306 lines
9.3 KiB
Python
306 lines
9.3 KiB
Python
import os
|
|
import shutil
|
|
import tempfile
|
|
import warnings
|
|
import numpy
|
|
from pickle import loads
|
|
from pickle import dumps
|
|
from functools import partial
|
|
|
|
import pytest
|
|
|
|
import numpy as np
|
|
from sklearn.datasets import get_data_home
|
|
from sklearn.datasets import clear_data_home
|
|
from sklearn.datasets import load_files
|
|
from sklearn.datasets import load_sample_images
|
|
from sklearn.datasets import load_sample_image
|
|
from sklearn.datasets import load_digits
|
|
from sklearn.datasets import load_diabetes
|
|
from sklearn.datasets import load_linnerud
|
|
from sklearn.datasets import load_iris
|
|
from sklearn.datasets import load_breast_cancer
|
|
from sklearn.datasets import load_boston
|
|
from sklearn.datasets import load_wine
|
|
from sklearn.utils import Bunch
|
|
from sklearn.datasets.tests.test_common import check_return_X_y
|
|
from sklearn.datasets.tests.test_common import check_as_frame
|
|
from sklearn.datasets.tests.test_common import check_pandas_dependency_message
|
|
|
|
from sklearn.externals._pilutil import pillow_installed
|
|
|
|
from sklearn.utils import IS_PYPY
|
|
|
|
|
|
def _remove_dir(path):
|
|
if os.path.isdir(path):
|
|
shutil.rmtree(path)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def data_home(tmpdir_factory):
|
|
tmp_file = str(tmpdir_factory.mktemp("scikit_learn_data_home_test"))
|
|
yield tmp_file
|
|
_remove_dir(tmp_file)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def load_files_root(tmpdir_factory):
|
|
tmp_file = str(tmpdir_factory.mktemp("scikit_learn_load_files_test"))
|
|
yield tmp_file
|
|
_remove_dir(tmp_file)
|
|
|
|
|
|
@pytest.fixture
|
|
def test_category_dir_1(load_files_root):
|
|
test_category_dir1 = tempfile.mkdtemp(dir=load_files_root)
|
|
sample_file = tempfile.NamedTemporaryFile(dir=test_category_dir1,
|
|
delete=False)
|
|
sample_file.write(b"Hello World!\n")
|
|
sample_file.close()
|
|
yield str(test_category_dir1)
|
|
_remove_dir(test_category_dir1)
|
|
|
|
|
|
@pytest.fixture
|
|
def test_category_dir_2(load_files_root):
|
|
test_category_dir2 = tempfile.mkdtemp(dir=load_files_root)
|
|
yield str(test_category_dir2)
|
|
_remove_dir(test_category_dir2)
|
|
|
|
|
|
def test_data_home(data_home):
|
|
# get_data_home will point to a pre-existing folder
|
|
data_home = get_data_home(data_home=data_home)
|
|
assert data_home == data_home
|
|
assert os.path.exists(data_home)
|
|
|
|
# clear_data_home will delete both the content and the folder it-self
|
|
clear_data_home(data_home=data_home)
|
|
assert not os.path.exists(data_home)
|
|
|
|
# if the folder is missing it will be created again
|
|
data_home = get_data_home(data_home=data_home)
|
|
assert os.path.exists(data_home)
|
|
|
|
|
|
def test_default_empty_load_files(load_files_root):
|
|
res = load_files(load_files_root)
|
|
assert len(res.filenames) == 0
|
|
assert len(res.target_names) == 0
|
|
assert res.DESCR is None
|
|
|
|
|
|
def test_default_load_files(test_category_dir_1, test_category_dir_2,
|
|
load_files_root):
|
|
if IS_PYPY:
|
|
pytest.xfail('[PyPy] fails due to string containing NUL characters')
|
|
res = load_files(load_files_root)
|
|
assert len(res.filenames) == 1
|
|
assert len(res.target_names) == 2
|
|
assert res.DESCR is None
|
|
assert res.data == [b"Hello World!\n"]
|
|
|
|
|
|
def test_load_files_w_categories_desc_and_encoding(
|
|
test_category_dir_1, test_category_dir_2, load_files_root):
|
|
if IS_PYPY:
|
|
pytest.xfail('[PyPy] fails due to string containing NUL characters')
|
|
category = os.path.abspath(test_category_dir_1).split('/').pop()
|
|
res = load_files(load_files_root, description="test",
|
|
categories=category, encoding="utf-8")
|
|
assert len(res.filenames) == 1
|
|
assert len(res.target_names) == 1
|
|
assert res.DESCR == "test"
|
|
assert res.data == ["Hello World!\n"]
|
|
|
|
|
|
def test_load_files_wo_load_content(
|
|
test_category_dir_1, test_category_dir_2, load_files_root):
|
|
res = load_files(load_files_root, load_content=False)
|
|
assert len(res.filenames) == 1
|
|
assert len(res.target_names) == 2
|
|
assert res.DESCR is None
|
|
assert res.get('data') is None
|
|
|
|
|
|
def test_load_sample_images():
|
|
try:
|
|
res = load_sample_images()
|
|
assert len(res.images) == 2
|
|
assert len(res.filenames) == 2
|
|
images = res.images
|
|
|
|
# assert is china image
|
|
assert np.all(images[0][0, 0, :] ==
|
|
np.array([174, 201, 231], dtype=np.uint8))
|
|
# assert is flower image
|
|
assert np.all(images[1][0, 0, :] ==
|
|
np.array([2, 19, 13], dtype=np.uint8))
|
|
assert res.DESCR
|
|
except ImportError:
|
|
warnings.warn("Could not load sample images, PIL is not available.")
|
|
|
|
|
|
def test_load_digits():
|
|
digits = load_digits()
|
|
assert digits.data.shape == (1797, 64)
|
|
assert numpy.unique(digits.target).size == 10
|
|
|
|
# test return_X_y option
|
|
check_return_X_y(digits, partial(load_digits))
|
|
|
|
|
|
def test_load_digits_n_class_lt_10():
|
|
digits = load_digits(n_class=9)
|
|
assert digits.data.shape == (1617, 64)
|
|
assert numpy.unique(digits.target).size == 9
|
|
|
|
|
|
def test_load_sample_image():
|
|
try:
|
|
china = load_sample_image('china.jpg')
|
|
assert china.dtype == 'uint8'
|
|
assert china.shape == (427, 640, 3)
|
|
except ImportError:
|
|
warnings.warn("Could not load sample images, PIL is not available.")
|
|
|
|
|
|
def test_load_missing_sample_image_error():
|
|
if pillow_installed:
|
|
with pytest.raises(AttributeError):
|
|
load_sample_image('blop.jpg')
|
|
else:
|
|
warnings.warn("Could not load sample images, PIL is not available.")
|
|
|
|
|
|
def test_load_diabetes():
|
|
res = load_diabetes()
|
|
assert res.data.shape == (442, 10)
|
|
assert res.target.size, 442
|
|
assert len(res.feature_names) == 10
|
|
assert res.DESCR
|
|
|
|
# test return_X_y option
|
|
check_return_X_y(res, partial(load_diabetes))
|
|
|
|
|
|
def test_load_linnerud():
|
|
res = load_linnerud()
|
|
assert res.data.shape == (20, 3)
|
|
assert res.target.shape == (20, 3)
|
|
assert len(res.target_names) == 3
|
|
assert res.DESCR
|
|
assert os.path.exists(res.data_filename)
|
|
assert os.path.exists(res.target_filename)
|
|
|
|
# test return_X_y option
|
|
check_return_X_y(res, partial(load_linnerud))
|
|
|
|
|
|
def test_load_iris():
|
|
res = load_iris()
|
|
assert res.data.shape == (150, 4)
|
|
assert res.target.size == 150
|
|
assert res.target_names.size == 3
|
|
assert res.DESCR
|
|
assert os.path.exists(res.filename)
|
|
|
|
# test return_X_y option
|
|
check_return_X_y(res, partial(load_iris))
|
|
|
|
|
|
def test_load_wine():
|
|
res = load_wine()
|
|
assert res.data.shape == (178, 13)
|
|
assert res.target.size == 178
|
|
assert res.target_names.size == 3
|
|
assert res.DESCR
|
|
|
|
# test return_X_y option
|
|
check_return_X_y(res, partial(load_wine))
|
|
|
|
|
|
def test_load_breast_cancer():
|
|
res = load_breast_cancer()
|
|
assert res.data.shape == (569, 30)
|
|
assert res.target.size == 569
|
|
assert res.target_names.size == 2
|
|
assert res.DESCR
|
|
assert os.path.exists(res.filename)
|
|
|
|
# test return_X_y option
|
|
check_return_X_y(res, partial(load_breast_cancer))
|
|
|
|
|
|
@pytest.mark.parametrize("loader_func, data_dtype, target_dtype", [
|
|
(load_breast_cancer, np.float64, np.int64),
|
|
(load_diabetes, np.float64, np.float64),
|
|
(load_digits, np.float64, np.int64),
|
|
(load_iris, np.float64, np.int64),
|
|
(load_linnerud, np.float64, np.float64),
|
|
(load_wine, np.float64, np.int64),
|
|
])
|
|
def test_toy_dataset_as_frame(loader_func, data_dtype, target_dtype):
|
|
default_result = loader_func()
|
|
check_as_frame(default_result, partial(loader_func),
|
|
expected_data_dtype=data_dtype,
|
|
expected_target_dtype=target_dtype)
|
|
|
|
|
|
@pytest.mark.parametrize("loader_func", [
|
|
load_breast_cancer,
|
|
load_diabetes,
|
|
load_digits,
|
|
load_iris,
|
|
load_linnerud,
|
|
load_wine,
|
|
])
|
|
def test_toy_dataset_as_frame_no_pandas(loader_func):
|
|
check_pandas_dependency_message(loader_func)
|
|
|
|
|
|
def test_load_boston():
|
|
res = load_boston()
|
|
assert res.data.shape == (506, 13)
|
|
assert res.target.size == 506
|
|
assert res.feature_names.size == 13
|
|
assert res.DESCR
|
|
assert os.path.exists(res.filename)
|
|
|
|
# test return_X_y option
|
|
check_return_X_y(res, partial(load_boston))
|
|
|
|
|
|
def test_loads_dumps_bunch():
|
|
bunch = Bunch(x="x")
|
|
bunch_from_pkl = loads(dumps(bunch))
|
|
bunch_from_pkl.x = "y"
|
|
assert bunch_from_pkl['x'] == bunch_from_pkl.x
|
|
|
|
|
|
def test_bunch_pickle_generated_with_0_16_and_read_with_0_17():
|
|
bunch = Bunch(key='original')
|
|
# This reproduces a problem when Bunch pickles have been created
|
|
# with scikit-learn 0.16 and are read with 0.17. Basically there
|
|
# is a surprising behaviour because reading bunch.key uses
|
|
# bunch.__dict__ (which is non empty for 0.16 Bunch objects)
|
|
# whereas assigning into bunch.key uses bunch.__setattr__. See
|
|
# https://github.com/scikit-learn/scikit-learn/issues/6196 for
|
|
# more details
|
|
bunch.__dict__['key'] = 'set from __dict__'
|
|
bunch_from_pkl = loads(dumps(bunch))
|
|
# After loading from pickle the __dict__ should have been ignored
|
|
assert bunch_from_pkl.key == 'original'
|
|
assert bunch_from_pkl['key'] == 'original'
|
|
# Making sure that changing the attr does change the value
|
|
# associated with __getitem__ as well
|
|
bunch_from_pkl.key = 'changed'
|
|
assert bunch_from_pkl.key == 'changed'
|
|
assert bunch_from_pkl['key'] == 'changed'
|
|
|
|
|
|
def test_bunch_dir():
|
|
# check that dir (important for autocomplete) shows attributes
|
|
data = load_iris()
|
|
assert "data" in dir(data)
|