53 lines
1.9 KiB
Python
53 lines
1.9 KiB
Python
"""
|
|
The :mod:`sklearn.decomposition` module includes matrix decomposition
|
|
algorithms, including among others PCA, NMF or ICA. Most of the algorithms of
|
|
this module can be regarded as dimensionality reduction techniques.
|
|
"""
|
|
|
|
# TODO: remove me in 0.24 (as well as the noqa markers) and
|
|
# import the dict_learning func directly from the ._dict_learning
|
|
# module instead.
|
|
# Pre-cache the import of the deprecated module so that import
|
|
# sklearn.decomposition.dict_learning returns the function as in
|
|
# 0.21, instead of the module.
|
|
# https://github.com/scikit-learn/scikit-learn/issues/15842
|
|
import warnings
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore", category=FutureWarning)
|
|
from .dict_learning import dict_learning
|
|
|
|
|
|
from ._nmf import NMF, non_negative_factorization # noqa
|
|
from ._pca import PCA # noqa
|
|
from ._incremental_pca import IncrementalPCA # noqa
|
|
from ._kernel_pca import KernelPCA # noqa
|
|
from ._sparse_pca import SparsePCA, MiniBatchSparsePCA # noqa
|
|
from ._truncated_svd import TruncatedSVD # noqa
|
|
from ._fastica import FastICA, fastica # noqa
|
|
from ._dict_learning import (dict_learning_online,
|
|
sparse_encode, DictionaryLearning,
|
|
MiniBatchDictionaryLearning, SparseCoder) # noqa
|
|
from ._factor_analysis import FactorAnalysis # noqa
|
|
from ..utils.extmath import randomized_svd # noqa
|
|
from ._lda import LatentDirichletAllocation # noqa
|
|
|
|
|
|
__all__ = ['DictionaryLearning',
|
|
'FastICA',
|
|
'IncrementalPCA',
|
|
'KernelPCA',
|
|
'MiniBatchDictionaryLearning',
|
|
'MiniBatchSparsePCA',
|
|
'NMF',
|
|
'PCA',
|
|
'SparseCoder',
|
|
'SparsePCA',
|
|
'dict_learning',
|
|
'dict_learning_online',
|
|
'fastica',
|
|
'non_negative_factorization',
|
|
'randomized_svd',
|
|
'sparse_encode',
|
|
'FactorAnalysis',
|
|
'TruncatedSVD',
|
|
'LatentDirichletAllocation']
|