""" Test SciPy functions versus mpmath, if available. """ import numpy as np from numpy.testing import assert_, assert_allclose from numpy import pi import pytest import itertools from distutils.version import LooseVersion import scipy.special as sc from scipy.special._testutils import ( MissingModule, check_version, FuncData, assert_func_equal) from scipy.special._mptestutils import ( Arg, FixedArg, ComplexArg, IntArg, assert_mpmath_equal, nonfunctional_tooslow, trace_args, time_limited, exception_to_nan, inf_to_nan) from scipy.special._ufuncs import ( _sinpi, _cospi, _lgam1p, _lanczos_sum_expg_scaled, _log1pmx, _igam_fac) try: import mpmath # type: ignore[import] except ImportError: mpmath = MissingModule('mpmath') # ------------------------------------------------------------------------------ # expi # ------------------------------------------------------------------------------ @check_version(mpmath, '0.10') def test_expi_complex(): dataset = [] for r in np.logspace(-99, 2, 10): for p in np.linspace(0, 2*np.pi, 30): z = r*np.exp(1j*p) dataset.append((z, complex(mpmath.ei(z)))) dataset = np.array(dataset, dtype=np.complex_) FuncData(sc.expi, dataset, 0, 1).check() # ------------------------------------------------------------------------------ # expn # ------------------------------------------------------------------------------ @check_version(mpmath, '0.19') def test_expn_large_n(): # Test the transition to the asymptotic regime of n. dataset = [] for n in [50, 51]: for x in np.logspace(0, 4, 200): with mpmath.workdps(100): dataset.append((n, x, float(mpmath.expint(n, x)))) dataset = np.asarray(dataset) FuncData(sc.expn, dataset, (0, 1), 2, rtol=1e-13).check() # ------------------------------------------------------------------------------ # hyp0f1 # ------------------------------------------------------------------------------ @check_version(mpmath, '0.19') def test_hyp0f1_gh5764(): # Do a small and somewhat systematic test that runs quickly dataset = [] axis = [-99.5, -9.5, -0.5, 0.5, 9.5, 99.5] for v in axis: for x in axis: for y in axis: z = x + 1j*y # mpmath computes the answer correctly at dps ~ 17 but # fails for 20 < dps < 120 (uses a different method); # set the dps high enough that this isn't an issue with mpmath.workdps(120): res = complex(mpmath.hyp0f1(v, z)) dataset.append((v, z, res)) dataset = np.array(dataset) FuncData(lambda v, z: sc.hyp0f1(v.real, z), dataset, (0, 1), 2, rtol=1e-13).check() @check_version(mpmath, '0.19') def test_hyp0f1_gh_1609(): # this is a regression test for gh-1609 vv = np.linspace(150, 180, 21) af = sc.hyp0f1(vv, 0.5) mf = np.array([mpmath.hyp0f1(v, 0.5) for v in vv]) assert_allclose(af, mf.astype(float), rtol=1e-12) # ------------------------------------------------------------------------------ # hyperu # ------------------------------------------------------------------------------ @check_version(mpmath, '1.1.0') def test_hyperu_around_0(): dataset = [] # DLMF 13.2.14-15 test points. for n in np.arange(-5, 5): for b in np.linspace(-5, 5, 20): a = -n dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0)))) a = -n + b - 1 dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0)))) # DLMF 13.2.16-22 test points. for a in [-10.5, -1.5, -0.5, 0, 0.5, 1, 10]: for b in [-1.0, -0.5, 0, 0.5, 1, 1.5, 2, 2.5]: dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0)))) dataset = np.array(dataset) FuncData(sc.hyperu, dataset, (0, 1, 2), 3, rtol=1e-15, atol=5e-13).check() # ------------------------------------------------------------------------------ # hyp2f1 # ------------------------------------------------------------------------------ @check_version(mpmath, '1.0.0') def test_hyp2f1_strange_points(): pts = [ (2, -1, -1, 0.7), # expected: 2.4 (2, -2, -2, 0.7), # expected: 3.87 ] pts += list(itertools.product([2, 1, -0.7, -1000], repeat=4)) pts = [ (a, b, c, x) for a, b, c, x in pts if b == c and round(b) == b and b < 0 and b != -1000 ] kw = dict(eliminate=True) dataset = [p + (float(mpmath.hyp2f1(*p, **kw)),) for p in pts] dataset = np.array(dataset, dtype=np.float_) FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check() @check_version(mpmath, '0.13') def test_hyp2f1_real_some_points(): pts = [ (1, 2, 3, 0), (1./3, 2./3, 5./6, 27./32), (1./4, 1./2, 3./4, 80./81), (2,-2, -3, 3), (2, -3, -2, 3), (2, -1.5, -1.5, 3), (1, 2, 3, 0), (0.7235, -1, -5, 0.3), (0.25, 1./3, 2, 0.999), (0.25, 1./3, 2, -1), (2, 3, 5, 0.99), (3./2, -0.5, 3, 0.99), (2, 2.5, -3.25, 0.999), (-8, 18.016500331508873, 10.805295997850628, 0.90875647507000001), (-10, 900, -10.5, 0.99), (-10, 900, 10.5, 0.99), (-1, 2, 1, 1.0), (-1, 2, 1, -1.0), (-3, 13, 5, 1.0), (-3, 13, 5, -1.0), (0.5, 1 - 270.5, 1.5, 0.999**2), # from issue 1561 ] dataset = [p + (float(mpmath.hyp2f1(*p)),) for p in pts] dataset = np.array(dataset, dtype=np.float_) with np.errstate(invalid='ignore'): FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check() @check_version(mpmath, '0.14') def test_hyp2f1_some_points_2(): # Taken from mpmath unit tests -- this point failed for mpmath 0.13 but # was fixed in their SVN since then pts = [ (112, (51,10), (-9,10), -0.99999), (10,-900,10.5,0.99), (10,-900,-10.5,0.99), ] def fev(x): if isinstance(x, tuple): return float(x[0]) / x[1] else: return x dataset = [tuple(map(fev, p)) + (float(mpmath.hyp2f1(*p)),) for p in pts] dataset = np.array(dataset, dtype=np.float_) FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check() @check_version(mpmath, '0.13') def test_hyp2f1_real_some(): dataset = [] for a in [-10, -5, -1.8, 1.8, 5, 10]: for b in [-2.5, -1, 1, 7.4]: for c in [-9, -1.8, 5, 20.4]: for z in [-10, -1.01, -0.99, 0, 0.6, 0.95, 1.5, 10]: try: v = float(mpmath.hyp2f1(a, b, c, z)) except Exception: continue dataset.append((a, b, c, z, v)) dataset = np.array(dataset, dtype=np.float_) with np.errstate(invalid='ignore'): FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-9, ignore_inf_sign=True).check() @check_version(mpmath, '0.12') @pytest.mark.slow def test_hyp2f1_real_random(): npoints = 500 dataset = np.zeros((npoints, 5), np.float_) np.random.seed(1234) dataset[:, 0] = np.random.pareto(1.5, npoints) dataset[:, 1] = np.random.pareto(1.5, npoints) dataset[:, 2] = np.random.pareto(1.5, npoints) dataset[:, 3] = 2*np.random.rand(npoints) - 1 dataset[:, 0] *= (-1)**np.random.randint(2, npoints) dataset[:, 1] *= (-1)**np.random.randint(2, npoints) dataset[:, 2] *= (-1)**np.random.randint(2, npoints) for ds in dataset: if mpmath.__version__ < '0.14': # mpmath < 0.14 fails for c too much smaller than a, b if abs(ds[:2]).max() > abs(ds[2]): ds[2] = abs(ds[:2]).max() ds[4] = float(mpmath.hyp2f1(*tuple(ds[:4]))) FuncData(sc.hyp2f1, dataset, (0, 1, 2, 3), 4, rtol=1e-9).check() # ------------------------------------------------------------------------------ # erf (complex) # ------------------------------------------------------------------------------ @check_version(mpmath, '0.14') def test_erf_complex(): # need to increase mpmath precision for this test old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec try: mpmath.mp.dps = 70 x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11)) x2, y2 = np.meshgrid(np.logspace(-80, .8, 31), np.logspace(-80, .8, 11)) points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(), y2.ravel()] assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points, vectorized=False, rtol=1e-13) assert_func_equal(sc.erfc, lambda x: complex(mpmath.erfc(x)), points, vectorized=False, rtol=1e-13) finally: mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec # ------------------------------------------------------------------------------ # lpmv # ------------------------------------------------------------------------------ @check_version(mpmath, '0.15') def test_lpmv(): pts = [] for x in [-0.99, -0.557, 1e-6, 0.132, 1]: pts.extend([ (1, 1, x), (1, -1, x), (-1, 1, x), (-1, -2, x), (1, 1.7, x), (1, -1.7, x), (-1, 1.7, x), (-1, -2.7, x), (1, 10, x), (1, 11, x), (3, 8, x), (5, 11, x), (-3, 8, x), (-5, 11, x), (3, -8, x), (5, -11, x), (-3, -8, x), (-5, -11, x), (3, 8.3, x), (5, 11.3, x), (-3, 8.3, x), (-5, 11.3, x), (3, -8.3, x), (5, -11.3, x), (-3, -8.3, x), (-5, -11.3, x), ]) def mplegenp(nu, mu, x): if mu == int(mu) and x == 1: # mpmath 0.17 gets this wrong if mu == 0: return 1 else: return 0 return mpmath.legenp(nu, mu, x) dataset = [p + (mplegenp(p[1], p[0], p[2]),) for p in pts] dataset = np.array(dataset, dtype=np.float_) def evf(mu, nu, x): return sc.lpmv(mu.astype(int), nu, x) with np.errstate(invalid='ignore'): FuncData(evf, dataset, (0,1,2), 3, rtol=1e-10, atol=1e-14).check() # ------------------------------------------------------------------------------ # beta # ------------------------------------------------------------------------------ @check_version(mpmath, '0.15') def test_beta(): np.random.seed(1234) b = np.r_[np.logspace(-200, 200, 4), np.logspace(-10, 10, 4), np.logspace(-1, 1, 4), np.arange(-10, 11, 1), np.arange(-10, 11, 1) + 0.5, -1, -2.3, -3, -100.3, -10003.4] a = b ab = np.array(np.broadcast_arrays(a[:,None], b[None,:])).reshape(2, -1).T old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec try: mpmath.mp.dps = 400 assert_func_equal(sc.beta, lambda a, b: float(mpmath.beta(a, b)), ab, vectorized=False, rtol=1e-10, ignore_inf_sign=True) assert_func_equal( sc.betaln, lambda a, b: float(mpmath.log(abs(mpmath.beta(a, b)))), ab, vectorized=False, rtol=1e-10) finally: mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec # ------------------------------------------------------------------------------ # loggamma # ------------------------------------------------------------------------------ LOGGAMMA_TAYLOR_RADIUS = 0.2 @check_version(mpmath, '0.19') def test_loggamma_taylor_transition(): # Make sure there isn't a big jump in accuracy when we move from # using the Taylor series to using the recurrence relation. r = LOGGAMMA_TAYLOR_RADIUS + np.array([-0.1, -0.01, 0, 0.01, 0.1]) theta = np.linspace(0, 2*np.pi, 20) r, theta = np.meshgrid(r, theta) dz = r*np.exp(1j*theta) z = np.r_[1 + dz, 2 + dz].flatten() dataset = [(z0, complex(mpmath.loggamma(z0))) for z0 in z] dataset = np.array(dataset) FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check() @check_version(mpmath, '0.19') def test_loggamma_taylor(): # Test around the zeros at z = 1, 2. r = np.logspace(-16, np.log10(LOGGAMMA_TAYLOR_RADIUS), 10) theta = np.linspace(0, 2*np.pi, 20) r, theta = np.meshgrid(r, theta) dz = r*np.exp(1j*theta) z = np.r_[1 + dz, 2 + dz].flatten() dataset = [(z0, complex(mpmath.loggamma(z0))) for z0 in z] dataset = np.array(dataset) FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check() # ------------------------------------------------------------------------------ # rgamma # ------------------------------------------------------------------------------ @check_version(mpmath, '0.19') @pytest.mark.slow def test_rgamma_zeros(): # Test around the zeros at z = 0, -1, -2, ..., -169. (After -169 we # get values that are out of floating point range even when we're # within 0.1 of the zero.) # Can't use too many points here or the test takes forever. dx = np.r_[-np.logspace(-1, -13, 3), 0, np.logspace(-13, -1, 3)] dy = dx.copy() dx, dy = np.meshgrid(dx, dy) dz = dx + 1j*dy zeros = np.arange(0, -170, -1).reshape(1, 1, -1) z = (zeros + np.dstack((dz,)*zeros.size)).flatten() with mpmath.workdps(100): dataset = [(z0, complex(mpmath.rgamma(z0))) for z0 in z] dataset = np.array(dataset) FuncData(sc.rgamma, dataset, 0, 1, rtol=1e-12).check() # ------------------------------------------------------------------------------ # digamma # ------------------------------------------------------------------------------ @check_version(mpmath, '0.19') @pytest.mark.slow def test_digamma_roots(): # Test the special-cased roots for digamma. root = mpmath.findroot(mpmath.digamma, 1.5) roots = [float(root)] root = mpmath.findroot(mpmath.digamma, -0.5) roots.append(float(root)) roots = np.array(roots) # If we test beyond a radius of 0.24 mpmath will take forever. dx = np.r_[-0.24, -np.logspace(-1, -15, 10), 0, np.logspace(-15, -1, 10), 0.24] dy = dx.copy() dx, dy = np.meshgrid(dx, dy) dz = dx + 1j*dy z = (roots + np.dstack((dz,)*roots.size)).flatten() with mpmath.workdps(30): dataset = [(z0, complex(mpmath.digamma(z0))) for z0 in z] dataset = np.array(dataset) FuncData(sc.digamma, dataset, 0, 1, rtol=1e-14).check() @check_version(mpmath, '0.19') def test_digamma_negreal(): # Test digamma around the negative real axis. Don't do this in # TestSystematic because the points need some jiggering so that # mpmath doesn't take forever. digamma = exception_to_nan(mpmath.digamma) x = -np.logspace(300, -30, 100) y = np.r_[-np.logspace(0, -3, 5), 0, np.logspace(-3, 0, 5)] x, y = np.meshgrid(x, y) z = (x + 1j*y).flatten() with mpmath.workdps(40): dataset = [(z0, complex(digamma(z0))) for z0 in z] dataset = np.asarray(dataset) FuncData(sc.digamma, dataset, 0, 1, rtol=1e-13).check() @check_version(mpmath, '0.19') def test_digamma_boundary(): # Check that there isn't a jump in accuracy when we switch from # using the asymptotic series to the reflection formula. x = -np.logspace(300, -30, 100) y = np.array([-6.1, -5.9, 5.9, 6.1]) x, y = np.meshgrid(x, y) z = (x + 1j*y).flatten() with mpmath.workdps(30): dataset = [(z0, complex(mpmath.digamma(z0))) for z0 in z] dataset = np.asarray(dataset) FuncData(sc.digamma, dataset, 0, 1, rtol=1e-13).check() # ------------------------------------------------------------------------------ # gammainc # ------------------------------------------------------------------------------ @check_version(mpmath, '0.19') @pytest.mark.slow def test_gammainc_boundary(): # Test the transition to the asymptotic series. small = 20 a = np.linspace(0.5*small, 2*small, 50) x = a.copy() a, x = np.meshgrid(a, x) a, x = a.flatten(), x.flatten() with mpmath.workdps(100): dataset = [(a0, x0, float(mpmath.gammainc(a0, b=x0, regularized=True))) for a0, x0 in zip(a, x)] dataset = np.array(dataset) FuncData(sc.gammainc, dataset, (0, 1), 2, rtol=1e-12).check() # ------------------------------------------------------------------------------ # spence # ------------------------------------------------------------------------------ @check_version(mpmath, '0.19') @pytest.mark.slow def test_spence_circle(): # The trickiest region for spence is around the circle |z - 1| = 1, # so test that region carefully. def spence(z): return complex(mpmath.polylog(2, 1 - z)) r = np.linspace(0.5, 1.5) theta = np.linspace(0, 2*pi) z = (1 + np.outer(r, np.exp(1j*theta))).flatten() dataset = np.asarray([(z0, spence(z0)) for z0 in z]) FuncData(sc.spence, dataset, 0, 1, rtol=1e-14).check() # ------------------------------------------------------------------------------ # sinpi and cospi # ------------------------------------------------------------------------------ @check_version(mpmath, '0.19') def test_sinpi_zeros(): eps = np.finfo(float).eps dx = np.r_[-np.logspace(0, -13, 3), 0, np.logspace(-13, 0, 3)] dy = dx.copy() dx, dy = np.meshgrid(dx, dy) dz = dx + 1j*dy zeros = np.arange(-100, 100, 1).reshape(1, 1, -1) z = (zeros + np.dstack((dz,)*zeros.size)).flatten() dataset = np.asarray([(z0, complex(mpmath.sinpi(z0))) for z0 in z]) FuncData(_sinpi, dataset, 0, 1, rtol=2*eps).check() @check_version(mpmath, '0.19') def test_cospi_zeros(): eps = np.finfo(float).eps dx = np.r_[-np.logspace(0, -13, 3), 0, np.logspace(-13, 0, 3)] dy = dx.copy() dx, dy = np.meshgrid(dx, dy) dz = dx + 1j*dy zeros = (np.arange(-100, 100, 1) + 0.5).reshape(1, 1, -1) z = (zeros + np.dstack((dz,)*zeros.size)).flatten() dataset = np.asarray([(z0, complex(mpmath.cospi(z0))) for z0 in z]) FuncData(_cospi, dataset, 0, 1, rtol=2*eps).check() # ------------------------------------------------------------------------------ # ellipj # ------------------------------------------------------------------------------ @check_version(mpmath, '0.19') def test_dn_quarter_period(): def dn(u, m): return sc.ellipj(u, m)[2] def mpmath_dn(u, m): return float(mpmath.ellipfun("dn", u=u, m=m)) m = np.linspace(0, 1, 20) du = np.r_[-np.logspace(-1, -15, 10), 0, np.logspace(-15, -1, 10)] dataset = [] for m0 in m: u0 = float(mpmath.ellipk(m0)) for du0 in du: p = u0 + du0 dataset.append((p, m0, mpmath_dn(p, m0))) dataset = np.asarray(dataset) FuncData(dn, dataset, (0, 1), 2, rtol=1e-10).check() # ------------------------------------------------------------------------------ # Wright Omega # ------------------------------------------------------------------------------ def _mpmath_wrightomega(z, dps): with mpmath.workdps(dps): z = mpmath.mpc(z) unwind = mpmath.ceil((z.imag - mpmath.pi)/(2*mpmath.pi)) res = mpmath.lambertw(mpmath.exp(z), unwind) return res @pytest.mark.slow @check_version(mpmath, '0.19') def test_wrightomega_branch(): x = -np.logspace(10, 0, 25) picut_above = [np.nextafter(np.pi, np.inf)] picut_below = [np.nextafter(np.pi, -np.inf)] npicut_above = [np.nextafter(-np.pi, np.inf)] npicut_below = [np.nextafter(-np.pi, -np.inf)] for i in range(50): picut_above.append(np.nextafter(picut_above[-1], np.inf)) picut_below.append(np.nextafter(picut_below[-1], -np.inf)) npicut_above.append(np.nextafter(npicut_above[-1], np.inf)) npicut_below.append(np.nextafter(npicut_below[-1], -np.inf)) y = np.hstack((picut_above, picut_below, npicut_above, npicut_below)) x, y = np.meshgrid(x, y) z = (x + 1j*y).flatten() dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25))) for z0 in z]) FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-8).check() @pytest.mark.slow @check_version(mpmath, '0.19') def test_wrightomega_region1(): # This region gets less coverage in the TestSystematic test x = np.linspace(-2, 1) y = np.linspace(1, 2*np.pi) x, y = np.meshgrid(x, y) z = (x + 1j*y).flatten() dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25))) for z0 in z]) FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-15).check() @pytest.mark.slow @check_version(mpmath, '0.19') def test_wrightomega_region2(): # This region gets less coverage in the TestSystematic test x = np.linspace(-2, 1) y = np.linspace(-2*np.pi, -1) x, y = np.meshgrid(x, y) z = (x + 1j*y).flatten() dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25))) for z0 in z]) FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-15).check() # ------------------------------------------------------------------------------ # lambertw # ------------------------------------------------------------------------------ @pytest.mark.slow @check_version(mpmath, '0.19') def test_lambertw_smallz(): x, y = np.linspace(-1, 1, 25), np.linspace(-1, 1, 25) x, y = np.meshgrid(x, y) z = (x + 1j*y).flatten() dataset = np.asarray([(z0, complex(mpmath.lambertw(z0))) for z0 in z]) FuncData(sc.lambertw, dataset, 0, 1, rtol=1e-13).check() # ------------------------------------------------------------------------------ # Systematic tests # ------------------------------------------------------------------------------ HYPERKW = dict(maxprec=200, maxterms=200) @pytest.mark.slow @check_version(mpmath, '0.17') class TestSystematic(object): def test_airyai(self): # oscillating function, limit range assert_mpmath_equal(lambda z: sc.airy(z)[0], mpmath.airyai, [Arg(-1e8, 1e8)], rtol=1e-5) assert_mpmath_equal(lambda z: sc.airy(z)[0], mpmath.airyai, [Arg(-1e3, 1e3)]) def test_airyai_complex(self): assert_mpmath_equal(lambda z: sc.airy(z)[0], mpmath.airyai, [ComplexArg()]) def test_airyai_prime(self): # oscillating function, limit range assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z: mpmath.airyai(z, derivative=1), [Arg(-1e8, 1e8)], rtol=1e-5) assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z: mpmath.airyai(z, derivative=1), [Arg(-1e3, 1e3)]) def test_airyai_prime_complex(self): assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z: mpmath.airyai(z, derivative=1), [ComplexArg()]) def test_airybi(self): # oscillating function, limit range assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z: mpmath.airybi(z), [Arg(-1e8, 1e8)], rtol=1e-5) assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z: mpmath.airybi(z), [Arg(-1e3, 1e3)]) def test_airybi_complex(self): assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z: mpmath.airybi(z), [ComplexArg()]) def test_airybi_prime(self): # oscillating function, limit range assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z: mpmath.airybi(z, derivative=1), [Arg(-1e8, 1e8)], rtol=1e-5) assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z: mpmath.airybi(z, derivative=1), [Arg(-1e3, 1e3)]) def test_airybi_prime_complex(self): assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z: mpmath.airybi(z, derivative=1), [ComplexArg()]) def test_bei(self): assert_mpmath_equal(sc.bei, exception_to_nan(lambda z: mpmath.bei(0, z, **HYPERKW)), [Arg(-1e3, 1e3)]) def test_ber(self): assert_mpmath_equal(sc.ber, exception_to_nan(lambda z: mpmath.ber(0, z, **HYPERKW)), [Arg(-1e3, 1e3)]) def test_bernoulli(self): assert_mpmath_equal(lambda n: sc.bernoulli(int(n))[int(n)], lambda n: float(mpmath.bernoulli(int(n))), [IntArg(0, 13000)], rtol=1e-9, n=13000) def test_besseli(self): assert_mpmath_equal(sc.iv, exception_to_nan(lambda v, z: mpmath.besseli(v, z, **HYPERKW)), [Arg(-1e100, 1e100), Arg()], atol=1e-270) def test_besseli_complex(self): assert_mpmath_equal(lambda v, z: sc.iv(v.real, z), exception_to_nan(lambda v, z: mpmath.besseli(v, z, **HYPERKW)), [Arg(-1e100, 1e100), ComplexArg()]) def test_besselj(self): assert_mpmath_equal(sc.jv, exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)), [Arg(-1e100, 1e100), Arg(-1e3, 1e3)], ignore_inf_sign=True) # loss of precision at large arguments due to oscillation assert_mpmath_equal(sc.jv, exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)), [Arg(-1e100, 1e100), Arg(-1e8, 1e8)], ignore_inf_sign=True, rtol=1e-5) def test_besselj_complex(self): assert_mpmath_equal(lambda v, z: sc.jv(v.real, z), exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)), [Arg(), ComplexArg()]) def test_besselk(self): assert_mpmath_equal(sc.kv, mpmath.besselk, [Arg(-200, 200), Arg(0, np.inf)], nan_ok=False, rtol=1e-12) def test_besselk_int(self): assert_mpmath_equal(sc.kn, mpmath.besselk, [IntArg(-200, 200), Arg(0, np.inf)], nan_ok=False, rtol=1e-12) def test_besselk_complex(self): assert_mpmath_equal(lambda v, z: sc.kv(v.real, z), exception_to_nan(lambda v, z: mpmath.besselk(v, z, **HYPERKW)), [Arg(-1e100, 1e100), ComplexArg()]) def test_bessely(self): def mpbessely(v, x): r = float(mpmath.bessely(v, x, **HYPERKW)) if abs(r) > 1e305: # overflowing to inf a bit earlier is OK r = np.inf * np.sign(r) if abs(r) == 0 and x == 0: # invalid result from mpmath, point x=0 is a divergence return np.nan return r assert_mpmath_equal(sc.yv, exception_to_nan(mpbessely), [Arg(-1e100, 1e100), Arg(-1e8, 1e8)], n=5000) def test_bessely_complex(self): def mpbessely(v, x): r = complex(mpmath.bessely(v, x, **HYPERKW)) if abs(r) > 1e305: # overflowing to inf a bit earlier is OK with np.errstate(invalid='ignore'): r = np.inf * np.sign(r) return r assert_mpmath_equal(lambda v, z: sc.yv(v.real, z), exception_to_nan(mpbessely), [Arg(), ComplexArg()], n=15000) def test_bessely_int(self): def mpbessely(v, x): r = float(mpmath.bessely(v, x)) if abs(r) == 0 and x == 0: # invalid result from mpmath, point x=0 is a divergence return np.nan return r assert_mpmath_equal(lambda v, z: sc.yn(int(v), z), exception_to_nan(mpbessely), [IntArg(-1000, 1000), Arg(-1e8, 1e8)]) def test_beta(self): bad_points = [] def beta(a, b, nonzero=False): if a < -1e12 or b < -1e12: # Function is defined here only at integers, but due # to loss of precision this is numerically # ill-defined. Don't compare values here. return np.nan if (a < 0 or b < 0) and (abs(float(a + b)) % 1) == 0: # close to a zero of the function: mpmath and scipy # will not round here the same, so the test needs to be # run with an absolute tolerance if nonzero: bad_points.append((float(a), float(b))) return np.nan return mpmath.beta(a, b) assert_mpmath_equal(sc.beta, lambda a, b: beta(a, b, nonzero=True), [Arg(), Arg()], dps=400, ignore_inf_sign=True) assert_mpmath_equal(sc.beta, beta, np.array(bad_points), dps=400, ignore_inf_sign=True, atol=1e-11) def test_betainc(self): assert_mpmath_equal(sc.betainc, time_limited()(exception_to_nan(lambda a, b, x: mpmath.betainc(a, b, 0, x, regularized=True))), [Arg(), Arg(), Arg()]) def test_binom(self): bad_points = [] def binomial(n, k, nonzero=False): if abs(k) > 1e8*(abs(n) + 1): # The binomial is rapidly oscillating in this region, # and the function is numerically ill-defined. Don't # compare values here. return np.nan if n < k and abs(float(n-k) - np.round(float(n-k))) < 1e-15: # close to a zero of the function: mpmath and scipy # will not round here the same, so the test needs to be # run with an absolute tolerance if nonzero: bad_points.append((float(n), float(k))) return np.nan return mpmath.binomial(n, k) assert_mpmath_equal(sc.binom, lambda n, k: binomial(n, k, nonzero=True), [Arg(), Arg()], dps=400) assert_mpmath_equal(sc.binom, binomial, np.array(bad_points), dps=400, atol=1e-14) def test_chebyt_int(self): assert_mpmath_equal(lambda n, x: sc.eval_chebyt(int(n), x), exception_to_nan(lambda n, x: mpmath.chebyt(n, x, **HYPERKW)), [IntArg(), Arg()], dps=50) @pytest.mark.xfail(run=False, reason="some cases in hyp2f1 not fully accurate") def test_chebyt(self): assert_mpmath_equal(sc.eval_chebyt, lambda n, x: time_limited()(exception_to_nan(mpmath.chebyt))(n, x, **HYPERKW), [Arg(-101, 101), Arg()], n=10000) def test_chebyu_int(self): assert_mpmath_equal(lambda n, x: sc.eval_chebyu(int(n), x), exception_to_nan(lambda n, x: mpmath.chebyu(n, x, **HYPERKW)), [IntArg(), Arg()], dps=50) @pytest.mark.xfail(run=False, reason="some cases in hyp2f1 not fully accurate") def test_chebyu(self): assert_mpmath_equal(sc.eval_chebyu, lambda n, x: time_limited()(exception_to_nan(mpmath.chebyu))(n, x, **HYPERKW), [Arg(-101, 101), Arg()]) def test_chi(self): def chi(x): return sc.shichi(x)[1] assert_mpmath_equal(chi, mpmath.chi, [Arg()]) # check asymptotic series cross-over assert_mpmath_equal(chi, mpmath.chi, [FixedArg([88 - 1e-9, 88, 88 + 1e-9])]) def test_chi_complex(self): def chi(z): return sc.shichi(z)[1] # chi oscillates as Im[z] -> +- inf, so limit range assert_mpmath_equal(chi, mpmath.chi, [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))], rtol=1e-12) def test_ci(self): def ci(x): return sc.sici(x)[1] # oscillating function: limit range assert_mpmath_equal(ci, mpmath.ci, [Arg(-1e8, 1e8)]) def test_ci_complex(self): def ci(z): return sc.sici(z)[1] # ci oscillates as Re[z] -> +- inf, so limit range assert_mpmath_equal(ci, mpmath.ci, [ComplexArg(complex(-1e8, -np.inf), complex(1e8, np.inf))], rtol=1e-8) def test_cospi(self): eps = np.finfo(float).eps assert_mpmath_equal(_cospi, mpmath.cospi, [Arg()], nan_ok=False, rtol=eps) def test_cospi_complex(self): assert_mpmath_equal(_cospi, mpmath.cospi, [ComplexArg()], nan_ok=False, rtol=1e-13) def test_digamma(self): assert_mpmath_equal(sc.digamma, exception_to_nan(mpmath.digamma), [Arg()], rtol=1e-12, dps=50) def test_digamma_complex(self): # Test on a cut plane because mpmath will hang. See # test_digamma_negreal for tests on the negative real axis. def param_filter(z): return np.where((z.real < 0) & (np.abs(z.imag) < 1.12), False, True) assert_mpmath_equal(sc.digamma, exception_to_nan(mpmath.digamma), [ComplexArg()], rtol=1e-13, dps=40, param_filter=param_filter) def test_e1(self): assert_mpmath_equal(sc.exp1, mpmath.e1, [Arg()], rtol=1e-14) def test_e1_complex(self): # E_1 oscillates as Im[z] -> +- inf, so limit range assert_mpmath_equal(sc.exp1, mpmath.e1, [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))], rtol=1e-11) # Check cross-over region assert_mpmath_equal(sc.exp1, mpmath.e1, (np.linspace(-50, 50, 171)[:, None] + np.r_[0, np.logspace(-3, 2, 61), -np.logspace(-3, 2, 11)]*1j).ravel(), rtol=1e-11) assert_mpmath_equal(sc.exp1, mpmath.e1, (np.linspace(-50, -35, 10000) + 0j), rtol=1e-11) def test_exprel(self): assert_mpmath_equal(sc.exprel, lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'), [Arg(a=-np.log(np.finfo(np.double).max), b=np.log(np.finfo(np.double).max))]) assert_mpmath_equal(sc.exprel, lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'), np.array([1e-12, 1e-24, 0, 1e12, 1e24, np.inf]), rtol=1e-11) assert_(np.isinf(sc.exprel(np.inf))) assert_(sc.exprel(-np.inf) == 0) def test_expm1_complex(self): # Oscillates as a function of Im[z], so limit range to avoid loss of precision assert_mpmath_equal(sc.expm1, mpmath.expm1, [ComplexArg(complex(-np.inf, -1e7), complex(np.inf, 1e7))]) def test_log1p_complex(self): assert_mpmath_equal(sc.log1p, lambda x: mpmath.log(x+1), [ComplexArg()], dps=60) def test_log1pmx(self): assert_mpmath_equal(_log1pmx, lambda x: mpmath.log(x + 1) - x, [Arg()], dps=60, rtol=1e-14) def test_ei(self): assert_mpmath_equal(sc.expi, mpmath.ei, [Arg()], rtol=1e-11) def test_ei_complex(self): # Ei oscillates as Im[z] -> +- inf, so limit range assert_mpmath_equal(sc.expi, mpmath.ei, [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))], rtol=1e-9) def test_ellipe(self): assert_mpmath_equal(sc.ellipe, mpmath.ellipe, [Arg(b=1.0)]) def test_ellipeinc(self): assert_mpmath_equal(sc.ellipeinc, mpmath.ellipe, [Arg(-1e3, 1e3), Arg(b=1.0)]) def test_ellipeinc_largephi(self): assert_mpmath_equal(sc.ellipeinc, mpmath.ellipe, [Arg(), Arg()]) def test_ellipf(self): assert_mpmath_equal(sc.ellipkinc, mpmath.ellipf, [Arg(-1e3, 1e3), Arg()]) def test_ellipf_largephi(self): assert_mpmath_equal(sc.ellipkinc, mpmath.ellipf, [Arg(), Arg()]) def test_ellipk(self): assert_mpmath_equal(sc.ellipk, mpmath.ellipk, [Arg(b=1.0)]) assert_mpmath_equal(sc.ellipkm1, lambda m: mpmath.ellipk(1 - m), [Arg(a=0.0)], dps=400) def test_ellipkinc(self): def ellipkinc(phi, m): return mpmath.ellippi(0, phi, m) assert_mpmath_equal(sc.ellipkinc, ellipkinc, [Arg(-1e3, 1e3), Arg(b=1.0)], ignore_inf_sign=True) def test_ellipkinc_largephi(self): def ellipkinc(phi, m): return mpmath.ellippi(0, phi, m) assert_mpmath_equal(sc.ellipkinc, ellipkinc, [Arg(), Arg(b=1.0)], ignore_inf_sign=True) def test_ellipfun_sn(self): def sn(u, m): # mpmath doesn't get the zero at u = 0--fix that if u == 0: return 0 else: return mpmath.ellipfun("sn", u=u, m=m) # Oscillating function --- limit range of first argument; the # loss of precision there is an expected numerical feature # rather than an actual bug assert_mpmath_equal(lambda u, m: sc.ellipj(u, m)[0], sn, [Arg(-1e6, 1e6), Arg(a=0, b=1)], rtol=1e-8) def test_ellipfun_cn(self): # see comment in ellipfun_sn assert_mpmath_equal(lambda u, m: sc.ellipj(u, m)[1], lambda u, m: mpmath.ellipfun("cn", u=u, m=m), [Arg(-1e6, 1e6), Arg(a=0, b=1)], rtol=1e-8) def test_ellipfun_dn(self): # see comment in ellipfun_sn assert_mpmath_equal(lambda u, m: sc.ellipj(u, m)[2], lambda u, m: mpmath.ellipfun("dn", u=u, m=m), [Arg(-1e6, 1e6), Arg(a=0, b=1)], rtol=1e-8) def test_erf(self): assert_mpmath_equal(sc.erf, lambda z: mpmath.erf(z), [Arg()]) def test_erf_complex(self): assert_mpmath_equal(sc.erf, lambda z: mpmath.erf(z), [ComplexArg()], n=200) def test_erfc(self): assert_mpmath_equal(sc.erfc, exception_to_nan(lambda z: mpmath.erfc(z)), [Arg()], rtol=1e-13) def test_erfc_complex(self): assert_mpmath_equal(sc.erfc, exception_to_nan(lambda z: mpmath.erfc(z)), [ComplexArg()], n=200) def test_erfi(self): assert_mpmath_equal(sc.erfi, mpmath.erfi, [Arg()], n=200) def test_erfi_complex(self): assert_mpmath_equal(sc.erfi, mpmath.erfi, [ComplexArg()], n=200) def test_ndtr(self): assert_mpmath_equal(sc.ndtr, exception_to_nan(lambda z: mpmath.ncdf(z)), [Arg()], n=200) def test_ndtr_complex(self): assert_mpmath_equal(sc.ndtr, lambda z: mpmath.erfc(-z/np.sqrt(2.))/2., [ComplexArg(a=complex(-10000, -10000), b=complex(10000, 10000))], n=400) def test_log_ndtr(self): assert_mpmath_equal(sc.log_ndtr, exception_to_nan(lambda z: mpmath.log(mpmath.ncdf(z))), [Arg()], n=600, dps=300) def test_log_ndtr_complex(self): assert_mpmath_equal(sc.log_ndtr, exception_to_nan(lambda z: mpmath.log(mpmath.erfc(-z/np.sqrt(2.))/2.)), [ComplexArg(a=complex(-10000, -100), b=complex(10000, 100))], n=200, dps=300) def test_eulernum(self): assert_mpmath_equal(lambda n: sc.euler(n)[-1], mpmath.eulernum, [IntArg(1, 10000)], n=10000) def test_expint(self): assert_mpmath_equal(sc.expn, mpmath.expint, [IntArg(0, 200), Arg(0, np.inf)], rtol=1e-13, dps=160) def test_fresnels(self): def fresnels(x): return sc.fresnel(x)[0] assert_mpmath_equal(fresnels, mpmath.fresnels, [Arg()]) def test_fresnelc(self): def fresnelc(x): return sc.fresnel(x)[1] assert_mpmath_equal(fresnelc, mpmath.fresnelc, [Arg()]) def test_gamma(self): assert_mpmath_equal(sc.gamma, exception_to_nan(mpmath.gamma), [Arg()]) def test_gamma_complex(self): assert_mpmath_equal(sc.gamma, exception_to_nan(mpmath.gamma), [ComplexArg()], rtol=5e-13) def test_gammainc(self): # Larger arguments are tested in test_data.py:test_local assert_mpmath_equal(sc.gammainc, lambda z, b: mpmath.gammainc(z, b=b, regularized=True), [Arg(0, 1e4, inclusive_a=False), Arg(0, 1e4)], nan_ok=False, rtol=1e-11) def test_gammaincc(self): # Larger arguments are tested in test_data.py:test_local assert_mpmath_equal(sc.gammaincc, lambda z, a: mpmath.gammainc(z, a=a, regularized=True), [Arg(0, 1e4, inclusive_a=False), Arg(0, 1e4)], nan_ok=False, rtol=1e-11) def test_gammaln(self): # The real part of loggamma is log(|gamma(z)|). def f(z): return mpmath.loggamma(z).real assert_mpmath_equal(sc.gammaln, exception_to_nan(f), [Arg()]) @pytest.mark.xfail(run=False) def test_gegenbauer(self): assert_mpmath_equal(sc.eval_gegenbauer, exception_to_nan(mpmath.gegenbauer), [Arg(-1e3, 1e3), Arg(), Arg()]) def test_gegenbauer_int(self): # Redefine functions to deal with numerical + mpmath issues def gegenbauer(n, a, x): # Avoid overflow at large `a` (mpmath would need an even larger # dps to handle this correctly, so just skip this region) if abs(a) > 1e100: return np.nan # Deal with n=0, n=1 correctly; mpmath 0.17 doesn't do these # always correctly if n == 0: r = 1.0 elif n == 1: r = 2*a*x else: r = mpmath.gegenbauer(n, a, x) # Mpmath 0.17 gives wrong results (spurious zero) in some cases, so # compute the value by perturbing the result if float(r) == 0 and a < -1 and float(a) == int(float(a)): r = mpmath.gegenbauer(n, a + mpmath.mpf('1e-50'), x) if abs(r) < mpmath.mpf('1e-50'): r = mpmath.mpf('0.0') # Differing overflow thresholds in scipy vs. mpmath if abs(r) > 1e270: return np.inf return r def sc_gegenbauer(n, a, x): r = sc.eval_gegenbauer(int(n), a, x) # Differing overflow thresholds in scipy vs. mpmath if abs(r) > 1e270: return np.inf return r assert_mpmath_equal(sc_gegenbauer, exception_to_nan(gegenbauer), [IntArg(0, 100), Arg(-1e9, 1e9), Arg()], n=40000, dps=100, ignore_inf_sign=True, rtol=1e-6) # Check the small-x expansion assert_mpmath_equal(sc_gegenbauer, exception_to_nan(gegenbauer), [IntArg(0, 100), Arg(), FixedArg(np.logspace(-30, -4, 30))], dps=100, ignore_inf_sign=True) @pytest.mark.xfail(run=False) def test_gegenbauer_complex(self): assert_mpmath_equal(lambda n, a, x: sc.eval_gegenbauer(int(n), a.real, x), exception_to_nan(mpmath.gegenbauer), [IntArg(0, 100), Arg(), ComplexArg()]) @nonfunctional_tooslow def test_gegenbauer_complex_general(self): assert_mpmath_equal(lambda n, a, x: sc.eval_gegenbauer(n.real, a.real, x), exception_to_nan(mpmath.gegenbauer), [Arg(-1e3, 1e3), Arg(), ComplexArg()]) def test_hankel1(self): assert_mpmath_equal(sc.hankel1, exception_to_nan(lambda v, x: mpmath.hankel1(v, x, **HYPERKW)), [Arg(-1e20, 1e20), Arg()]) def test_hankel2(self): assert_mpmath_equal(sc.hankel2, exception_to_nan(lambda v, x: mpmath.hankel2(v, x, **HYPERKW)), [Arg(-1e20, 1e20), Arg()]) @pytest.mark.xfail(run=False, reason="issues at intermediately large orders") def test_hermite(self): assert_mpmath_equal(lambda n, x: sc.eval_hermite(int(n), x), exception_to_nan(mpmath.hermite), [IntArg(0, 10000), Arg()]) # hurwitz: same as zeta def test_hyp0f1(self): # mpmath reports no convergence unless maxterms is large enough KW = dict(maxprec=400, maxterms=1500) # n=500 (non-xslow default) fails for one bad point assert_mpmath_equal(sc.hyp0f1, lambda a, x: mpmath.hyp0f1(a, x, **KW), [Arg(-1e7, 1e7), Arg(0, 1e5)], n=5000) # NB: The range of the second parameter ("z") is limited from below # because of an overflow in the intermediate calculations. The way # for fix it is to implement an asymptotic expansion for Bessel J # (similar to what is implemented for Bessel I here). def test_hyp0f1_complex(self): assert_mpmath_equal(lambda a, z: sc.hyp0f1(a.real, z), exception_to_nan(lambda a, x: mpmath.hyp0f1(a, x, **HYPERKW)), [Arg(-10, 10), ComplexArg(complex(-120, -120), complex(120, 120))]) # NB: The range of the first parameter ("v") are limited by an overflow # in the intermediate calculations. Can be fixed by implementing an # asymptotic expansion for Bessel functions for large order. def test_hyp1f1(self): def mpmath_hyp1f1(a, b, x): try: return mpmath.hyp1f1(a, b, x) except ZeroDivisionError: return np.inf assert_mpmath_equal( sc.hyp1f1, mpmath_hyp1f1, [Arg(-50, 50), Arg(1, 50, inclusive_a=False), Arg(-50, 50)], n=500, nan_ok=False ) @pytest.mark.xfail(run=False) def test_hyp1f1_complex(self): assert_mpmath_equal(inf_to_nan(lambda a, b, x: sc.hyp1f1(a.real, b.real, x)), exception_to_nan(lambda a, b, x: mpmath.hyp1f1(a, b, x, **HYPERKW)), [Arg(-1e3, 1e3), Arg(-1e3, 1e3), ComplexArg()], n=2000) @nonfunctional_tooslow def test_hyp2f1_complex(self): # SciPy's hyp2f1 seems to have performance and accuracy problems assert_mpmath_equal(lambda a, b, c, x: sc.hyp2f1(a.real, b.real, c.real, x), exception_to_nan(lambda a, b, c, x: mpmath.hyp2f1(a, b, c, x, **HYPERKW)), [Arg(-1e2, 1e2), Arg(-1e2, 1e2), Arg(-1e2, 1e2), ComplexArg()], n=10) @pytest.mark.xfail(run=False) def test_hyperu(self): assert_mpmath_equal(sc.hyperu, exception_to_nan(lambda a, b, x: mpmath.hyperu(a, b, x, **HYPERKW)), [Arg(), Arg(), Arg()]) @pytest.mark.xfail_on_32bit("mpmath issue gh-342: unsupported operand mpz, long for pow") def test_igam_fac(self): def mp_igam_fac(a, x): return mpmath.power(x, a)*mpmath.exp(-x)/mpmath.gamma(a) assert_mpmath_equal(_igam_fac, mp_igam_fac, [Arg(0, 1e14, inclusive_a=False), Arg(0, 1e14)], rtol=1e-10) def test_j0(self): # The Bessel function at large arguments is j0(x) ~ cos(x + phi)/sqrt(x) # and at large arguments the phase of the cosine loses precision. # # This is numerically expected behavior, so we compare only up to # 1e8 = 1e15 * 1e-7 assert_mpmath_equal(sc.j0, mpmath.j0, [Arg(-1e3, 1e3)]) assert_mpmath_equal(sc.j0, mpmath.j0, [Arg(-1e8, 1e8)], rtol=1e-5) def test_j1(self): # See comment in test_j0 assert_mpmath_equal(sc.j1, mpmath.j1, [Arg(-1e3, 1e3)]) assert_mpmath_equal(sc.j1, mpmath.j1, [Arg(-1e8, 1e8)], rtol=1e-5) @pytest.mark.xfail(run=False) def test_jacobi(self): assert_mpmath_equal(sc.eval_jacobi, exception_to_nan(lambda a, b, c, x: mpmath.jacobi(a, b, c, x, **HYPERKW)), [Arg(), Arg(), Arg(), Arg()]) assert_mpmath_equal(lambda n, b, c, x: sc.eval_jacobi(int(n), b, c, x), exception_to_nan(lambda a, b, c, x: mpmath.jacobi(a, b, c, x, **HYPERKW)), [IntArg(), Arg(), Arg(), Arg()]) def test_jacobi_int(self): # Redefine functions to deal with numerical + mpmath issues def jacobi(n, a, b, x): # Mpmath does not handle n=0 case always correctly if n == 0: return 1.0 return mpmath.jacobi(n, a, b, x) assert_mpmath_equal(lambda n, a, b, x: sc.eval_jacobi(int(n), a, b, x), lambda n, a, b, x: exception_to_nan(jacobi)(n, a, b, x, **HYPERKW), [IntArg(), Arg(), Arg(), Arg()], n=20000, dps=50) def test_kei(self): def kei(x): if x == 0: # work around mpmath issue at x=0 return -pi/4 return exception_to_nan(mpmath.kei)(0, x, **HYPERKW) assert_mpmath_equal(sc.kei, kei, [Arg(-1e30, 1e30)], n=1000) def test_ker(self): assert_mpmath_equal(sc.ker, exception_to_nan(lambda x: mpmath.ker(0, x, **HYPERKW)), [Arg(-1e30, 1e30)], n=1000) @nonfunctional_tooslow def test_laguerre(self): assert_mpmath_equal(trace_args(sc.eval_laguerre), lambda n, x: exception_to_nan(mpmath.laguerre)(n, x, **HYPERKW), [Arg(), Arg()]) def test_laguerre_int(self): assert_mpmath_equal(lambda n, x: sc.eval_laguerre(int(n), x), lambda n, x: exception_to_nan(mpmath.laguerre)(n, x, **HYPERKW), [IntArg(), Arg()], n=20000) @pytest.mark.xfail_on_32bit("see gh-3551 for bad points") def test_lambertw_real(self): assert_mpmath_equal(lambda x, k: sc.lambertw(x, int(k.real)), lambda x, k: mpmath.lambertw(x, int(k.real)), [ComplexArg(-np.inf, np.inf), IntArg(0, 10)], rtol=1e-13, nan_ok=False) def test_lanczos_sum_expg_scaled(self): maxgamma = 171.624376956302725 e = np.exp(1) g = 6.024680040776729583740234375 def gamma(x): with np.errstate(over='ignore'): fac = ((x + g - 0.5)/e)**(x - 0.5) if fac != np.inf: res = fac*_lanczos_sum_expg_scaled(x) else: fac = ((x + g - 0.5)/e)**(0.5*(x - 0.5)) res = fac*_lanczos_sum_expg_scaled(x) res *= fac return res assert_mpmath_equal(gamma, mpmath.gamma, [Arg(0, maxgamma, inclusive_a=False)], rtol=1e-13) @nonfunctional_tooslow def test_legendre(self): assert_mpmath_equal(sc.eval_legendre, mpmath.legendre, [Arg(), Arg()]) def test_legendre_int(self): assert_mpmath_equal(lambda n, x: sc.eval_legendre(int(n), x), lambda n, x: exception_to_nan(mpmath.legendre)(n, x, **HYPERKW), [IntArg(), Arg()], n=20000) # Check the small-x expansion assert_mpmath_equal(lambda n, x: sc.eval_legendre(int(n), x), lambda n, x: exception_to_nan(mpmath.legendre)(n, x, **HYPERKW), [IntArg(), FixedArg(np.logspace(-30, -4, 20))]) def test_legenp(self): def lpnm(n, m, z): try: v = sc.lpmn(m, n, z)[0][-1,-1] except ValueError: return np.nan if abs(v) > 1e306: # harmonize overflow to inf v = np.inf * np.sign(v.real) return v def lpnm_2(n, m, z): v = sc.lpmv(m, n, z) if abs(v) > 1e306: # harmonize overflow to inf v = np.inf * np.sign(v.real) return v def legenp(n, m, z): if (z == 1 or z == -1) and int(n) == n: # Special case (mpmath may give inf, we take the limit by # continuity) if m == 0: if n < 0: n = -n - 1 return mpmath.power(mpmath.sign(z), n) else: return 0 if abs(z) < 1e-15: # mpmath has bad performance here return np.nan typ = 2 if abs(z) < 1 else 3 v = exception_to_nan(mpmath.legenp)(n, m, z, type=typ) if abs(v) > 1e306: # harmonize overflow to inf v = mpmath.inf * mpmath.sign(v.real) return v assert_mpmath_equal(lpnm, legenp, [IntArg(-100, 100), IntArg(-100, 100), Arg()]) assert_mpmath_equal(lpnm_2, legenp, [IntArg(-100, 100), Arg(-100, 100), Arg(-1, 1)], atol=1e-10) def test_legenp_complex_2(self): def clpnm(n, m, z): try: return sc.clpmn(m.real, n.real, z, type=2)[0][-1,-1] except ValueError: return np.nan def legenp(n, m, z): if abs(z) < 1e-15: # mpmath has bad performance here return np.nan return exception_to_nan(mpmath.legenp)(int(n.real), int(m.real), z, type=2) # mpmath is quite slow here x = np.array([-2, -0.99, -0.5, 0, 1e-5, 0.5, 0.99, 20, 2e3]) y = np.array([-1e3, -0.5, 0.5, 1.3]) z = (x[:,None] + 1j*y[None,:]).ravel() assert_mpmath_equal(clpnm, legenp, [FixedArg([-2, -1, 0, 1, 2, 10]), FixedArg([-2, -1, 0, 1, 2, 10]), FixedArg(z)], rtol=1e-6, n=500) def test_legenp_complex_3(self): def clpnm(n, m, z): try: return sc.clpmn(m.real, n.real, z, type=3)[0][-1,-1] except ValueError: return np.nan def legenp(n, m, z): if abs(z) < 1e-15: # mpmath has bad performance here return np.nan return exception_to_nan(mpmath.legenp)(int(n.real), int(m.real), z, type=3) # mpmath is quite slow here x = np.array([-2, -0.99, -0.5, 0, 1e-5, 0.5, 0.99, 20, 2e3]) y = np.array([-1e3, -0.5, 0.5, 1.3]) z = (x[:,None] + 1j*y[None,:]).ravel() assert_mpmath_equal(clpnm, legenp, [FixedArg([-2, -1, 0, 1, 2, 10]), FixedArg([-2, -1, 0, 1, 2, 10]), FixedArg(z)], rtol=1e-6, n=500) @pytest.mark.xfail(run=False, reason="apparently picks wrong function at |z| > 1") def test_legenq(self): def lqnm(n, m, z): return sc.lqmn(m, n, z)[0][-1,-1] def legenq(n, m, z): if abs(z) < 1e-15: # mpmath has bad performance here return np.nan return exception_to_nan(mpmath.legenq)(n, m, z, type=2) assert_mpmath_equal(lqnm, legenq, [IntArg(0, 100), IntArg(0, 100), Arg()]) @nonfunctional_tooslow def test_legenq_complex(self): def lqnm(n, m, z): return sc.lqmn(int(m.real), int(n.real), z)[0][-1,-1] def legenq(n, m, z): if abs(z) < 1e-15: # mpmath has bad performance here return np.nan return exception_to_nan(mpmath.legenq)(int(n.real), int(m.real), z, type=2) assert_mpmath_equal(lqnm, legenq, [IntArg(0, 100), IntArg(0, 100), ComplexArg()], n=100) def test_lgam1p(self): def param_filter(x): # Filter the poles return np.where((np.floor(x) == x) & (x <= 0), False, True) def mp_lgam1p(z): # The real part of loggamma is log(|gamma(z)|) return mpmath.loggamma(1 + z).real assert_mpmath_equal(_lgam1p, mp_lgam1p, [Arg()], rtol=1e-13, dps=100, param_filter=param_filter) def test_loggamma(self): def mpmath_loggamma(z): try: res = mpmath.loggamma(z) except ValueError: res = complex(np.nan, np.nan) return res assert_mpmath_equal(sc.loggamma, mpmath_loggamma, [ComplexArg()], nan_ok=False, distinguish_nan_and_inf=False, rtol=5e-14) @pytest.mark.xfail(run=False) def test_pcfd(self): def pcfd(v, x): return sc.pbdv(v, x)[0] assert_mpmath_equal(pcfd, exception_to_nan(lambda v, x: mpmath.pcfd(v, x, **HYPERKW)), [Arg(), Arg()]) @pytest.mark.xfail(run=False, reason="it's not the same as the mpmath function --- maybe different definition?") def test_pcfv(self): def pcfv(v, x): return sc.pbvv(v, x)[0] assert_mpmath_equal(pcfv, lambda v, x: time_limited()(exception_to_nan(mpmath.pcfv))(v, x, **HYPERKW), [Arg(), Arg()], n=1000) def test_pcfw(self): def pcfw(a, x): return sc.pbwa(a, x)[0] def dpcfw(a, x): return sc.pbwa(a, x)[1] def mpmath_dpcfw(a, x): return mpmath.diff(mpmath.pcfw, (a, x), (0, 1)) # The Zhang and Jin implementation only uses Taylor series and # is thus accurate in only a very small range. assert_mpmath_equal(pcfw, mpmath.pcfw, [Arg(-5, 5), Arg(-5, 5)], rtol=2e-8, n=100) assert_mpmath_equal(dpcfw, mpmath_dpcfw, [Arg(-5, 5), Arg(-5, 5)], rtol=2e-9, n=100) @pytest.mark.xfail(run=False, reason="issues at large arguments (atol OK, rtol not) and <eps-close to z=0") def test_polygamma(self): assert_mpmath_equal(sc.polygamma, time_limited()(exception_to_nan(mpmath.polygamma)), [IntArg(0, 1000), Arg()]) def test_rgamma(self): assert_mpmath_equal( sc.rgamma, mpmath.rgamma, [Arg(-8000, np.inf)], n=5000, nan_ok=False, ignore_inf_sign=True, ) def test_rgamma_complex(self): assert_mpmath_equal(sc.rgamma, exception_to_nan(mpmath.rgamma), [ComplexArg()], rtol=5e-13) @pytest.mark.xfail(reason=("see gh-3551 for bad points on 32 bit " "systems and gh-8095 for another bad " "point")) def test_rf(self): if LooseVersion(mpmath.__version__) >= LooseVersion("1.0.0"): # no workarounds needed mppoch = mpmath.rf else: def mppoch(a, m): # deal with cases where the result in double precision # hits exactly a non-positive integer, but the # corresponding extended-precision mpf floats don't if float(a + m) == int(a + m) and float(a + m) <= 0: a = mpmath.mpf(a) m = int(a + m) - a return mpmath.rf(a, m) assert_mpmath_equal(sc.poch, mppoch, [Arg(), Arg()], dps=400) def test_sinpi(self): eps = np.finfo(float).eps assert_mpmath_equal(_sinpi, mpmath.sinpi, [Arg()], nan_ok=False, rtol=eps) def test_sinpi_complex(self): assert_mpmath_equal(_sinpi, mpmath.sinpi, [ComplexArg()], nan_ok=False, rtol=2e-14) def test_shi(self): def shi(x): return sc.shichi(x)[0] assert_mpmath_equal(shi, mpmath.shi, [Arg()]) # check asymptotic series cross-over assert_mpmath_equal(shi, mpmath.shi, [FixedArg([88 - 1e-9, 88, 88 + 1e-9])]) def test_shi_complex(self): def shi(z): return sc.shichi(z)[0] # shi oscillates as Im[z] -> +- inf, so limit range assert_mpmath_equal(shi, mpmath.shi, [ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))], rtol=1e-12) def test_si(self): def si(x): return sc.sici(x)[0] assert_mpmath_equal(si, mpmath.si, [Arg()]) def test_si_complex(self): def si(z): return sc.sici(z)[0] # si oscillates as Re[z] -> +- inf, so limit range assert_mpmath_equal(si, mpmath.si, [ComplexArg(complex(-1e8, -np.inf), complex(1e8, np.inf))], rtol=1e-12) def test_spence(self): # mpmath uses a different convention for the dilogarithm def dilog(x): return mpmath.polylog(2, 1 - x) # Spence has a branch cut on the negative real axis assert_mpmath_equal(sc.spence, exception_to_nan(dilog), [Arg(0, np.inf)], rtol=1e-14) def test_spence_complex(self): def dilog(z): return mpmath.polylog(2, 1 - z) assert_mpmath_equal(sc.spence, exception_to_nan(dilog), [ComplexArg()], rtol=1e-14) def test_spherharm(self): def spherharm(l, m, theta, phi): if m > l: return np.nan return sc.sph_harm(m, l, phi, theta) assert_mpmath_equal(spherharm, mpmath.spherharm, [IntArg(0, 100), IntArg(0, 100), Arg(a=0, b=pi), Arg(a=0, b=2*pi)], atol=1e-8, n=6000, dps=150) def test_struveh(self): assert_mpmath_equal(sc.struve, exception_to_nan(mpmath.struveh), [Arg(-1e4, 1e4), Arg(0, 1e4)], rtol=5e-10) def test_struvel(self): def mp_struvel(v, z): if v < 0 and z < -v and abs(v) > 1000: # larger DPS needed for correct results old_dps = mpmath.mp.dps try: mpmath.mp.dps = 300 return mpmath.struvel(v, z) finally: mpmath.mp.dps = old_dps return mpmath.struvel(v, z) assert_mpmath_equal(sc.modstruve, exception_to_nan(mp_struvel), [Arg(-1e4, 1e4), Arg(0, 1e4)], rtol=5e-10, ignore_inf_sign=True) def test_wrightomega_real(self): def mpmath_wrightomega_real(x): return mpmath.lambertw(mpmath.exp(x), mpmath.mpf('-0.5')) # For x < -1000 the Wright Omega function is just 0 to double # precision, and for x > 1e21 it is just x to double # precision. assert_mpmath_equal( sc.wrightomega, mpmath_wrightomega_real, [Arg(-1000, 1e21)], rtol=5e-15, atol=0, nan_ok=False, ) def test_wrightomega(self): assert_mpmath_equal(sc.wrightomega, lambda z: _mpmath_wrightomega(z, 25), [ComplexArg()], rtol=1e-14, nan_ok=False) def test_hurwitz_zeta(self): assert_mpmath_equal(sc.zeta, exception_to_nan(mpmath.zeta), [Arg(a=1, b=1e10, inclusive_a=False), Arg(a=0, inclusive_a=False)]) def test_riemann_zeta(self): assert_mpmath_equal( sc.zeta, mpmath.zeta, [Arg(-100, 100)], nan_ok=False, rtol=1e-13, ) def test_zetac(self): assert_mpmath_equal(sc.zetac, lambda x: mpmath.zeta(x) - 1, [Arg(-100, 100)], nan_ok=False, dps=45, rtol=1e-13) def test_boxcox(self): def mp_boxcox(x, lmbda): x = mpmath.mp.mpf(x) lmbda = mpmath.mp.mpf(lmbda) if lmbda == 0: return mpmath.mp.log(x) else: return mpmath.mp.powm1(x, lmbda) / lmbda assert_mpmath_equal(sc.boxcox, exception_to_nan(mp_boxcox), [Arg(a=0, inclusive_a=False), Arg()], n=200, dps=60, rtol=1e-13) def test_boxcox1p(self): def mp_boxcox1p(x, lmbda): x = mpmath.mp.mpf(x) lmbda = mpmath.mp.mpf(lmbda) one = mpmath.mp.mpf(1) if lmbda == 0: return mpmath.mp.log(one + x) else: return mpmath.mp.powm1(one + x, lmbda) / lmbda assert_mpmath_equal(sc.boxcox1p, exception_to_nan(mp_boxcox1p), [Arg(a=-1, inclusive_a=False), Arg()], n=200, dps=60, rtol=1e-13) def test_spherical_jn(self): def mp_spherical_jn(n, z): arg = mpmath.mpmathify(z) out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) / mpmath.sqrt(2*arg/mpmath.pi)) if arg.imag == 0: return out.real else: return out assert_mpmath_equal(lambda n, z: sc.spherical_jn(int(n), z), exception_to_nan(mp_spherical_jn), [IntArg(0, 200), Arg(-1e8, 1e8)], dps=300) def test_spherical_jn_complex(self): def mp_spherical_jn(n, z): arg = mpmath.mpmathify(z) out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) / mpmath.sqrt(2*arg/mpmath.pi)) if arg.imag == 0: return out.real else: return out assert_mpmath_equal(lambda n, z: sc.spherical_jn(int(n.real), z), exception_to_nan(mp_spherical_jn), [IntArg(0, 200), ComplexArg()]) def test_spherical_yn(self): def mp_spherical_yn(n, z): arg = mpmath.mpmathify(z) out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) / mpmath.sqrt(2*arg/mpmath.pi)) if arg.imag == 0: return out.real else: return out assert_mpmath_equal(lambda n, z: sc.spherical_yn(int(n), z), exception_to_nan(mp_spherical_yn), [IntArg(0, 200), Arg(-1e10, 1e10)], dps=100) def test_spherical_yn_complex(self): def mp_spherical_yn(n, z): arg = mpmath.mpmathify(z) out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) / mpmath.sqrt(2*arg/mpmath.pi)) if arg.imag == 0: return out.real else: return out assert_mpmath_equal(lambda n, z: sc.spherical_yn(int(n.real), z), exception_to_nan(mp_spherical_yn), [IntArg(0, 200), ComplexArg()]) def test_spherical_in(self): def mp_spherical_in(n, z): arg = mpmath.mpmathify(z) out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) / mpmath.sqrt(2*arg/mpmath.pi)) if arg.imag == 0: return out.real else: return out assert_mpmath_equal(lambda n, z: sc.spherical_in(int(n), z), exception_to_nan(mp_spherical_in), [IntArg(0, 200), Arg()], dps=200, atol=10**(-278)) def test_spherical_in_complex(self): def mp_spherical_in(n, z): arg = mpmath.mpmathify(z) out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) / mpmath.sqrt(2*arg/mpmath.pi)) if arg.imag == 0: return out.real else: return out assert_mpmath_equal(lambda n, z: sc.spherical_in(int(n.real), z), exception_to_nan(mp_spherical_in), [IntArg(0, 200), ComplexArg()]) def test_spherical_kn(self): def mp_spherical_kn(n, z): out = (mpmath.besselk(n + mpmath.mpf(1)/2, z) * mpmath.sqrt(mpmath.pi/(2*mpmath.mpmathify(z)))) if mpmath.mpmathify(z).imag == 0: return out.real else: return out assert_mpmath_equal(lambda n, z: sc.spherical_kn(int(n), z), exception_to_nan(mp_spherical_kn), [IntArg(0, 150), Arg()], dps=100) @pytest.mark.xfail(run=False, reason="Accuracy issues near z = -1 inherited from kv.") def test_spherical_kn_complex(self): def mp_spherical_kn(n, z): arg = mpmath.mpmathify(z) out = (mpmath.besselk(n + mpmath.mpf(1)/2, arg) / mpmath.sqrt(2*arg/mpmath.pi)) if arg.imag == 0: return out.real else: return out assert_mpmath_equal(lambda n, z: sc.spherical_kn(int(n.real), z), exception_to_nan(mp_spherical_kn), [IntArg(0, 200), ComplexArg()], dps=200)