Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/segmentation/tests/test_watershed.py

498 lines
22 KiB
Python

"""test_watershed.py - tests the watershed function
Originally part of CellProfiler, code licensed under both GPL and BSD licenses.
Website: http://www.cellprofiler.org
Copyright (c) 2003-2009 Massachusetts Institute of Technology
Copyright (c) 2009-2011 Broad Institute
All rights reserved.
Original author: Lee Kamentsky
"""
#Portions of this test were taken from scipy's watershed test in test_ndimage.py
#
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
# products derived from this software without specific prior
# written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import unittest
import pytest
import numpy as np
from scipy import ndimage as ndi
from .._watershed import watershed
from skimage.measure import label
eps = 1e-12
blob = np.array([[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 204, 204, 204, 204, 204, 204, 255, 255, 255, 255, 255],
[255, 255, 255, 204, 204, 183, 153, 153, 153, 153, 183, 204, 204, 255, 255, 255],
[255, 255, 204, 183, 153, 141, 111, 103, 103, 111, 141, 153, 183, 204, 255, 255],
[255, 255, 204, 153, 111, 94, 72, 52, 52, 72, 94, 111, 153, 204, 255, 255],
[255, 255, 204, 153, 111, 72, 39, 1, 1, 39, 72, 111, 153, 204, 255, 255],
[255, 255, 204, 183, 141, 111, 72, 39, 39, 72, 111, 141, 183, 204, 255, 255],
[255, 255, 255, 204, 183, 141, 111, 72, 72, 111, 141, 183, 204, 255, 255, 255],
[255, 255, 255, 255, 204, 183, 141, 94, 94, 141, 183, 204, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 204, 153, 103, 103, 153, 204, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 204, 183, 141, 94, 94, 141, 183, 204, 255, 255, 255, 255],
[255, 255, 255, 204, 183, 141, 111, 72, 72, 111, 141, 183, 204, 255, 255, 255],
[255, 255, 204, 183, 141, 111, 72, 39, 39, 72, 111, 141, 183, 204, 255, 255],
[255, 255, 204, 153, 111, 72, 39, 1, 1, 39, 72, 111, 153, 204, 255, 255],
[255, 255, 204, 153, 111, 94, 72, 52, 52, 72, 94, 111, 153, 204, 255, 255],
[255, 255, 204, 183, 153, 141, 111, 103, 103, 111, 141, 153, 183, 204, 255, 255],
[255, 255, 255, 204, 204, 183, 153, 153, 153, 153, 183, 204, 204, 255, 255, 255],
[255, 255, 255, 255, 255, 204, 204, 204, 204, 204, 204, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255]])
def diff(a, b):
if not isinstance(a, np.ndarray):
a = np.asarray(a)
if not isinstance(b, np.ndarray):
b = np.asarray(b)
if (0 in a.shape) and (0 in b.shape):
return 0.0
b[a == 0] = 0
if (a.dtype in [np.complex64, np.complex128] or
b.dtype in [np.complex64, np.complex128]):
a = np.asarray(a, np.complex128)
b = np.asarray(b, np.complex128)
t = ((a.real - b.real)**2).sum() + ((a.imag - b.imag)**2).sum()
else:
a = np.asarray(a)
a = a.astype(np.float64)
b = np.asarray(b)
b = b.astype(np.float64)
t = ((a - b)**2).sum()
return math.sqrt(t)
class TestWatershed(unittest.TestCase):
eight = np.ones((3, 3), bool)
def test_watershed01(self):
"watershed 1"
data = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[ -1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0]],
np.int8)
out = watershed(data, markers, self.eight)
expected = np.array([[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]])
error = diff(expected, out)
assert error < eps
def test_watershed02(self):
"watershed 2"
data = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.int8)
out = watershed(data, markers)
error = diff([[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, 1, 1, 1, -1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, -1, 1, 1, 1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], out)
self.assertTrue(error < eps)
def test_watershed03(self):
"watershed 3"
data = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 2, 0, 3, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, -1]], np.int8)
out = watershed(data, markers)
error = diff([[-1, -1, -1, -1, -1, -1, -1],
[-1, 0, 2, 0, 3, 0, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 0, 2, 0, 3, 0, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], out)
self.assertTrue(error < eps)
def test_watershed04(self):
"watershed 4"
data = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 2, 0, 3, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, -1]], np.int8)
out = watershed(data, markers, self.eight)
error = diff([[-1, -1, -1, -1, -1, -1, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], out)
self.assertTrue(error < eps)
def test_watershed05(self):
"watershed 5"
data = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 3, 0, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, -1]], np.int8)
out = watershed(data, markers, self.eight)
error = diff([[-1, -1, -1, -1, -1, -1, -1],
[-1, 3, 3, 0, 2, 2, -1],
[-1, 3, 3, 0, 2, 2, -1],
[-1, 3, 3, 0, 2, 2, -1],
[-1, 3, 3, 0, 2, 2, -1],
[-1, 3, 3, 0, 2, 2, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], out)
self.assertTrue(error < eps)
def test_watershed06(self):
"watershed 6"
data = np.array([[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0]], np.int8)
out = watershed(data, markers, self.eight)
error = diff([[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], out)
self.assertTrue(error < eps)
def test_watershed07(self):
"A regression test of a competitive case that failed"
data = blob
mask = (data != 255)
markers = np.zeros(data.shape, int)
markers[6, 7] = 1
markers[14, 7] = 2
out = watershed(data, markers, self.eight, mask=mask)
#
# The two objects should be the same size, except possibly for the
# border region
#
size1 = np.sum(out == 1)
size2 = np.sum(out == 2)
self.assertTrue(abs(size1 - size2) <= 6)
def test_watershed08(self):
"The border pixels + an edge are all the same value"
data = blob.copy()
data[10, 7:9] = 141
mask = (data != 255)
markers = np.zeros(data.shape, int)
markers[6, 7] = 1
markers[14, 7] = 2
out = watershed(data, markers, self.eight, mask=mask)
#
# The two objects should be the same size, except possibly for the
# border region
#
size1 = np.sum(out == 1)
size2 = np.sum(out == 2)
self.assertTrue(abs(size1 - size2) <= 6)
def test_watershed09(self):
"""Test on an image of reasonable size
This is here both for timing (does it take forever?) and to
ensure that the memory constraints are reasonable
"""
image = np.zeros((1000, 1000))
coords = np.random.uniform(0, 1000, (100, 2)).astype(int)
markers = np.zeros((1000, 1000), int)
idx = 1
for x, y in coords:
image[x, y] = 1
markers[x, y] = idx
idx += 1
image = ndi.gaussian_filter(image, 4)
watershed(image, markers, self.eight)
ndi.watershed_ift(image.astype(np.uint16), markers, self.eight)
def test_watershed10(self):
"watershed 10"
data = np.array([[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]], np.uint8)
markers = np.array([[1, 0, 0, 2],
[0, 0, 0, 0],
[0, 0, 0, 0],
[3, 0, 0, 4]], np.int8)
out = watershed(data, markers, self.eight)
error = diff([[1, 1, 2, 2],
[1, 1, 2, 2],
[3, 3, 4, 4],
[3, 3, 4, 4]], out)
self.assertTrue(error < eps)
def test_watershed11(self):
'''Make sure that all points on this plateau are assigned to closest seed'''
# https://github.com/scikit-image/scikit-image/issues/803
#
# Make sure that no point in a level image is farther away
# from its seed than any other
#
image = np.zeros((21, 21))
markers = np.zeros((21, 21), int)
markers[5, 5] = 1
markers[5, 10] = 2
markers[10, 5] = 3
markers[10, 10] = 4
structure = np.array([[False, True, False],
[True, True, True],
[False, True, False]])
out = watershed(image, markers, structure)
i, j = np.mgrid[0:21, 0:21]
d = np.dstack(
[np.sqrt((i.astype(float)-i0)**2, (j.astype(float)-j0)**2)
for i0, j0 in ((5, 5), (5, 10), (10, 5), (10, 10))])
dmin = np.min(d, 2)
self.assertTrue(np.all(d[i, j, out[i, j]-1] == dmin))
def test_watershed12(self):
"The watershed line"
data = np.array([[203, 255, 203, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153],
[203, 255, 203, 153, 153, 153, 102, 102, 102, 102, 102, 102, 153, 153, 153, 153],
[203, 255, 203, 203, 153, 153, 102, 102, 77, 0, 102, 102, 153, 153, 203, 203],
[203, 255, 255, 203, 153, 153, 153, 102, 102, 102, 102, 153, 153, 203, 203, 255],
[203, 203, 255, 203, 203, 203, 153, 153, 153, 153, 153, 153, 203, 203, 255, 255],
[153, 203, 255, 255, 255, 203, 203, 203, 203, 203, 203, 203, 203, 255, 255, 203],
[153, 203, 203, 203, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 203, 203],
[153, 153, 153, 203, 203, 203, 203, 203, 255, 203, 203, 203, 203, 203, 203, 153],
[102, 102, 153, 153, 153, 153, 203, 203, 255, 203, 203, 255, 203, 153, 153, 153],
[102, 102, 102, 102, 102, 153, 203, 255, 255, 203, 203, 203, 203, 153, 102, 153],
[102, 51, 51, 102, 102, 153, 203, 255, 203, 203, 153, 153, 153, 153, 102, 153],
[ 77, 51, 51, 102, 153, 153, 203, 255, 203, 203, 203, 153, 102, 102, 102, 153],
[ 77, 0, 51, 102, 153, 203, 203, 255, 203, 255, 203, 153, 102, 51, 102, 153],
[ 77, 0, 51, 102, 153, 203, 255, 255, 203, 203, 203, 153, 102, 0, 102, 153],
[102, 0, 51, 102, 153, 203, 255, 203, 203, 153, 153, 153, 102, 102, 102, 153],
[102, 102, 102, 102, 153, 203, 255, 203, 153, 153, 153, 153, 153, 153, 153, 153]])
markerbin = (data==0)
marker = label(markerbin)
ws = watershed(data, marker, connectivity=2, watershed_line=True)
for lab, area in zip(range(4), [34,74,74,74]):
self.assertTrue(np.sum(ws == lab) == area)
def test_compact_watershed():
image = np.zeros((5, 6))
image[:, 3:] = 1
seeds = np.zeros((5, 6), dtype=int)
seeds[2, 0] = 1
seeds[2, 3] = 2
compact = watershed(image, seeds, compactness=0.01)
expected = np.array([[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2]], dtype=int)
np.testing.assert_equal(compact, expected)
normal = watershed(image, seeds)
expected = np.ones(image.shape, dtype=int)
expected[2, 3:] = 2
np.testing.assert_equal(normal, expected)
def test_numeric_seed_watershed():
"""Test that passing just the number of seeds to watershed works."""
image = np.zeros((5, 6))
image[:, 3:] = 1
compact = watershed(image, 2, compactness=0.01)
expected = np.array([[1, 1, 1, 1, 2, 2],
[1, 1, 1, 1, 2, 2],
[1, 1, 1, 1, 2, 2],
[1, 1, 1, 1, 2, 2],
[1, 1, 1, 1, 2, 2]], dtype=np.int32)
np.testing.assert_equal(compact, expected)
def test_incorrect_markers_shape():
with pytest.raises(ValueError):
image = np.ones((5, 6))
markers = np.ones((5, 7))
output = watershed(image, markers)
def test_incorrect_mask_shape():
with pytest.raises(ValueError):
image = np.ones((5, 6))
mask = np.ones((5, 7))
output = watershed(image, markers=4, mask=mask)
def test_markers_in_mask():
data = blob
mask = (data != 255)
out = watershed(data, 25, connectivity=2, mask=mask)
# There should be no markers where the mask is false
assert np.all(out[~mask] == 0)
def test_no_markers():
data = blob
mask = (data != 255)
out = watershed(data, mask=mask)
assert np.max(out) == 2
if __name__ == "__main__":
np.testing.run_module_suite()