1374 lines
48 KiB
Python
1374 lines
48 KiB
Python
# -*- coding: utf-8 -*-
|
||
from collections.abc import Mapping
|
||
import re
|
||
|
||
import pytest
|
||
from scipy import sparse
|
||
|
||
from sklearn.feature_extraction.text import strip_tags
|
||
from sklearn.feature_extraction.text import strip_accents_unicode
|
||
from sklearn.feature_extraction.text import strip_accents_ascii
|
||
|
||
from sklearn.feature_extraction.text import HashingVectorizer
|
||
from sklearn.feature_extraction.text import CountVectorizer
|
||
from sklearn.feature_extraction.text import TfidfTransformer
|
||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||
from sklearn.feature_extraction.text import VectorizerMixin
|
||
|
||
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
|
||
|
||
from sklearn.model_selection import train_test_split
|
||
from sklearn.model_selection import cross_val_score
|
||
from sklearn.model_selection import GridSearchCV
|
||
from sklearn.pipeline import Pipeline
|
||
from sklearn.svm import LinearSVC
|
||
|
||
from sklearn.base import clone
|
||
|
||
import numpy as np
|
||
from numpy.testing import assert_array_almost_equal
|
||
from numpy.testing import assert_array_equal
|
||
from sklearn.utils import IS_PYPY
|
||
from sklearn.utils._testing import (assert_almost_equal,
|
||
assert_warns_message, assert_raise_message,
|
||
assert_no_warnings,
|
||
fails_if_pypy,
|
||
assert_allclose_dense_sparse,
|
||
skip_if_32bit)
|
||
from collections import defaultdict
|
||
from functools import partial
|
||
import pickle
|
||
from io import StringIO
|
||
|
||
JUNK_FOOD_DOCS = (
|
||
"the pizza pizza beer copyright",
|
||
"the pizza burger beer copyright",
|
||
"the the pizza beer beer copyright",
|
||
"the burger beer beer copyright",
|
||
"the coke burger coke copyright",
|
||
"the coke burger burger",
|
||
)
|
||
|
||
NOTJUNK_FOOD_DOCS = (
|
||
"the salad celeri copyright",
|
||
"the salad salad sparkling water copyright",
|
||
"the the celeri celeri copyright",
|
||
"the tomato tomato salad water",
|
||
"the tomato salad water copyright",
|
||
)
|
||
|
||
ALL_FOOD_DOCS = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS
|
||
|
||
|
||
def uppercase(s):
|
||
return strip_accents_unicode(s).upper()
|
||
|
||
|
||
def strip_eacute(s):
|
||
return s.replace('é', 'e')
|
||
|
||
|
||
def split_tokenize(s):
|
||
return s.split()
|
||
|
||
|
||
def lazy_analyze(s):
|
||
return ['the_ultimate_feature']
|
||
|
||
|
||
def test_strip_accents():
|
||
# check some classical latin accentuated symbols
|
||
a = 'àáâãäåçèéêë'
|
||
expected = 'aaaaaaceeee'
|
||
assert strip_accents_unicode(a) == expected
|
||
|
||
a = 'ìíîïñòóôõöùúûüý'
|
||
expected = 'iiiinooooouuuuy'
|
||
assert strip_accents_unicode(a) == expected
|
||
|
||
# check some arabic
|
||
a = '\u0625' # alef with a hamza below: إ
|
||
expected = '\u0627' # simple alef: ا
|
||
assert strip_accents_unicode(a) == expected
|
||
|
||
# mix letters accentuated and not
|
||
a = "this is à test"
|
||
expected = 'this is a test'
|
||
assert strip_accents_unicode(a) == expected
|
||
|
||
# strings that are already decomposed
|
||
a = "o\u0308" # o with diaresis
|
||
expected = "o"
|
||
assert strip_accents_unicode(a) == expected
|
||
|
||
# combining marks by themselves
|
||
a = "\u0300\u0301\u0302\u0303"
|
||
expected = ""
|
||
assert strip_accents_unicode(a) == expected
|
||
|
||
# Multiple combining marks on one character
|
||
a = "o\u0308\u0304"
|
||
expected = "o"
|
||
assert strip_accents_unicode(a) == expected
|
||
|
||
|
||
def test_to_ascii():
|
||
# check some classical latin accentuated symbols
|
||
a = 'àáâãäåçèéêë'
|
||
expected = 'aaaaaaceeee'
|
||
assert strip_accents_ascii(a) == expected
|
||
|
||
a = "ìíîïñòóôõöùúûüý"
|
||
expected = 'iiiinooooouuuuy'
|
||
assert strip_accents_ascii(a) == expected
|
||
|
||
# check some arabic
|
||
a = '\u0625' # halef with a hamza below
|
||
expected = '' # halef has no direct ascii match
|
||
assert strip_accents_ascii(a) == expected
|
||
|
||
# mix letters accentuated and not
|
||
a = "this is à test"
|
||
expected = 'this is a test'
|
||
assert strip_accents_ascii(a) == expected
|
||
|
||
|
||
@pytest.mark.parametrize('Vectorizer', (CountVectorizer, HashingVectorizer))
|
||
def test_word_analyzer_unigrams(Vectorizer):
|
||
wa = Vectorizer(strip_accents='ascii').build_analyzer()
|
||
text = ("J'ai mangé du kangourou ce midi, "
|
||
"c'était pas très bon.")
|
||
expected = ['ai', 'mange', 'du', 'kangourou', 'ce', 'midi',
|
||
'etait', 'pas', 'tres', 'bon']
|
||
assert wa(text) == expected
|
||
|
||
text = "This is a test, really.\n\n I met Harry yesterday."
|
||
expected = ['this', 'is', 'test', 'really', 'met', 'harry',
|
||
'yesterday']
|
||
assert wa(text) == expected
|
||
|
||
wa = Vectorizer(input='file').build_analyzer()
|
||
text = StringIO("This is a test with a file-like object!")
|
||
expected = ['this', 'is', 'test', 'with', 'file', 'like',
|
||
'object']
|
||
assert wa(text) == expected
|
||
|
||
# with custom preprocessor
|
||
wa = Vectorizer(preprocessor=uppercase).build_analyzer()
|
||
text = ("J'ai mangé du kangourou ce midi, "
|
||
" c'était pas très bon.")
|
||
expected = ['AI', 'MANGE', 'DU', 'KANGOUROU', 'CE', 'MIDI',
|
||
'ETAIT', 'PAS', 'TRES', 'BON']
|
||
assert wa(text) == expected
|
||
|
||
# with custom tokenizer
|
||
wa = Vectorizer(tokenizer=split_tokenize,
|
||
strip_accents='ascii').build_analyzer()
|
||
text = ("J'ai mangé du kangourou ce midi, "
|
||
"c'était pas très bon.")
|
||
expected = ["j'ai", 'mange', 'du', 'kangourou', 'ce', 'midi,',
|
||
"c'etait", 'pas', 'tres', 'bon.']
|
||
assert wa(text) == expected
|
||
|
||
|
||
def test_word_analyzer_unigrams_and_bigrams():
|
||
wa = CountVectorizer(analyzer="word", strip_accents='unicode',
|
||
ngram_range=(1, 2)).build_analyzer()
|
||
|
||
text = "J'ai mangé du kangourou ce midi, c'était pas très bon."
|
||
expected = ['ai', 'mange', 'du', 'kangourou', 'ce', 'midi',
|
||
'etait', 'pas', 'tres', 'bon', 'ai mange', 'mange du',
|
||
'du kangourou', 'kangourou ce', 'ce midi', 'midi etait',
|
||
'etait pas', 'pas tres', 'tres bon']
|
||
assert wa(text) == expected
|
||
|
||
|
||
def test_unicode_decode_error():
|
||
# decode_error default to strict, so this should fail
|
||
# First, encode (as bytes) a unicode string.
|
||
text = "J'ai mangé du kangourou ce midi, c'était pas très bon."
|
||
text_bytes = text.encode('utf-8')
|
||
|
||
# Then let the Analyzer try to decode it as ascii. It should fail,
|
||
# because we have given it an incorrect encoding.
|
||
wa = CountVectorizer(ngram_range=(1, 2), encoding='ascii').build_analyzer()
|
||
with pytest.raises(UnicodeDecodeError):
|
||
wa(text_bytes)
|
||
|
||
ca = CountVectorizer(analyzer='char', ngram_range=(3, 6),
|
||
encoding='ascii').build_analyzer()
|
||
with pytest.raises(UnicodeDecodeError):
|
||
ca(text_bytes)
|
||
|
||
|
||
def test_char_ngram_analyzer():
|
||
cnga = CountVectorizer(analyzer='char', strip_accents='unicode',
|
||
ngram_range=(3, 6)).build_analyzer()
|
||
|
||
text = "J'ai mangé du kangourou ce midi, c'était pas très bon"
|
||
expected = ["j'a", "'ai", 'ai ', 'i m', ' ma']
|
||
assert cnga(text)[:5] == expected
|
||
expected = ['s tres', ' tres ', 'tres b', 'res bo', 'es bon']
|
||
assert cnga(text)[-5:] == expected
|
||
|
||
text = "This \n\tis a test, really.\n\n I met Harry yesterday"
|
||
expected = ['thi', 'his', 'is ', 's i', ' is']
|
||
assert cnga(text)[:5] == expected
|
||
|
||
expected = [' yeste', 'yester', 'esterd', 'sterda', 'terday']
|
||
assert cnga(text)[-5:] == expected
|
||
|
||
cnga = CountVectorizer(input='file', analyzer='char',
|
||
ngram_range=(3, 6)).build_analyzer()
|
||
text = StringIO("This is a test with a file-like object!")
|
||
expected = ['thi', 'his', 'is ', 's i', ' is']
|
||
assert cnga(text)[:5] == expected
|
||
|
||
|
||
def test_char_wb_ngram_analyzer():
|
||
cnga = CountVectorizer(analyzer='char_wb', strip_accents='unicode',
|
||
ngram_range=(3, 6)).build_analyzer()
|
||
|
||
text = "This \n\tis a test, really.\n\n I met Harry yesterday"
|
||
expected = [' th', 'thi', 'his', 'is ', ' thi']
|
||
assert cnga(text)[:5] == expected
|
||
|
||
expected = ['yester', 'esterd', 'sterda', 'terday', 'erday ']
|
||
assert cnga(text)[-5:] == expected
|
||
|
||
cnga = CountVectorizer(input='file', analyzer='char_wb',
|
||
ngram_range=(3, 6)).build_analyzer()
|
||
text = StringIO("A test with a file-like object!")
|
||
expected = [' a ', ' te', 'tes', 'est', 'st ', ' tes']
|
||
assert cnga(text)[:6] == expected
|
||
|
||
|
||
def test_word_ngram_analyzer():
|
||
cnga = CountVectorizer(analyzer='word', strip_accents='unicode',
|
||
ngram_range=(3, 6)).build_analyzer()
|
||
|
||
text = "This \n\tis a test, really.\n\n I met Harry yesterday"
|
||
expected = ['this is test', 'is test really', 'test really met']
|
||
assert cnga(text)[:3] == expected
|
||
|
||
expected = ['test really met harry yesterday',
|
||
'this is test really met harry',
|
||
'is test really met harry yesterday']
|
||
assert cnga(text)[-3:] == expected
|
||
|
||
cnga_file = CountVectorizer(input='file', analyzer='word',
|
||
ngram_range=(3, 6)).build_analyzer()
|
||
file = StringIO(text)
|
||
assert cnga_file(file) == cnga(text)
|
||
|
||
|
||
def test_countvectorizer_custom_vocabulary():
|
||
vocab = {"pizza": 0, "beer": 1}
|
||
terms = set(vocab.keys())
|
||
|
||
# Try a few of the supported types.
|
||
for typ in [dict, list, iter, partial(defaultdict, int)]:
|
||
v = typ(vocab)
|
||
vect = CountVectorizer(vocabulary=v)
|
||
vect.fit(JUNK_FOOD_DOCS)
|
||
if isinstance(v, Mapping):
|
||
assert vect.vocabulary_ == vocab
|
||
else:
|
||
assert set(vect.vocabulary_) == terms
|
||
X = vect.transform(JUNK_FOOD_DOCS)
|
||
assert X.shape[1] == len(terms)
|
||
v = typ(vocab)
|
||
vect = CountVectorizer(vocabulary=v)
|
||
inv = vect.inverse_transform(X)
|
||
assert len(inv) == X.shape[0]
|
||
|
||
|
||
def test_countvectorizer_custom_vocabulary_pipeline():
|
||
what_we_like = ["pizza", "beer"]
|
||
pipe = Pipeline([
|
||
('count', CountVectorizer(vocabulary=what_we_like)),
|
||
('tfidf', TfidfTransformer())])
|
||
X = pipe.fit_transform(ALL_FOOD_DOCS)
|
||
assert (set(pipe.named_steps['count'].vocabulary_) ==
|
||
set(what_we_like))
|
||
assert X.shape[1] == len(what_we_like)
|
||
|
||
|
||
def test_countvectorizer_custom_vocabulary_repeated_indices():
|
||
vocab = {"pizza": 0, "beer": 0}
|
||
msg = "Vocabulary contains repeated indices"
|
||
with pytest.raises(ValueError, match=msg):
|
||
vect = CountVectorizer(vocabulary=vocab)
|
||
vect.fit(["pasta_siziliana"])
|
||
|
||
|
||
def test_countvectorizer_custom_vocabulary_gap_index():
|
||
vocab = {"pizza": 1, "beer": 2}
|
||
with pytest.raises(ValueError, match="doesn't contain index"):
|
||
vect = CountVectorizer(vocabulary=vocab)
|
||
vect.fit(['pasta_verdura'])
|
||
|
||
|
||
def test_countvectorizer_stop_words():
|
||
cv = CountVectorizer()
|
||
cv.set_params(stop_words='english')
|
||
assert cv.get_stop_words() == ENGLISH_STOP_WORDS
|
||
cv.set_params(stop_words='_bad_str_stop_')
|
||
with pytest.raises(ValueError):
|
||
cv.get_stop_words()
|
||
cv.set_params(stop_words='_bad_unicode_stop_')
|
||
with pytest.raises(ValueError):
|
||
cv.get_stop_words()
|
||
stoplist = ['some', 'other', 'words']
|
||
cv.set_params(stop_words=stoplist)
|
||
assert cv.get_stop_words() == set(stoplist)
|
||
|
||
|
||
def test_countvectorizer_empty_vocabulary():
|
||
with pytest.raises(ValueError, match="empty vocabulary"):
|
||
vect = CountVectorizer(vocabulary=[])
|
||
vect.fit(["foo"])
|
||
|
||
with pytest.raises(ValueError, match="empty vocabulary"):
|
||
v = CountVectorizer(max_df=1.0, stop_words="english")
|
||
# fit on stopwords only
|
||
v.fit(["to be or not to be", "and me too", "and so do you"])
|
||
|
||
|
||
def test_fit_countvectorizer_twice():
|
||
cv = CountVectorizer()
|
||
X1 = cv.fit_transform(ALL_FOOD_DOCS[:5])
|
||
X2 = cv.fit_transform(ALL_FOOD_DOCS[5:])
|
||
assert X1.shape[1] != X2.shape[1]
|
||
|
||
|
||
def test_tf_idf_smoothing():
|
||
X = [[1, 1, 1],
|
||
[1, 1, 0],
|
||
[1, 0, 0]]
|
||
tr = TfidfTransformer(smooth_idf=True, norm='l2')
|
||
tfidf = tr.fit_transform(X).toarray()
|
||
assert (tfidf >= 0).all()
|
||
|
||
# check normalization
|
||
assert_array_almost_equal((tfidf ** 2).sum(axis=1), [1., 1., 1.])
|
||
|
||
# this is robust to features with only zeros
|
||
X = [[1, 1, 0],
|
||
[1, 1, 0],
|
||
[1, 0, 0]]
|
||
tr = TfidfTransformer(smooth_idf=True, norm='l2')
|
||
tfidf = tr.fit_transform(X).toarray()
|
||
assert (tfidf >= 0).all()
|
||
|
||
|
||
def test_tfidf_no_smoothing():
|
||
X = [[1, 1, 1],
|
||
[1, 1, 0],
|
||
[1, 0, 0]]
|
||
tr = TfidfTransformer(smooth_idf=False, norm='l2')
|
||
tfidf = tr.fit_transform(X).toarray()
|
||
assert (tfidf >= 0).all()
|
||
|
||
# check normalization
|
||
assert_array_almost_equal((tfidf ** 2).sum(axis=1), [1., 1., 1.])
|
||
|
||
# the lack of smoothing make IDF fragile in the presence of feature with
|
||
# only zeros
|
||
X = [[1, 1, 0],
|
||
[1, 1, 0],
|
||
[1, 0, 0]]
|
||
tr = TfidfTransformer(smooth_idf=False, norm='l2')
|
||
|
||
in_warning_message = 'divide by zero'
|
||
assert_warns_message(RuntimeWarning, in_warning_message,
|
||
tr.fit_transform, X).toarray()
|
||
|
||
|
||
def test_sublinear_tf():
|
||
X = [[1], [2], [3]]
|
||
tr = TfidfTransformer(sublinear_tf=True, use_idf=False, norm=None)
|
||
tfidf = tr.fit_transform(X).toarray()
|
||
assert tfidf[0] == 1
|
||
assert tfidf[1] > tfidf[0]
|
||
assert tfidf[2] > tfidf[1]
|
||
assert tfidf[1] < 2
|
||
assert tfidf[2] < 3
|
||
|
||
|
||
def test_vectorizer():
|
||
# raw documents as an iterator
|
||
train_data = iter(ALL_FOOD_DOCS[:-1])
|
||
test_data = [ALL_FOOD_DOCS[-1]]
|
||
n_train = len(ALL_FOOD_DOCS) - 1
|
||
|
||
# test without vocabulary
|
||
v1 = CountVectorizer(max_df=0.5)
|
||
counts_train = v1.fit_transform(train_data)
|
||
if hasattr(counts_train, 'tocsr'):
|
||
counts_train = counts_train.tocsr()
|
||
assert counts_train[0, v1.vocabulary_["pizza"]] == 2
|
||
|
||
# build a vectorizer v1 with the same vocabulary as the one fitted by v1
|
||
v2 = CountVectorizer(vocabulary=v1.vocabulary_)
|
||
|
||
# compare that the two vectorizer give the same output on the test sample
|
||
for v in (v1, v2):
|
||
counts_test = v.transform(test_data)
|
||
if hasattr(counts_test, 'tocsr'):
|
||
counts_test = counts_test.tocsr()
|
||
|
||
vocabulary = v.vocabulary_
|
||
assert counts_test[0, vocabulary["salad"]] == 1
|
||
assert counts_test[0, vocabulary["tomato"]] == 1
|
||
assert counts_test[0, vocabulary["water"]] == 1
|
||
|
||
# stop word from the fixed list
|
||
assert "the" not in vocabulary
|
||
|
||
# stop word found automatically by the vectorizer DF thresholding
|
||
# words that are high frequent across the complete corpus are likely
|
||
# to be not informative (either real stop words of extraction
|
||
# artifacts)
|
||
assert "copyright" not in vocabulary
|
||
|
||
# not present in the sample
|
||
assert counts_test[0, vocabulary["coke"]] == 0
|
||
assert counts_test[0, vocabulary["burger"]] == 0
|
||
assert counts_test[0, vocabulary["beer"]] == 0
|
||
assert counts_test[0, vocabulary["pizza"]] == 0
|
||
|
||
# test tf-idf
|
||
t1 = TfidfTransformer(norm='l1')
|
||
tfidf = t1.fit(counts_train).transform(counts_train).toarray()
|
||
assert len(t1.idf_) == len(v1.vocabulary_)
|
||
assert tfidf.shape == (n_train, len(v1.vocabulary_))
|
||
|
||
# test tf-idf with new data
|
||
tfidf_test = t1.transform(counts_test).toarray()
|
||
assert tfidf_test.shape == (len(test_data), len(v1.vocabulary_))
|
||
|
||
# test tf alone
|
||
t2 = TfidfTransformer(norm='l1', use_idf=False)
|
||
tf = t2.fit(counts_train).transform(counts_train).toarray()
|
||
assert not hasattr(t2, "idf_")
|
||
|
||
# test idf transform with unlearned idf vector
|
||
t3 = TfidfTransformer(use_idf=True)
|
||
with pytest.raises(ValueError):
|
||
t3.transform(counts_train)
|
||
|
||
# test idf transform with incompatible n_features
|
||
X = [[1, 1, 5],
|
||
[1, 1, 0]]
|
||
t3.fit(X)
|
||
X_incompt = [[1, 3],
|
||
[1, 3]]
|
||
with pytest.raises(ValueError):
|
||
t3.transform(X_incompt)
|
||
|
||
# L1-normalized term frequencies sum to one
|
||
assert_array_almost_equal(np.sum(tf, axis=1), [1.0] * n_train)
|
||
|
||
# test the direct tfidf vectorizer
|
||
# (equivalent to term count vectorizer + tfidf transformer)
|
||
train_data = iter(ALL_FOOD_DOCS[:-1])
|
||
tv = TfidfVectorizer(norm='l1')
|
||
|
||
tv.max_df = v1.max_df
|
||
tfidf2 = tv.fit_transform(train_data).toarray()
|
||
assert not tv.fixed_vocabulary_
|
||
assert_array_almost_equal(tfidf, tfidf2)
|
||
|
||
# test the direct tfidf vectorizer with new data
|
||
tfidf_test2 = tv.transform(test_data).toarray()
|
||
assert_array_almost_equal(tfidf_test, tfidf_test2)
|
||
|
||
# test transform on unfitted vectorizer with empty vocabulary
|
||
v3 = CountVectorizer(vocabulary=None)
|
||
with pytest.raises(ValueError):
|
||
v3.transform(train_data)
|
||
|
||
# ascii preprocessor?
|
||
v3.set_params(strip_accents='ascii', lowercase=False)
|
||
processor = v3.build_preprocessor()
|
||
text = ("J'ai mangé du kangourou ce midi, "
|
||
"c'était pas très bon.")
|
||
expected = strip_accents_ascii(text)
|
||
result = processor(text)
|
||
assert expected == result
|
||
|
||
# error on bad strip_accents param
|
||
v3.set_params(strip_accents='_gabbledegook_', preprocessor=None)
|
||
with pytest.raises(ValueError):
|
||
v3.build_preprocessor()
|
||
|
||
# error with bad analyzer type
|
||
v3.set_params = '_invalid_analyzer_type_'
|
||
with pytest.raises(ValueError):
|
||
v3.build_analyzer()
|
||
|
||
|
||
def test_tfidf_vectorizer_setters():
|
||
tv = TfidfVectorizer(norm='l2', use_idf=False, smooth_idf=False,
|
||
sublinear_tf=False)
|
||
tv.norm = 'l1'
|
||
assert tv._tfidf.norm == 'l1'
|
||
tv.use_idf = True
|
||
assert tv._tfidf.use_idf
|
||
tv.smooth_idf = True
|
||
assert tv._tfidf.smooth_idf
|
||
tv.sublinear_tf = True
|
||
assert tv._tfidf.sublinear_tf
|
||
|
||
|
||
# FIXME Remove copy parameter support in 0.24
|
||
def test_tfidf_vectorizer_deprecationwarning():
|
||
msg = ("'copy' param is unused and has been deprecated since "
|
||
"version 0.22. Backward compatibility for 'copy' will "
|
||
"be removed in 0.24.")
|
||
with pytest.warns(FutureWarning, match=msg):
|
||
tv = TfidfVectorizer()
|
||
train_data = JUNK_FOOD_DOCS
|
||
tv.fit(train_data)
|
||
tv.transform(train_data, copy=True)
|
||
|
||
|
||
@fails_if_pypy
|
||
def test_hashing_vectorizer():
|
||
v = HashingVectorizer()
|
||
X = v.transform(ALL_FOOD_DOCS)
|
||
token_nnz = X.nnz
|
||
assert X.shape == (len(ALL_FOOD_DOCS), v.n_features)
|
||
assert X.dtype == v.dtype
|
||
|
||
# By default the hashed values receive a random sign and l2 normalization
|
||
# makes the feature values bounded
|
||
assert np.min(X.data) > -1
|
||
assert np.min(X.data) < 0
|
||
assert np.max(X.data) > 0
|
||
assert np.max(X.data) < 1
|
||
|
||
# Check that the rows are normalized
|
||
for i in range(X.shape[0]):
|
||
assert_almost_equal(np.linalg.norm(X[0].data, 2), 1.0)
|
||
|
||
# Check vectorization with some non-default parameters
|
||
v = HashingVectorizer(ngram_range=(1, 2), norm='l1')
|
||
X = v.transform(ALL_FOOD_DOCS)
|
||
assert X.shape == (len(ALL_FOOD_DOCS), v.n_features)
|
||
assert X.dtype == v.dtype
|
||
|
||
# ngrams generate more non zeros
|
||
ngrams_nnz = X.nnz
|
||
assert ngrams_nnz > token_nnz
|
||
assert ngrams_nnz < 2 * token_nnz
|
||
|
||
# makes the feature values bounded
|
||
assert np.min(X.data) > -1
|
||
assert np.max(X.data) < 1
|
||
|
||
# Check that the rows are normalized
|
||
for i in range(X.shape[0]):
|
||
assert_almost_equal(np.linalg.norm(X[0].data, 1), 1.0)
|
||
|
||
|
||
def test_feature_names():
|
||
cv = CountVectorizer(max_df=0.5)
|
||
|
||
# test for Value error on unfitted/empty vocabulary
|
||
with pytest.raises(ValueError):
|
||
cv.get_feature_names()
|
||
assert not cv.fixed_vocabulary_
|
||
|
||
# test for vocabulary learned from data
|
||
X = cv.fit_transform(ALL_FOOD_DOCS)
|
||
n_samples, n_features = X.shape
|
||
assert len(cv.vocabulary_) == n_features
|
||
|
||
feature_names = cv.get_feature_names()
|
||
assert len(feature_names) == n_features
|
||
assert_array_equal(['beer', 'burger', 'celeri', 'coke', 'pizza',
|
||
'salad', 'sparkling', 'tomato', 'water'],
|
||
feature_names)
|
||
|
||
for idx, name in enumerate(feature_names):
|
||
assert idx == cv.vocabulary_.get(name)
|
||
|
||
# test for custom vocabulary
|
||
vocab = ['beer', 'burger', 'celeri', 'coke', 'pizza',
|
||
'salad', 'sparkling', 'tomato', 'water']
|
||
|
||
cv = CountVectorizer(vocabulary=vocab)
|
||
feature_names = cv.get_feature_names()
|
||
assert_array_equal(['beer', 'burger', 'celeri', 'coke', 'pizza', 'salad',
|
||
'sparkling', 'tomato', 'water'], feature_names)
|
||
assert cv.fixed_vocabulary_
|
||
|
||
for idx, name in enumerate(feature_names):
|
||
assert idx == cv.vocabulary_.get(name)
|
||
|
||
|
||
@pytest.mark.parametrize('Vectorizer', (CountVectorizer, TfidfVectorizer))
|
||
def test_vectorizer_max_features(Vectorizer):
|
||
expected_vocabulary = {'burger', 'beer', 'salad', 'pizza'}
|
||
expected_stop_words = {'celeri', 'tomato', 'copyright', 'coke',
|
||
'sparkling', 'water', 'the'}
|
||
|
||
# test bounded number of extracted features
|
||
vectorizer = Vectorizer(max_df=0.6, max_features=4)
|
||
vectorizer.fit(ALL_FOOD_DOCS)
|
||
assert set(vectorizer.vocabulary_) == expected_vocabulary
|
||
assert vectorizer.stop_words_ == expected_stop_words
|
||
|
||
|
||
def test_count_vectorizer_max_features():
|
||
# Regression test: max_features didn't work correctly in 0.14.
|
||
|
||
cv_1 = CountVectorizer(max_features=1)
|
||
cv_3 = CountVectorizer(max_features=3)
|
||
cv_None = CountVectorizer(max_features=None)
|
||
|
||
counts_1 = cv_1.fit_transform(JUNK_FOOD_DOCS).sum(axis=0)
|
||
counts_3 = cv_3.fit_transform(JUNK_FOOD_DOCS).sum(axis=0)
|
||
counts_None = cv_None.fit_transform(JUNK_FOOD_DOCS).sum(axis=0)
|
||
|
||
features_1 = cv_1.get_feature_names()
|
||
features_3 = cv_3.get_feature_names()
|
||
features_None = cv_None.get_feature_names()
|
||
|
||
# The most common feature is "the", with frequency 7.
|
||
assert 7 == counts_1.max()
|
||
assert 7 == counts_3.max()
|
||
assert 7 == counts_None.max()
|
||
|
||
# The most common feature should be the same
|
||
assert "the" == features_1[np.argmax(counts_1)]
|
||
assert "the" == features_3[np.argmax(counts_3)]
|
||
assert "the" == features_None[np.argmax(counts_None)]
|
||
|
||
|
||
def test_vectorizer_max_df():
|
||
test_data = ['abc', 'dea', 'eat']
|
||
vect = CountVectorizer(analyzer='char', max_df=1.0)
|
||
vect.fit(test_data)
|
||
assert 'a' in vect.vocabulary_.keys()
|
||
assert len(vect.vocabulary_.keys()) == 6
|
||
assert len(vect.stop_words_) == 0
|
||
|
||
vect.max_df = 0.5 # 0.5 * 3 documents -> max_doc_count == 1.5
|
||
vect.fit(test_data)
|
||
assert 'a' not in vect.vocabulary_.keys() # {ae} ignored
|
||
assert len(vect.vocabulary_.keys()) == 4 # {bcdt} remain
|
||
assert 'a' in vect.stop_words_
|
||
assert len(vect.stop_words_) == 2
|
||
|
||
vect.max_df = 1
|
||
vect.fit(test_data)
|
||
assert 'a' not in vect.vocabulary_.keys() # {ae} ignored
|
||
assert len(vect.vocabulary_.keys()) == 4 # {bcdt} remain
|
||
assert 'a' in vect.stop_words_
|
||
assert len(vect.stop_words_) == 2
|
||
|
||
|
||
def test_vectorizer_min_df():
|
||
test_data = ['abc', 'dea', 'eat']
|
||
vect = CountVectorizer(analyzer='char', min_df=1)
|
||
vect.fit(test_data)
|
||
assert 'a' in vect.vocabulary_.keys()
|
||
assert len(vect.vocabulary_.keys()) == 6
|
||
assert len(vect.stop_words_) == 0
|
||
|
||
vect.min_df = 2
|
||
vect.fit(test_data)
|
||
assert 'c' not in vect.vocabulary_.keys() # {bcdt} ignored
|
||
assert len(vect.vocabulary_.keys()) == 2 # {ae} remain
|
||
assert 'c' in vect.stop_words_
|
||
assert len(vect.stop_words_) == 4
|
||
|
||
vect.min_df = 0.8 # 0.8 * 3 documents -> min_doc_count == 2.4
|
||
vect.fit(test_data)
|
||
assert 'c' not in vect.vocabulary_.keys() # {bcdet} ignored
|
||
assert len(vect.vocabulary_.keys()) == 1 # {a} remains
|
||
assert 'c' in vect.stop_words_
|
||
assert len(vect.stop_words_) == 5
|
||
|
||
|
||
def test_count_binary_occurrences():
|
||
# by default multiple occurrences are counted as longs
|
||
test_data = ['aaabc', 'abbde']
|
||
vect = CountVectorizer(analyzer='char', max_df=1.0)
|
||
X = vect.fit_transform(test_data).toarray()
|
||
assert_array_equal(['a', 'b', 'c', 'd', 'e'], vect.get_feature_names())
|
||
assert_array_equal([[3, 1, 1, 0, 0],
|
||
[1, 2, 0, 1, 1]], X)
|
||
|
||
# using boolean features, we can fetch the binary occurrence info
|
||
# instead.
|
||
vect = CountVectorizer(analyzer='char', max_df=1.0, binary=True)
|
||
X = vect.fit_transform(test_data).toarray()
|
||
assert_array_equal([[1, 1, 1, 0, 0],
|
||
[1, 1, 0, 1, 1]], X)
|
||
|
||
# check the ability to change the dtype
|
||
vect = CountVectorizer(analyzer='char', max_df=1.0,
|
||
binary=True, dtype=np.float32)
|
||
X_sparse = vect.fit_transform(test_data)
|
||
assert X_sparse.dtype == np.float32
|
||
|
||
|
||
@fails_if_pypy
|
||
def test_hashed_binary_occurrences():
|
||
# by default multiple occurrences are counted as longs
|
||
test_data = ['aaabc', 'abbde']
|
||
vect = HashingVectorizer(alternate_sign=False, analyzer='char', norm=None)
|
||
X = vect.transform(test_data)
|
||
assert np.max(X[0:1].data) == 3
|
||
assert np.max(X[1:2].data) == 2
|
||
assert X.dtype == np.float64
|
||
|
||
# using boolean features, we can fetch the binary occurrence info
|
||
# instead.
|
||
vect = HashingVectorizer(analyzer='char', alternate_sign=False,
|
||
binary=True, norm=None)
|
||
X = vect.transform(test_data)
|
||
assert np.max(X.data) == 1
|
||
assert X.dtype == np.float64
|
||
|
||
# check the ability to change the dtype
|
||
vect = HashingVectorizer(analyzer='char', alternate_sign=False,
|
||
binary=True, norm=None, dtype=np.float64)
|
||
X = vect.transform(test_data)
|
||
assert X.dtype == np.float64
|
||
|
||
|
||
@pytest.mark.parametrize('Vectorizer', (CountVectorizer, TfidfVectorizer))
|
||
def test_vectorizer_inverse_transform(Vectorizer):
|
||
# raw documents
|
||
data = ALL_FOOD_DOCS
|
||
vectorizer = Vectorizer()
|
||
transformed_data = vectorizer.fit_transform(data)
|
||
inversed_data = vectorizer.inverse_transform(transformed_data)
|
||
analyze = vectorizer.build_analyzer()
|
||
for doc, inversed_terms in zip(data, inversed_data):
|
||
terms = np.sort(np.unique(analyze(doc)))
|
||
inversed_terms = np.sort(np.unique(inversed_terms))
|
||
assert_array_equal(terms, inversed_terms)
|
||
|
||
# Test that inverse_transform also works with numpy arrays
|
||
transformed_data = transformed_data.toarray()
|
||
inversed_data2 = vectorizer.inverse_transform(transformed_data)
|
||
for terms, terms2 in zip(inversed_data, inversed_data2):
|
||
assert_array_equal(np.sort(terms), np.sort(terms2))
|
||
|
||
|
||
def test_count_vectorizer_pipeline_grid_selection():
|
||
# raw documents
|
||
data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS
|
||
|
||
# label junk food as -1, the others as +1
|
||
target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS)
|
||
|
||
# split the dataset for model development and final evaluation
|
||
train_data, test_data, target_train, target_test = train_test_split(
|
||
data, target, test_size=.2, random_state=0)
|
||
|
||
pipeline = Pipeline([('vect', CountVectorizer()),
|
||
('svc', LinearSVC())])
|
||
|
||
parameters = {
|
||
'vect__ngram_range': [(1, 1), (1, 2)],
|
||
'svc__loss': ('hinge', 'squared_hinge')
|
||
}
|
||
|
||
# find the best parameters for both the feature extraction and the
|
||
# classifier
|
||
grid_search = GridSearchCV(pipeline, parameters, n_jobs=1, cv=3)
|
||
|
||
# Check that the best model found by grid search is 100% correct on the
|
||
# held out evaluation set.
|
||
pred = grid_search.fit(train_data, target_train).predict(test_data)
|
||
assert_array_equal(pred, target_test)
|
||
|
||
# on this toy dataset bigram representation which is used in the last of
|
||
# the grid_search is considered the best estimator since they all converge
|
||
# to 100% accuracy models
|
||
assert grid_search.best_score_ == 1.0
|
||
best_vectorizer = grid_search.best_estimator_.named_steps['vect']
|
||
assert best_vectorizer.ngram_range == (1, 1)
|
||
|
||
|
||
def test_vectorizer_pipeline_grid_selection():
|
||
# raw documents
|
||
data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS
|
||
|
||
# label junk food as -1, the others as +1
|
||
target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS)
|
||
|
||
# split the dataset for model development and final evaluation
|
||
train_data, test_data, target_train, target_test = train_test_split(
|
||
data, target, test_size=.1, random_state=0)
|
||
|
||
pipeline = Pipeline([('vect', TfidfVectorizer()),
|
||
('svc', LinearSVC())])
|
||
|
||
parameters = {
|
||
'vect__ngram_range': [(1, 1), (1, 2)],
|
||
'vect__norm': ('l1', 'l2'),
|
||
'svc__loss': ('hinge', 'squared_hinge'),
|
||
}
|
||
|
||
# find the best parameters for both the feature extraction and the
|
||
# classifier
|
||
grid_search = GridSearchCV(pipeline, parameters, n_jobs=1)
|
||
|
||
# Check that the best model found by grid search is 100% correct on the
|
||
# held out evaluation set.
|
||
pred = grid_search.fit(train_data, target_train).predict(test_data)
|
||
assert_array_equal(pred, target_test)
|
||
|
||
# on this toy dataset bigram representation which is used in the last of
|
||
# the grid_search is considered the best estimator since they all converge
|
||
# to 100% accuracy models
|
||
assert grid_search.best_score_ == 1.0
|
||
best_vectorizer = grid_search.best_estimator_.named_steps['vect']
|
||
assert best_vectorizer.ngram_range == (1, 1)
|
||
assert best_vectorizer.norm == 'l2'
|
||
assert not best_vectorizer.fixed_vocabulary_
|
||
|
||
|
||
def test_vectorizer_pipeline_cross_validation():
|
||
# raw documents
|
||
data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS
|
||
|
||
# label junk food as -1, the others as +1
|
||
target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS)
|
||
|
||
pipeline = Pipeline([('vect', TfidfVectorizer()),
|
||
('svc', LinearSVC())])
|
||
|
||
cv_scores = cross_val_score(pipeline, data, target, cv=3)
|
||
assert_array_equal(cv_scores, [1., 1., 1.])
|
||
|
||
|
||
@fails_if_pypy
|
||
def test_vectorizer_unicode():
|
||
# tests that the count vectorizer works with cyrillic.
|
||
document = (
|
||
"Машинное обучение — обширный подраздел искусственного "
|
||
"интеллекта, изучающий методы построения алгоритмов, "
|
||
"способных обучаться."
|
||
)
|
||
|
||
vect = CountVectorizer()
|
||
X_counted = vect.fit_transform([document])
|
||
assert X_counted.shape == (1, 12)
|
||
|
||
vect = HashingVectorizer(norm=None, alternate_sign=False)
|
||
X_hashed = vect.transform([document])
|
||
assert X_hashed.shape == (1, 2 ** 20)
|
||
|
||
# No collisions on such a small dataset
|
||
assert X_counted.nnz == X_hashed.nnz
|
||
|
||
# When norm is None and not alternate_sign, the tokens are counted up to
|
||
# collisions
|
||
assert_array_equal(np.sort(X_counted.data), np.sort(X_hashed.data))
|
||
|
||
|
||
def test_tfidf_vectorizer_with_fixed_vocabulary():
|
||
# non regression smoke test for inheritance issues
|
||
vocabulary = ['pizza', 'celeri']
|
||
vect = TfidfVectorizer(vocabulary=vocabulary)
|
||
X_1 = vect.fit_transform(ALL_FOOD_DOCS)
|
||
X_2 = vect.transform(ALL_FOOD_DOCS)
|
||
assert_array_almost_equal(X_1.toarray(), X_2.toarray())
|
||
assert vect.fixed_vocabulary_
|
||
|
||
|
||
def test_pickling_vectorizer():
|
||
instances = [
|
||
HashingVectorizer(),
|
||
HashingVectorizer(norm='l1'),
|
||
HashingVectorizer(binary=True),
|
||
HashingVectorizer(ngram_range=(1, 2)),
|
||
CountVectorizer(),
|
||
CountVectorizer(preprocessor=strip_tags),
|
||
CountVectorizer(analyzer=lazy_analyze),
|
||
CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS),
|
||
CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS),
|
||
TfidfVectorizer(),
|
||
TfidfVectorizer(analyzer=lazy_analyze),
|
||
TfidfVectorizer().fit(JUNK_FOOD_DOCS),
|
||
]
|
||
|
||
for orig in instances:
|
||
s = pickle.dumps(orig)
|
||
copy = pickle.loads(s)
|
||
assert type(copy) == orig.__class__
|
||
assert copy.get_params() == orig.get_params()
|
||
if IS_PYPY and isinstance(orig, HashingVectorizer):
|
||
continue
|
||
else:
|
||
assert_array_equal(
|
||
copy.fit_transform(JUNK_FOOD_DOCS).toarray(),
|
||
orig.fit_transform(JUNK_FOOD_DOCS).toarray())
|
||
|
||
|
||
@pytest.mark.parametrize('factory', [
|
||
CountVectorizer.build_analyzer,
|
||
CountVectorizer.build_preprocessor,
|
||
CountVectorizer.build_tokenizer,
|
||
])
|
||
def test_pickling_built_processors(factory):
|
||
"""Tokenizers cannot be pickled
|
||
https://github.com/scikit-learn/scikit-learn/issues/12833
|
||
"""
|
||
vec = CountVectorizer()
|
||
function = factory(vec)
|
||
text = ("J'ai mangé du kangourou ce midi, "
|
||
"c'était pas très bon.")
|
||
roundtripped_function = pickle.loads(pickle.dumps(function))
|
||
expected = function(text)
|
||
result = roundtripped_function(text)
|
||
assert result == expected
|
||
|
||
|
||
def test_countvectorizer_vocab_sets_when_pickling():
|
||
# ensure that vocabulary of type set is coerced to a list to
|
||
# preserve iteration ordering after deserialization
|
||
rng = np.random.RandomState(0)
|
||
vocab_words = np.array(['beer', 'burger', 'celeri', 'coke', 'pizza',
|
||
'salad', 'sparkling', 'tomato', 'water'])
|
||
for x in range(0, 100):
|
||
vocab_set = set(rng.choice(vocab_words, size=5, replace=False))
|
||
cv = CountVectorizer(vocabulary=vocab_set)
|
||
unpickled_cv = pickle.loads(pickle.dumps(cv))
|
||
cv.fit(ALL_FOOD_DOCS)
|
||
unpickled_cv.fit(ALL_FOOD_DOCS)
|
||
assert cv.get_feature_names() == unpickled_cv.get_feature_names()
|
||
|
||
|
||
def test_countvectorizer_vocab_dicts_when_pickling():
|
||
rng = np.random.RandomState(0)
|
||
vocab_words = np.array(['beer', 'burger', 'celeri', 'coke', 'pizza',
|
||
'salad', 'sparkling', 'tomato', 'water'])
|
||
for x in range(0, 100):
|
||
vocab_dict = dict()
|
||
words = rng.choice(vocab_words, size=5, replace=False)
|
||
for y in range(0, 5):
|
||
vocab_dict[words[y]] = y
|
||
cv = CountVectorizer(vocabulary=vocab_dict)
|
||
unpickled_cv = pickle.loads(pickle.dumps(cv))
|
||
cv.fit(ALL_FOOD_DOCS)
|
||
unpickled_cv.fit(ALL_FOOD_DOCS)
|
||
assert cv.get_feature_names() == unpickled_cv.get_feature_names()
|
||
|
||
|
||
def test_stop_words_removal():
|
||
# Ensure that deleting the stop_words_ attribute doesn't affect transform
|
||
|
||
fitted_vectorizers = (
|
||
TfidfVectorizer().fit(JUNK_FOOD_DOCS),
|
||
CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS),
|
||
CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS)
|
||
)
|
||
|
||
for vect in fitted_vectorizers:
|
||
vect_transform = vect.transform(JUNK_FOOD_DOCS).toarray()
|
||
|
||
vect.stop_words_ = None
|
||
stop_None_transform = vect.transform(JUNK_FOOD_DOCS).toarray()
|
||
|
||
delattr(vect, 'stop_words_')
|
||
stop_del_transform = vect.transform(JUNK_FOOD_DOCS).toarray()
|
||
|
||
assert_array_equal(stop_None_transform, vect_transform)
|
||
assert_array_equal(stop_del_transform, vect_transform)
|
||
|
||
|
||
def test_pickling_transformer():
|
||
X = CountVectorizer().fit_transform(JUNK_FOOD_DOCS)
|
||
orig = TfidfTransformer().fit(X)
|
||
s = pickle.dumps(orig)
|
||
copy = pickle.loads(s)
|
||
assert type(copy) == orig.__class__
|
||
assert_array_equal(
|
||
copy.fit_transform(X).toarray(),
|
||
orig.fit_transform(X).toarray())
|
||
|
||
|
||
def test_transformer_idf_setter():
|
||
X = CountVectorizer().fit_transform(JUNK_FOOD_DOCS)
|
||
orig = TfidfTransformer().fit(X)
|
||
copy = TfidfTransformer()
|
||
copy.idf_ = orig.idf_
|
||
assert_array_equal(
|
||
copy.transform(X).toarray(),
|
||
orig.transform(X).toarray())
|
||
|
||
|
||
def test_tfidf_vectorizer_setter():
|
||
orig = TfidfVectorizer(use_idf=True)
|
||
orig.fit(JUNK_FOOD_DOCS)
|
||
copy = TfidfVectorizer(vocabulary=orig.vocabulary_, use_idf=True)
|
||
copy.idf_ = orig.idf_
|
||
assert_array_equal(
|
||
copy.transform(JUNK_FOOD_DOCS).toarray(),
|
||
orig.transform(JUNK_FOOD_DOCS).toarray())
|
||
|
||
|
||
def test_tfidfvectorizer_invalid_idf_attr():
|
||
vect = TfidfVectorizer(use_idf=True)
|
||
vect.fit(JUNK_FOOD_DOCS)
|
||
copy = TfidfVectorizer(vocabulary=vect.vocabulary_, use_idf=True)
|
||
expected_idf_len = len(vect.idf_)
|
||
invalid_idf = [1.0] * (expected_idf_len + 1)
|
||
with pytest.raises(ValueError):
|
||
setattr(copy, 'idf_', invalid_idf)
|
||
|
||
|
||
def test_non_unique_vocab():
|
||
vocab = ['a', 'b', 'c', 'a', 'a']
|
||
vect = CountVectorizer(vocabulary=vocab)
|
||
with pytest.raises(ValueError):
|
||
vect.fit([])
|
||
|
||
|
||
@fails_if_pypy
|
||
def test_hashingvectorizer_nan_in_docs():
|
||
# np.nan can appear when using pandas to load text fields from a csv file
|
||
# with missing values.
|
||
message = "np.nan is an invalid document, expected byte or unicode string."
|
||
exception = ValueError
|
||
|
||
def func():
|
||
hv = HashingVectorizer()
|
||
hv.fit_transform(['hello world', np.nan, 'hello hello'])
|
||
|
||
assert_raise_message(exception, message, func)
|
||
|
||
|
||
def test_tfidfvectorizer_binary():
|
||
# Non-regression test: TfidfVectorizer used to ignore its "binary" param.
|
||
v = TfidfVectorizer(binary=True, use_idf=False, norm=None)
|
||
assert v.binary
|
||
|
||
X = v.fit_transform(['hello world', 'hello hello']).toarray()
|
||
assert_array_equal(X.ravel(), [1, 1, 1, 0])
|
||
X2 = v.transform(['hello world', 'hello hello']).toarray()
|
||
assert_array_equal(X2.ravel(), [1, 1, 1, 0])
|
||
|
||
|
||
def test_tfidfvectorizer_export_idf():
|
||
vect = TfidfVectorizer(use_idf=True)
|
||
vect.fit(JUNK_FOOD_DOCS)
|
||
assert_array_almost_equal(vect.idf_, vect._tfidf.idf_)
|
||
|
||
|
||
def test_vectorizer_vocab_clone():
|
||
vect_vocab = TfidfVectorizer(vocabulary=["the"])
|
||
vect_vocab_clone = clone(vect_vocab)
|
||
vect_vocab.fit(ALL_FOOD_DOCS)
|
||
vect_vocab_clone.fit(ALL_FOOD_DOCS)
|
||
assert vect_vocab_clone.vocabulary_ == vect_vocab.vocabulary_
|
||
|
||
|
||
@pytest.mark.parametrize('Vectorizer',
|
||
(CountVectorizer, TfidfVectorizer, HashingVectorizer))
|
||
def test_vectorizer_string_object_as_input(Vectorizer):
|
||
message = ("Iterable over raw text documents expected, "
|
||
"string object received.")
|
||
vec = Vectorizer()
|
||
assert_raise_message(
|
||
ValueError, message, vec.fit_transform, "hello world!")
|
||
assert_raise_message(ValueError, message, vec.fit, "hello world!")
|
||
vec.fit(["some text", "some other text"])
|
||
assert_raise_message(ValueError, message, vec.transform, "hello world!")
|
||
|
||
|
||
@pytest.mark.parametrize("X_dtype", [np.float32, np.float64])
|
||
def test_tfidf_transformer_type(X_dtype):
|
||
X = sparse.rand(10, 20000, dtype=X_dtype, random_state=42)
|
||
X_trans = TfidfTransformer().fit_transform(X)
|
||
assert X_trans.dtype == X.dtype
|
||
|
||
|
||
def test_tfidf_transformer_sparse():
|
||
X = sparse.rand(10, 20000, dtype=np.float64, random_state=42)
|
||
X_csc = sparse.csc_matrix(X)
|
||
X_csr = sparse.csr_matrix(X)
|
||
|
||
X_trans_csc = TfidfTransformer().fit_transform(X_csc)
|
||
X_trans_csr = TfidfTransformer().fit_transform(X_csr)
|
||
assert_allclose_dense_sparse(X_trans_csc, X_trans_csr)
|
||
assert X_trans_csc.format == X_trans_csr.format
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"vectorizer_dtype, output_dtype, warning_expected",
|
||
[(np.int32, np.float64, True),
|
||
(np.int64, np.float64, True),
|
||
(np.float32, np.float32, False),
|
||
(np.float64, np.float64, False)]
|
||
)
|
||
def test_tfidf_vectorizer_type(vectorizer_dtype, output_dtype,
|
||
warning_expected):
|
||
X = np.array(["numpy", "scipy", "sklearn"])
|
||
vectorizer = TfidfVectorizer(dtype=vectorizer_dtype)
|
||
|
||
warning_msg_match = "'dtype' should be used."
|
||
warning_cls = UserWarning
|
||
expected_warning_cls = warning_cls if warning_expected else None
|
||
with pytest.warns(expected_warning_cls,
|
||
match=warning_msg_match) as record:
|
||
X_idf = vectorizer.fit_transform(X)
|
||
if expected_warning_cls is None:
|
||
relevant_warnings = [w for w in record
|
||
if isinstance(w, warning_cls)]
|
||
assert len(relevant_warnings) == 0
|
||
assert X_idf.dtype == output_dtype
|
||
|
||
|
||
@pytest.mark.parametrize("vec", [
|
||
HashingVectorizer(ngram_range=(2, 1)),
|
||
CountVectorizer(ngram_range=(2, 1)),
|
||
TfidfVectorizer(ngram_range=(2, 1))
|
||
])
|
||
def test_vectorizers_invalid_ngram_range(vec):
|
||
# vectorizers could be initialized with invalid ngram range
|
||
# test for raising error message
|
||
invalid_range = vec.ngram_range
|
||
message = ("Invalid value for ngram_range=%s "
|
||
"lower boundary larger than the upper boundary."
|
||
% str(invalid_range))
|
||
if isinstance(vec, HashingVectorizer) and IS_PYPY:
|
||
pytest.xfail(reason='HashingVectorizer is not supported on PyPy')
|
||
|
||
assert_raise_message(
|
||
ValueError, message, vec.fit, ["good news everyone"])
|
||
assert_raise_message(
|
||
ValueError, message, vec.fit_transform, ["good news everyone"])
|
||
|
||
if isinstance(vec, HashingVectorizer):
|
||
assert_raise_message(
|
||
ValueError, message, vec.transform, ["good news everyone"])
|
||
|
||
|
||
def _check_stop_words_consistency(estimator):
|
||
stop_words = estimator.get_stop_words()
|
||
tokenize = estimator.build_tokenizer()
|
||
preprocess = estimator.build_preprocessor()
|
||
return estimator._check_stop_words_consistency(stop_words, preprocess,
|
||
tokenize)
|
||
|
||
|
||
@fails_if_pypy
|
||
def test_vectorizer_stop_words_inconsistent():
|
||
lstr = "['and', 'll', 've']"
|
||
message = ('Your stop_words may be inconsistent with your '
|
||
'preprocessing. Tokenizing the stop words generated '
|
||
'tokens %s not in stop_words.' % lstr)
|
||
for vec in [CountVectorizer(),
|
||
TfidfVectorizer(), HashingVectorizer()]:
|
||
vec.set_params(stop_words=["you've", "you", "you'll", 'AND'])
|
||
assert_warns_message(UserWarning, message, vec.fit_transform,
|
||
['hello world'])
|
||
# reset stop word validation
|
||
del vec._stop_words_id
|
||
assert _check_stop_words_consistency(vec) is False
|
||
|
||
# Only one warning per stop list
|
||
assert_no_warnings(vec.fit_transform, ['hello world'])
|
||
assert _check_stop_words_consistency(vec) is None
|
||
|
||
# Test caching of inconsistency assessment
|
||
vec.set_params(stop_words=["you've", "you", "you'll", 'blah', 'AND'])
|
||
assert_warns_message(UserWarning, message, vec.fit_transform,
|
||
['hello world'])
|
||
|
||
|
||
@skip_if_32bit
|
||
def test_countvectorizer_sort_features_64bit_sparse_indices():
|
||
"""
|
||
Check that CountVectorizer._sort_features preserves the dtype of its sparse
|
||
feature matrix.
|
||
|
||
This test is skipped on 32bit platforms, see:
|
||
https://github.com/scikit-learn/scikit-learn/pull/11295
|
||
for more details.
|
||
"""
|
||
|
||
X = sparse.csr_matrix((5, 5), dtype=np.int64)
|
||
|
||
# force indices and indptr to int64.
|
||
INDICES_DTYPE = np.int64
|
||
X.indices = X.indices.astype(INDICES_DTYPE)
|
||
X.indptr = X.indptr.astype(INDICES_DTYPE)
|
||
|
||
vocabulary = {
|
||
"scikit-learn": 0,
|
||
"is": 1,
|
||
"great!": 2
|
||
}
|
||
|
||
Xs = CountVectorizer()._sort_features(X, vocabulary)
|
||
|
||
assert INDICES_DTYPE == Xs.indices.dtype
|
||
|
||
|
||
@fails_if_pypy
|
||
@pytest.mark.parametrize('Estimator',
|
||
[CountVectorizer, TfidfVectorizer, HashingVectorizer])
|
||
def test_stop_word_validation_custom_preprocessor(Estimator):
|
||
data = [{'text': 'some text'}]
|
||
|
||
vec = Estimator()
|
||
assert _check_stop_words_consistency(vec) is True
|
||
|
||
vec = Estimator(preprocessor=lambda x: x['text'],
|
||
stop_words=['and'])
|
||
assert _check_stop_words_consistency(vec) == 'error'
|
||
# checks are cached
|
||
assert _check_stop_words_consistency(vec) is None
|
||
vec.fit_transform(data)
|
||
|
||
class CustomEstimator(Estimator):
|
||
def build_preprocessor(self):
|
||
return lambda x: x['text']
|
||
|
||
vec = CustomEstimator(stop_words=['and'])
|
||
assert _check_stop_words_consistency(vec) == 'error'
|
||
|
||
vec = Estimator(tokenizer=lambda doc: re.compile(r'\w{1,}')
|
||
.findall(doc),
|
||
stop_words=['and'])
|
||
assert _check_stop_words_consistency(vec) is True
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
'Estimator',
|
||
[CountVectorizer,
|
||
TfidfVectorizer,
|
||
HashingVectorizer]
|
||
)
|
||
@pytest.mark.parametrize(
|
||
'input_type, err_type, err_msg',
|
||
[('filename', FileNotFoundError, ''),
|
||
('file', AttributeError, "'str' object has no attribute 'read'")]
|
||
)
|
||
def test_callable_analyzer_error(Estimator, input_type, err_type, err_msg):
|
||
if issubclass(Estimator, HashingVectorizer):
|
||
pytest.xfail('HashingVectorizer is not supported on PyPy')
|
||
data = ['this is text, not file or filename']
|
||
with pytest.raises(err_type, match=err_msg):
|
||
Estimator(analyzer=lambda x: x.split(),
|
||
input=input_type).fit_transform(data)
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
'Estimator',
|
||
[CountVectorizer,
|
||
TfidfVectorizer,
|
||
pytest.param(HashingVectorizer, marks=fails_if_pypy)]
|
||
)
|
||
@pytest.mark.parametrize(
|
||
'analyzer', [lambda doc: open(doc, 'r'), lambda doc: doc.read()]
|
||
)
|
||
@pytest.mark.parametrize('input_type', ['file', 'filename'])
|
||
def test_callable_analyzer_change_behavior(Estimator, analyzer, input_type):
|
||
data = ['this is text, not file or filename']
|
||
with pytest.raises((FileNotFoundError, AttributeError)):
|
||
Estimator(analyzer=analyzer, input=input_type).fit_transform(data)
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
'Estimator',
|
||
[CountVectorizer,
|
||
TfidfVectorizer,
|
||
HashingVectorizer]
|
||
)
|
||
def test_callable_analyzer_reraise_error(tmpdir, Estimator):
|
||
# check if a custom exception from the analyzer is shown to the user
|
||
def analyzer(doc):
|
||
raise Exception("testing")
|
||
|
||
if issubclass(Estimator, HashingVectorizer):
|
||
pytest.xfail('HashingVectorizer is not supported on PyPy')
|
||
|
||
f = tmpdir.join("file.txt")
|
||
f.write("sample content\n")
|
||
|
||
with pytest.raises(Exception, match="testing"):
|
||
Estimator(analyzer=analyzer, input='file').fit_transform([f])
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
'Vectorizer',
|
||
[CountVectorizer, HashingVectorizer, TfidfVectorizer]
|
||
)
|
||
@pytest.mark.parametrize(
|
||
'stop_words, tokenizer, preprocessor, ngram_range, token_pattern,'
|
||
'analyzer, unused_name, ovrd_name, ovrd_msg',
|
||
[(["you've", "you'll"], None, None, (1, 1), None, 'char',
|
||
"'stop_words'", "'analyzer'", "!= 'word'"),
|
||
(None, lambda s: s.split(), None, (1, 1), None, 'char',
|
||
"'tokenizer'", "'analyzer'", "!= 'word'"),
|
||
(None, lambda s: s.split(), None, (1, 1), r'\w+', 'word',
|
||
"'token_pattern'", "'tokenizer'", "is not None"),
|
||
(None, None, lambda s:s.upper(), (1, 1), r'\w+', lambda s:s.upper(),
|
||
"'preprocessor'", "'analyzer'", "is callable"),
|
||
(None, None, None, (1, 2), None, lambda s:s.upper(),
|
||
"'ngram_range'", "'analyzer'", "is callable"),
|
||
(None, None, None, (1, 1), r'\w+', 'char',
|
||
"'token_pattern'", "'analyzer'", "!= 'word'")]
|
||
)
|
||
def test_unused_parameters_warn(Vectorizer, stop_words,
|
||
tokenizer, preprocessor,
|
||
ngram_range, token_pattern,
|
||
analyzer, unused_name, ovrd_name,
|
||
ovrd_msg):
|
||
|
||
train_data = JUNK_FOOD_DOCS
|
||
# setting parameter and checking for corresponding warning messages
|
||
vect = Vectorizer()
|
||
vect.set_params(stop_words=stop_words, tokenizer=tokenizer,
|
||
preprocessor=preprocessor, ngram_range=ngram_range,
|
||
token_pattern=token_pattern, analyzer=analyzer)
|
||
msg = ("The parameter %s will not be used"
|
||
" since %s %s" % (unused_name, ovrd_name, ovrd_msg)
|
||
)
|
||
with pytest.warns(UserWarning, match=msg):
|
||
vect.fit(train_data)
|
||
|
||
|
||
@pytest.mark.parametrize('Vectorizer, X', (
|
||
(HashingVectorizer, [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]),
|
||
(CountVectorizer, JUNK_FOOD_DOCS))
|
||
)
|
||
def test_n_features_in(Vectorizer, X):
|
||
# For vectorizers, n_features_in_ does not make sense
|
||
vectorizer = Vectorizer()
|
||
assert not hasattr(vectorizer, 'n_features_in_')
|
||
vectorizer.fit(X)
|
||
assert not hasattr(vectorizer, 'n_features_in_')
|
||
|
||
|
||
# TODO: Remove in 0.24
|
||
def test_vectorizermixin_is_deprecated():
|
||
class MyVectorizer(VectorizerMixin):
|
||
pass
|
||
|
||
msg = ("VectorizerMixin is deprecated in version 0.22 and will be removed "
|
||
"in version 0.24.")
|
||
with pytest.warns(FutureWarning, match=msg):
|
||
MyVectorizer()
|
||
|
||
|
||
def test_tie_breaking_sample_order_invariance():
|
||
# Checks the sample order invariance when setting max_features
|
||
# non-regression test for #17939
|
||
vec = CountVectorizer(max_features=1)
|
||
vocab1 = vec.fit(['hello', 'world']).vocabulary_
|
||
vocab2 = vec.fit(['world', 'hello']).vocabulary_
|
||
assert vocab1 == vocab2
|