Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/restoration/unwrap.py

113 lines
4.6 KiB
Python

import numpy as np
from .._shared.utils import warn
from ._unwrap_1d import unwrap_1d
from ._unwrap_2d import unwrap_2d
from ._unwrap_3d import unwrap_3d
def unwrap_phase(image, wrap_around=False, seed=None):
'''Recover the original from a wrapped phase image.
From an image wrapped to lie in the interval [-pi, pi), recover the
original, unwrapped image.
Parameters
----------
image : 1D, 2D or 3D ndarray of floats, optionally a masked array
The values should be in the range [-pi, pi). If a masked array is
provided, the masked entries will not be changed, and their values
will not be used to guide the unwrapping of neighboring, unmasked
values. Masked 1D arrays are not allowed, and will raise a
`ValueError`.
wrap_around : bool or sequence of bool, optional
When an element of the sequence is `True`, the unwrapping process
will regard the edges along the corresponding axis of the image to be
connected and use this connectivity to guide the phase unwrapping
process. If only a single boolean is given, it will apply to all axes.
Wrap around is not supported for 1D arrays.
seed : int, optional
Unwrapping 2D or 3D images uses random initialization. This sets the
seed of the PRNG to achieve deterministic behavior.
Returns
-------
image_unwrapped : array_like, double
Unwrapped image of the same shape as the input. If the input `image`
was a masked array, the mask will be preserved.
Raises
------
ValueError
If called with a masked 1D array or called with a 1D array and
``wrap_around=True``.
Examples
--------
>>> c0, c1 = np.ogrid[-1:1:128j, -1:1:128j]
>>> image = 12 * np.pi * np.exp(-(c0**2 + c1**2))
>>> image_wrapped = np.angle(np.exp(1j * image))
>>> image_unwrapped = unwrap_phase(image_wrapped)
>>> np.std(image_unwrapped - image) < 1e-6 # A constant offset is normal
True
References
----------
.. [1] Miguel Arevallilo Herraez, David R. Burton, Michael J. Lalor,
and Munther A. Gdeisat, "Fast two-dimensional phase-unwrapping
algorithm based on sorting by reliability following a noncontinuous
path", Journal Applied Optics, Vol. 41, No. 35 (2002) 7437,
.. [2] Abdul-Rahman, H., Gdeisat, M., Burton, D., & Lalor, M., "Fast
three-dimensional phase-unwrapping algorithm based on sorting by
reliability following a non-continuous path. In W. Osten,
C. Gorecki, & E. L. Novak (Eds.), Optical Metrology (2005) 32--40,
International Society for Optics and Photonics.
'''
if image.ndim not in (1, 2, 3):
raise ValueError('Image must be 1, 2, or 3 dimensional')
if isinstance(wrap_around, bool):
wrap_around = [wrap_around] * image.ndim
elif (hasattr(wrap_around, '__getitem__')
and not isinstance(wrap_around, str)):
if len(wrap_around) != image.ndim:
raise ValueError('Length of `wrap_around` must equal the '
'dimensionality of image')
wrap_around = [bool(wa) for wa in wrap_around]
else:
raise ValueError('`wrap_around` must be a bool or a sequence with '
'length equal to the dimensionality of image')
if image.ndim == 1:
if np.ma.isMaskedArray(image):
raise ValueError('1D masked images cannot be unwrapped')
if wrap_around[0]:
raise ValueError('`wrap_around` is not supported for 1D images')
if image.ndim in (2, 3) and 1 in image.shape:
warn('Image has a length 1 dimension. Consider using an '
'array of lower dimensionality to use a more efficient '
'algorithm')
if np.ma.isMaskedArray(image):
mask = np.require(np.ma.getmaskarray(image), np.uint8, ['C'])
else:
mask = np.zeros_like(image, dtype=np.uint8, order='C')
image_not_masked = np.asarray(
np.ma.getdata(image), dtype=np.double, order='C')
image_unwrapped = np.empty_like(image, dtype=np.double, order='C',
subok=False)
if image.ndim == 1:
unwrap_1d(image_not_masked, image_unwrapped)
elif image.ndim == 2:
unwrap_2d(image_not_masked, mask, image_unwrapped,
wrap_around, seed)
elif image.ndim == 3:
unwrap_3d(image_not_masked, mask, image_unwrapped,
wrap_around, seed)
if np.ma.isMaskedArray(image):
return np.ma.array(image_unwrapped, mask=mask,
fill_value=image.fill_value)
else:
return image_unwrapped