Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/restoration/uft.py

449 lines
12 KiB
Python

r"""Function of unitary fourier transform (uft) and utilities
This module implements the unitary fourier transform, also known as
the ortho-normal transform. It is especially useful for convolution
[1], as it respects the Parseval equality. The value of the null
frequency is equal to
.. math:: \frac{1}{\sqrt{n}} \sum_i x_i
so the Fourier transform has the same energy as the original image
(see ``image_quad_norm`` function). The transform is applied from the
last axis for performance (assuming a C-order array input).
References
----------
.. [1] B. R. Hunt "A matrix theory proof of the discrete convolution
theorem", IEEE Trans. on Audio and Electroacoustics,
vol. au-19, no. 4, pp. 285-288, dec. 1971
"""
import numpy as np
from .._shared.fft import fftmodule as fft
__keywords__ = "fft, Fourier Transform, orthonormal, unitary"
def ufftn(inarray, dim=None):
"""N-dimensional unitary Fourier transform.
Parameters
----------
inarray : ndarray
The array to transform.
dim : int, optional
The last axis along which to compute the transform. All
axes by default.
Returns
-------
outarray : ndarray (same shape than inarray)
The unitary N-D Fourier transform of ``inarray``.
Examples
--------
>>> input = np.ones((3, 3, 3))
>>> output = ufftn(input)
>>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
True
>>> output.shape
(3, 3, 3)
"""
if dim is None:
dim = inarray.ndim
outarray = fft.fftn(inarray, axes=range(-dim, 0), norm='ortho')
return outarray
def uifftn(inarray, dim=None):
"""N-dimensional unitary inverse Fourier transform.
Parameters
----------
inarray : ndarray
The array to transform.
dim : int, optional
The last axis along which to compute the transform. All
axes by default.
Returns
-------
outarray : ndarray (same shape than inarray)
The unitary inverse N-D Fourier transform of ``inarray``.
Examples
--------
>>> input = np.ones((3, 3, 3))
>>> output = uifftn(input)
>>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
True
>>> output.shape
(3, 3, 3)
"""
if dim is None:
dim = inarray.ndim
outarray = fft.ifftn(inarray, axes=range(-dim, 0), norm='ortho')
return outarray
def urfftn(inarray, dim=None):
"""N-dimensional real unitary Fourier transform.
This transform considers the Hermitian property of the transform on
real-valued input.
Parameters
----------
inarray : ndarray, shape (M, N, ..., P)
The array to transform.
dim : int, optional
The last axis along which to compute the transform. All
axes by default.
Returns
-------
outarray : ndarray, shape (M, N, ..., P / 2 + 1)
The unitary N-D real Fourier transform of ``inarray``.
Notes
-----
The ``urfft`` functions assume an input array of real
values. Consequently, the output has a Hermitian property and
redundant values are not computed or returned.
Examples
--------
>>> input = np.ones((5, 5, 5))
>>> output = urfftn(input)
>>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
True
>>> output.shape
(5, 5, 3)
"""
if dim is None:
dim = inarray.ndim
outarray = fft.rfftn(inarray, axes=range(-dim, 0), norm='ortho')
return outarray
def uirfftn(inarray, dim=None, shape=None):
"""N-dimensional inverse real unitary Fourier transform.
This transform considers the Hermitian property of the transform
from complex to real input.
Parameters
----------
inarray : ndarray
The array to transform.
dim : int, optional
The last axis along which to compute the transform. All
axes by default.
shape : tuple of int, optional
The shape of the output. The shape of ``rfft`` is ambiguous in
case of odd-valued input shape. In this case, this parameter
should be provided. See ``np.fft.irfftn``.
Returns
-------
outarray : ndarray
The unitary N-D inverse real Fourier transform of ``inarray``.
Notes
-----
The ``uirfft`` function assumes that the output array is
real-valued. Consequently, the input is assumed to have a Hermitian
property and redundant values are implicit.
Examples
--------
>>> input = np.ones((5, 5, 5))
>>> output = uirfftn(urfftn(input), shape=input.shape)
>>> np.allclose(input, output)
True
>>> output.shape
(5, 5, 5)
"""
if dim is None:
dim = inarray.ndim
outarray = fft.irfftn(inarray, shape, axes=range(-dim, 0), norm='ortho')
return outarray
def ufft2(inarray):
"""2-dimensional unitary Fourier transform.
Compute the Fourier transform on the last 2 axes.
Parameters
----------
inarray : ndarray
The array to transform.
Returns
-------
outarray : ndarray (same shape as inarray)
The unitary 2-D Fourier transform of ``inarray``.
See Also
--------
uifft2, ufftn, urfftn
Examples
--------
>>> input = np.ones((10, 128, 128))
>>> output = ufft2(input)
>>> np.allclose(np.sum(input[1, ...]) / np.sqrt(input[1, ...].size),
... output[1, 0, 0])
True
>>> output.shape
(10, 128, 128)
"""
return ufftn(inarray, 2)
def uifft2(inarray):
"""2-dimensional inverse unitary Fourier transform.
Compute the inverse Fourier transform on the last 2 axes.
Parameters
----------
inarray : ndarray
The array to transform.
Returns
-------
outarray : ndarray (same shape as inarray)
The unitary 2-D inverse Fourier transform of ``inarray``.
See Also
--------
uifft2, uifftn, uirfftn
Examples
--------
>>> input = np.ones((10, 128, 128))
>>> output = uifft2(input)
>>> np.allclose(np.sum(input[1, ...]) / np.sqrt(input[1, ...].size),
... output[0, 0, 0])
True
>>> output.shape
(10, 128, 128)
"""
return uifftn(inarray, 2)
def urfft2(inarray):
"""2-dimensional real unitary Fourier transform
Compute the real Fourier transform on the last 2 axes. This
transform considers the Hermitian property of the transform from
complex to real-valued input.
Parameters
----------
inarray : ndarray, shape (M, N, ..., P)
The array to transform.
Returns
-------
outarray : ndarray, shape (M, N, ..., 2 * (P - 1))
The unitary 2-D real Fourier transform of ``inarray``.
See Also
--------
ufft2, ufftn, urfftn
Examples
--------
>>> input = np.ones((10, 128, 128))
>>> output = urfft2(input)
>>> np.allclose(np.sum(input[1,...]) / np.sqrt(input[1,...].size),
... output[1, 0, 0])
True
>>> output.shape
(10, 128, 65)
"""
return urfftn(inarray, 2)
def uirfft2(inarray, shape=None):
"""2-dimensional inverse real unitary Fourier transform.
Compute the real inverse Fourier transform on the last 2 axes.
This transform considers the Hermitian property of the transform
from complex to real-valued input.
Parameters
----------
inarray : ndarray, shape (M, N, ..., P)
The array to transform.
shape : tuple of int, optional
The shape of the output. The shape of ``rfft`` is ambiguous in
case of odd-valued input shape. In this case, this parameter
should be provided. See ``np.fft.irfftn``.
Returns
-------
outarray : ndarray, shape (M, N, ..., 2 * (P - 1))
The unitary 2-D inverse real Fourier transform of ``inarray``.
See Also
--------
urfft2, uifftn, uirfftn
Examples
--------
>>> input = np.ones((10, 128, 128))
>>> output = uirfftn(urfftn(input), shape=input.shape)
>>> np.allclose(input, output)
True
>>> output.shape
(10, 128, 128)
"""
return uirfftn(inarray, 2, shape=shape)
def image_quad_norm(inarray):
"""Return the quadratic norm of images in Fourier space.
This function detects whether the input image satisfies the
Hermitian property.
Parameters
----------
inarray : ndarray
Input image. The image data should reside in the final two
axes.
Returns
-------
norm : float
The quadratic norm of ``inarray``.
Examples
--------
>>> input = np.ones((5, 5))
>>> image_quad_norm(ufft2(input)) == np.sum(np.abs(input)**2)
True
>>> image_quad_norm(ufft2(input)) == image_quad_norm(urfft2(input))
True
"""
# If there is a Hermitian symmetry
if inarray.shape[-1] != inarray.shape[-2]:
return (2 * np.sum(np.sum(np.abs(inarray) ** 2, axis=-1), axis=-1) -
np.sum(np.abs(inarray[..., 0]) ** 2, axis=-1))
else:
return np.sum(np.sum(np.abs(inarray) ** 2, axis=-1), axis=-1)
def ir2tf(imp_resp, shape, dim=None, is_real=True):
"""Compute the transfer function of an impulse response (IR).
This function makes the necessary correct zero-padding, zero
convention, correct fft2, etc... to compute the transfer function
of IR. To use with unitary Fourier transform for the signal (ufftn
or equivalent).
Parameters
----------
imp_resp : ndarray
The impulse responses.
shape : tuple of int
A tuple of integer corresponding to the target shape of the
transfer function.
dim : int, optional
The last axis along which to compute the transform. All
axes by default.
is_real : boolean, optional
If True (default), imp_resp is supposed real and the Hermitian property
is used with rfftn Fourier transform.
Returns
-------
y : complex ndarray
The transfer function of shape ``shape``.
See Also
--------
ufftn, uifftn, urfftn, uirfftn
Examples
--------
>>> np.all(np.array([[4, 0], [0, 0]]) == ir2tf(np.ones((2, 2)), (2, 2)))
True
>>> ir2tf(np.ones((2, 2)), (512, 512)).shape == (512, 257)
True
>>> ir2tf(np.ones((2, 2)), (512, 512), is_real=False).shape == (512, 512)
True
Notes
-----
The input array can be composed of multiple-dimensional IR with
an arbitrary number of IR. The individual IR must be accessed
through the first axes. The last ``dim`` axes contain the space
definition.
"""
if not dim:
dim = imp_resp.ndim
# Zero padding and fill
irpadded = np.zeros(shape)
irpadded[tuple([slice(0, s) for s in imp_resp.shape])] = imp_resp
# Roll for zero convention of the fft to avoid the phase
# problem. Work with odd and even size.
for axis, axis_size in enumerate(imp_resp.shape):
if axis >= imp_resp.ndim - dim:
irpadded = np.roll(irpadded,
shift=-int(np.floor(axis_size / 2)),
axis=axis)
if is_real:
return fft.rfftn(irpadded, axes=range(-dim, 0))
else:
return fft.fftn(irpadded, axes=range(-dim, 0))
def laplacian(ndim, shape, is_real=True):
"""Return the transfer function of the Laplacian.
Laplacian is the second order difference, on row and column.
Parameters
----------
ndim : int
The dimension of the Laplacian.
shape : tuple
The support on which to compute the transfer function.
is_real : boolean, optional
If True (default), imp_resp is assumed to be real-valued and
the Hermitian property is used with rfftn Fourier transform
to return the transfer function.
Returns
-------
tf : array_like, complex
The transfer function.
impr : array_like, real
The Laplacian.
Examples
--------
>>> tf, ir = laplacian(2, (32, 32))
>>> np.all(ir == np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]]))
True
>>> np.all(tf == ir2tf(ir, (32, 32)))
True
"""
impr = np.zeros([3] * ndim)
for dim in range(ndim):
idx = tuple([slice(1, 2)] * dim +
[slice(None)] +
[slice(1, 2)] * (ndim - dim - 1))
impr[idx] = np.array([-1.0,
0.0,
-1.0]).reshape([-1 if i == dim else 1
for i in range(ndim)])
impr[(slice(1, 2), ) * ndim] = 2.0 * ndim
return ir2tf(impr, shape, is_real=is_real), impr