.0530497, 0.0172227, 0.00435458, 0.000857469,
0.000131497, 1.57051e-05])
assert_allclose(expected, calculated, rtol=0.001)
# for(float x = -5.0; x < 5.0; x+=0.5) {
# std::cout << ROOT::Math::crystalball_pdf(x, 2.0, 3.0, 2.0, 0.5);
# std::cout << ", ";
# }
calculated = stats.crystalball.pdf(X, beta=2.0, m=3.0, loc=0.5, scale=2.0)
expected = np.array([0.00785921, 0.0111902, 0.0167037, 0.0265249,
0.0423866, 0.0636298, 0.0897324, 0.118876, 0.147944,
0.172964, 0.189964, 0.195994, 0.189964, 0.172964,
0.147944, 0.118876, 0.0897324, 0.0636298, 0.0423866,
0.0265249])
assert_allclose(expected, calculated, rtol=0.001)
# for(float x = -5.0; x < 5.0; x+=0.5)
# std::cout << ROOT::Math::crystalball_cdf(x, 1.0, 2.0, 1.0) << ", ";
calculated = stats.crystalball.cdf(X, beta=1.0, m=2.0)
expected = np.array([0.12172, 0.132785, 0.146064, 0.162293, 0.18258,
0.208663, 0.24344, 0.292128, 0.36516, 0.478254,
0.622723, 0.767192, 0.880286, 0.94959, 0.982834,
0.995314, 0.998981, 0.999824, 0.999976, 0.999997])
assert_allclose(expected, calculated, rtol=0.001)
# for(float x = -5.0; x < 5.0; x+=0.5)
# std::cout << ROOT::Math::crystalball_cdf(x, 2.0, 3.0, 1.0) << ", ";
calculated = stats.crystalball.cdf(X, beta=2.0, m=3.0)
expected = np.array([0.00442081, 0.00559509, 0.00730787, 0.00994682,
0.0143234, 0.0223803, 0.0397873, 0.0830763, 0.173323,
0.320592, 0.508717, 0.696841, 0.844111, 0.934357,
0.977646, 0.993899, 0.998674, 0.999771, 0.999969,
0.999997])
assert_allclose(expected, calculated, rtol=0.001)
# for(float x = -5.0; x < 5.0; x+=0.5) {
# std::cout << ROOT::Math::crystalball_cdf(x, 2.0, 3.0, 2.0, 0.5);
# std::cout << ", ";
# }
calculated = stats.crystalball.cdf(X, beta=2.0, m=3.0, loc=0.5, scale=2.0)
expected = np.array([0.0176832, 0.0223803, 0.0292315, 0.0397873, 0.0567945,
0.0830763, 0.121242, 0.173323, 0.24011, 0.320592,
0.411731, 0.508717, 0.605702, 0.696841, 0.777324,
0.844111, 0.896192, 0.934357, 0.960639, 0.977646])
assert_allclose(expected, calculated, rtol=0.001)
def test_crystalball_function_moments():
"""
All values are calculated using the pdf formula and the integrate function
of Mathematica
"""
# The Last two (alpha, n) pairs test the special case n == alpha**2
beta = np.array([2.0, 1.0, 3.0, 2.0, 3.0])
m = np.array([3.0, 3.0, 2.0, 4.0, 9.0])
# The distribution should be correctly normalised
expected_0th_moment = np.array([1.0, 1.0, 1.0, 1.0, 1.0])
calculated_0th_moment = stats.crystalball._munp(0, beta, m)
assert_allclose(expected_0th_moment, calculated_0th_moment, rtol=0.001)
# calculated using wolframalpha.com
# e.g. for beta = 2 and m = 3 we calculate the norm like this:
# integrate exp(-x^2/2) from -2 to infinity +
# integrate (3/2)^3*exp(-2^2/2)*(3/2-2-x)^(-3) from -infinity to -2
norm = np.array([2.5511, 3.01873, 2.51065, 2.53983, 2.507410455])
a = np.array([-0.21992, -3.03265, np.inf, -0.135335, -0.003174])
expected_1th_moment = a / norm
calculated_1th_moment = stats.crystalball._munp(1, beta, m)
assert_allclose(expected_1th_moment, calculated_1th_moment, rtol=0.001)
a = np.array([np.inf, np.inf, np.inf, 3.2616, 2.519908])
expected_2th_moment = a / norm
calculated_2th_moment = stats.crystalball._munp(2, beta, m)
assert_allclose(expected_2th_moment, calculated_2th_moment, rtol=0.001)
a = np.array([np.inf, np.inf, np.inf, np.inf, -0.0577668])
expected_3th_moment = a / norm
calculated_3th_moment = stats.crystalball._munp(3, beta, m)
assert_allclose(expected_3th_moment, calculated_3th_moment, rtol=0.001)
a = np.array([np.inf, np.inf, np.inf, np.inf, 7.78468])
expected_4th_moment = a / norm
calculated_4th_moment = stats.crystalball._munp(4, beta, m)
assert_allclose(expected_4th_moment, calculated_4th_moment, rtol=0.001)
a = np.array([np.inf, np.inf, np.inf, np.inf, -1.31086])
expected_5th_moment = a / norm
calculated_5th_moment = stats.crystalball._munp(5, beta, m)
assert_allclose(expected_5th_moment, calculated_5th_moment, rtol=0.001)
@pytest.mark.parametrize(
'df1,df2,x',
[(2, 2, [-0.5, 0.2, 1.0, 2.3]),
(4, 11, [-0.5, 0.2, 1.0, 2.3]),
(7, 17, [1, 2, 3, 4, 5])]
)
def test_ncf_edge_case(df1, df2, x):
# Test for edge case described in gh-11660.
# Non-central Fisher distribution when nc = 0
# should be the same as Fisher distribution.
nc = 0
expected_cdf = stats.f.cdf(x, df1, df2)
calculated_cdf = stats.ncf.cdf(x, df1, df2, nc)
assert_allclose(expected_cdf, calculated_cdf, rtol=1e-14)
# when ncf_gen._skip_pdf will be used instead of generic pdf,
# this additional test will be useful.
expected_pdf = stats.f.pdf(x, df1, df2)
calculated_pdf = stats.ncf.pdf(x, df1, df2, nc)
assert_allclose(expected_pdf, calculated_pdf, rtol=1e-6)
def test_ncf_variance():
# Regression test for gh-10658 (incorrect variance formula for ncf).
# The correct value of ncf.var(2, 6, 4), 42.75, can be verified with, for
# example, Wolfram Alpha with the expression
# Variance[NoncentralFRatioDistribution[2, 6, 4]]
# or with the implementation of the noncentral F distribution in the C++
# library Boost.
v = stats.ncf.var(2, 6, 4)
assert_allclose(v, 42.75, rtol=1e-14)
class TestHistogram(object):
def setup_method(self):
np.random.seed(1234)
# We have 8 bins
# [1,2), [2,3), [3,4), [4,5), [5,6), [6,7), [7,8), [8,9)
# But actually np.histogram will put the last 9 also in the [8,9) bin!
# Therefore there is a slight difference below for the last bin, from
# what you might have expected.
histogram = np.histogram([1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5,
6, 6, 6, 6, 7, 7, 7, 8, 8, 9], bins=8)
self.template = stats.rv_histogram(histogram)
data = stats.norm.rvs(loc=1.0, scale=2.5, size=10000, random_state=123)
norm_histogram = np.histogram(data, bins=50)
self.norm_template = stats.rv_histogram(norm_histogram)
def test_pdf(self):
values = np.array([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5])
pdf_values = np.asarray([0.0/25.0, 0.0/25.0, 1.0/25.0, 1.0/25.0,
2.0/25.0, 2.0/25.0, 3.0/25.0, 3.0/25.0,
4.0/25.0, 4.0/25.0, 5.0/25.0, 5.0/25.0,
4.0/25.0, 4.0/25.0, 3.0/25.0, 3.0/25.0,
3.0/25.0, 3.0/25.0, 0.0/25.0, 0.0/25.0])
assert_allclose(self.template.pdf(values), pdf_values)
# Test explicitly the corner cases:
# As stated above the pdf in the bin [8,9) is greater than
# one would naively expect because np.histogram putted the 9
# into the [8,9) bin.
assert_almost_equal(self.template.pdf(8.0), 3.0/25.0)
assert_almost_equal(self.template.pdf(8.5), 3.0/25.0)
# 9 is outside our defined bins [8,9) hence the pdf is already 0
# for a continuous distribution this is fine, because a single value
# does not have a finite probability!
assert_almost_equal(self.template.pdf(9.0), 0.0/25.0)
assert_almost_equal(self.template.pdf(10.0), 0.0/25.0)
x = np.linspace(-2, 2, 10)
assert_allclose(self.norm_template.pdf(x),
stats.norm.pdf(x, loc=1.0, scale=2.5), rtol=0.1)
def test_cdf_ppf(self):
values = np.array([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5])
cdf_values = np.asarray([0.0/25.0, 0.0/25.0, 0.0/25.0, 0.5/25.0,
1.0/25.0, 2.0/25.0, 3.0/25.0, 4.5/25.0,
6.0/25.0, 8.0/25.0, 10.0/25.0, 12.5/25.0,
15.0/25.0, 17.0/25.0, 19.0/25.0, 20.5/25.0,
22.0/25.0, 23.5/25.0, 25.0/25.0, 25.0/25.0])
assert_allclose(self.template.cdf(values), cdf_values)
# First three and last two values in cdf_value are not unique
assert_allclose(self.template.ppf(cdf_values[2:-1]), values[2:-1])
# Test of cdf and ppf are inverse functions
x = np.linspace(1.0, 9.0, 100)
assert_allclose(self.template.ppf(self.template.cdf(x)), x)
x = np.linspace(0.0, 1.0, 100)
assert_allclose(self.template.cdf(self.template.ppf(x)), x)
x = np.linspace(-2, 2, 10)
assert_allclose(self.norm_template.cdf(x),
stats.norm.cdf(x, loc=1.0, scale=2.5), rtol=0.1)
def test_rvs(self):
N = 10000
sample = self.template.rvs(size=N, random_state=123)
assert_equal(np.sum(sample < 1.0), 0.0)
assert_allclose(np.sum(sample <= 2.0), 1.0/25.0 * N, rtol=0.2)
assert_allclose(np.sum(sample <= 2.5), 2.0/25.0 * N, rtol=0.2)
assert_allclose(np.sum(sample <= 3.0), 3.0/25.0 * N, rtol=0.1)
assert_allclose(np.sum(sample <= 3.5), 4.5/25.0 * N, rtol=0.1)
assert_allclose(np.sum(sample <= 4.0), 6.0/25.0 * N, rtol=0.1)
assert_allclose(np.sum(sample <= 4.5), 8.0/25.0 * N, rtol=0.1)
assert_allclose(np.sum(sample <= 5.0), 10.0/25.0 * N, rtol=0.05)
assert_allclose(np.sum(sample <= 5.5), 12.5/25.0 * N, rtol=0.05)
assert_allclose(np.sum(sample <= 6.0), 15.0/25.0 * N, rtol=0.05)
assert_allclose(np.sum(sample <= 6.5), 17.0/25.0 * N, rtol=0.05)
assert_allclose(np.sum(sample <= 7.0), 19.0/25.0 * N, rtol=0.05)
assert_allclose(np.sum(sample <= 7.5), 20.5/25.0 * N, rtol=0.05)
assert_allclose(np.sum(sample <= 8.0), 22.0/25.0 * N, rtol=0.05)
assert_allclose(np.sum(sample <= 8.5), 23.5/25.0 * N, rtol=0.05)
assert_allclose(np.sum(sample <= 9.0), 25.0/25.0 * N, rtol=0.05)
assert_allclose(np.sum(sample <= 9.0), 25.0/25.0 * N, rtol=0.05)
assert_equal(np.sum(sample > 9.0), 0.0)
def test_munp(self):
for n in range(4):
assert_allclose(self.norm_template._munp(n),
stats.norm(1.0, 2.5).moment(n), rtol=0.05)
def test_entropy(self):
assert_allclose(self.norm_template.entropy(),
stats.norm.entropy(loc=1.0, scale=2.5), rtol=0.05)
def test_loguniform():
# This test makes sure the alias of "loguniform" is log-uniform
rv = stats.loguniform(10 ** -3, 10 ** 0)
rvs = rv.rvs(size=10000, random_state=42)
vals, _ = np.histogram(np.log10(rvs), bins=10)
assert 900 <= vals.min() <= vals.max() <= 1100
assert np.abs(np.median(vals) - 1000) <= 10
class TestArgus(object):
def test_argus_rvs_large_chi(self):
# test that the algorithm can handle large values of chi
x = stats.argus.rvs(50, size=500, random_state=325)
assert_almost_equal(stats.argus(50).mean(), x.mean(), decimal=4)
def test_argus_rvs_ratio_uniforms(self):
# test that the ratio of uniforms algorithms works for chi > 2.611
x = stats.argus.rvs(3.5, size=1500, random_state=1535)
assert_almost_equal(stats.argus(3.5).mean(), x.mean(), decimal=3)
assert_almost_equal(stats.argus(3.5).std(), x.std(), decimal=3)
def test_rvs_no_size_warning():
class rvs_no_size_gen(stats.rv_continuous):
def _rvs(self):
return 1
rvs_no_size = rvs_no_size_gen(name='rvs_no_size')
with assert_warns(np.VisibleDeprecationWarning):
rvs_no_size.rvs()