# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/> # Copyright (c) 2012-2016 The PyWavelets Developers # <https://github.com/PyWavelets/pywt> # See COPYING for license details. """ Other wavelet related functions. """ from __future__ import division, print_function, absolute_import import warnings import numpy as np from numpy.fft import fft from ._extensions._pywt import DiscreteContinuousWavelet, Wavelet, ContinuousWavelet __all__ = ["integrate_wavelet", "central_frequency", "scale2frequency", "qmf", "orthogonal_filter_bank", "intwave", "centrfrq", "scal2frq", "orthfilt"] _DEPRECATION_MSG = ("`{old}` has been renamed to `{new}` and will " "be removed in a future version of pywt.") def _integrate(arr, step): integral = np.cumsum(arr) integral *= step return integral def intwave(*args, **kwargs): msg = _DEPRECATION_MSG.format(old='intwave', new='integrate_wavelet') warnings.warn(msg, DeprecationWarning) return integrate_wavelet(*args, **kwargs) def centrfrq(*args, **kwargs): msg = _DEPRECATION_MSG.format(old='centrfrq', new='central_frequency') warnings.warn(msg, DeprecationWarning) return central_frequency(*args, **kwargs) def scal2frq(*args, **kwargs): msg = _DEPRECATION_MSG.format(old='scal2frq', new='scale2frequency') warnings.warn(msg, DeprecationWarning) return scale2frequency(*args, **kwargs) def orthfilt(*args, **kwargs): msg = _DEPRECATION_MSG.format(old='orthfilt', new='orthogonal_filter_bank') warnings.warn(msg, DeprecationWarning) return orthogonal_filter_bank(*args, **kwargs) def integrate_wavelet(wavelet, precision=8): """ Integrate `psi` wavelet function from -Inf to x using the rectangle integration method. Parameters ---------- wavelet : Wavelet instance or str Wavelet to integrate. If a string, should be the name of a wavelet. precision : int, optional Precision that will be used for wavelet function approximation computed with the wavefun(level=precision) Wavelet's method (default: 8). Returns ------- [int_psi, x] : for orthogonal wavelets [int_psi_d, int_psi_r, x] : for other wavelets Examples -------- >>> from pywt import Wavelet, integrate_wavelet >>> wavelet1 = Wavelet('db2') >>> [int_psi, x] = integrate_wavelet(wavelet1, precision=5) >>> wavelet2 = Wavelet('bior1.3') >>> [int_psi_d, int_psi_r, x] = integrate_wavelet(wavelet2, precision=5) """ # FIXME: this function should really use scipy.integrate.quad if type(wavelet) in (tuple, list): msg = ("Integration of a general signal is deprecated " "and will be removed in a future version of pywt.") warnings.warn(msg, DeprecationWarning) elif not isinstance(wavelet, (Wavelet, ContinuousWavelet)): wavelet = DiscreteContinuousWavelet(wavelet) if type(wavelet) in (tuple, list): psi, x = np.asarray(wavelet[0]), np.asarray(wavelet[1]) step = x[1] - x[0] return _integrate(psi, step), x functions_approximations = wavelet.wavefun(precision) if len(functions_approximations) == 2: # continuous wavelet psi, x = functions_approximations step = x[1] - x[0] return _integrate(psi, step), x elif len(functions_approximations) == 3: # orthogonal wavelet phi, psi, x = functions_approximations step = x[1] - x[0] return _integrate(psi, step), x else: # biorthogonal wavelet phi_d, psi_d, phi_r, psi_r, x = functions_approximations step = x[1] - x[0] return _integrate(psi_d, step), _integrate(psi_r, step), x def central_frequency(wavelet, precision=8): """ Computes the central frequency of the `psi` wavelet function. Parameters ---------- wavelet : Wavelet instance, str or tuple Wavelet to integrate. If a string, should be the name of a wavelet. precision : int, optional Precision that will be used for wavelet function approximation computed with the wavefun(level=precision) Wavelet's method (default: 8). Returns ------- scalar """ if not isinstance(wavelet, (Wavelet, ContinuousWavelet)): wavelet = DiscreteContinuousWavelet(wavelet) functions_approximations = wavelet.wavefun(precision) if len(functions_approximations) == 2: psi, x = functions_approximations else: # (psi, x) for (phi, psi, x) # (psi_d, x) for (phi_d, psi_d, phi_r, psi_r, x) psi, x = functions_approximations[1], functions_approximations[-1] domain = float(x[-1] - x[0]) assert domain > 0 index = np.argmax(abs(fft(psi)[1:])) + 2 if index > len(psi) / 2: index = len(psi) - index + 2 return 1.0 / (domain / (index - 1)) def scale2frequency(wavelet, scale, precision=8): """ Parameters ---------- wavelet : Wavelet instance or str Wavelet to integrate. If a string, should be the name of a wavelet. scale : scalar precision : int, optional Precision that will be used for wavelet function approximation computed with ``wavelet.wavefun(level=precision)``. Default is 8. Returns ------- freq : scalar """ return central_frequency(wavelet, precision=precision) / scale def qmf(filt): """ Returns the Quadrature Mirror Filter(QMF). The magnitude response of QMF is mirror image about `pi/2` of that of the input filter. Parameters ---------- filt : array_like Input filter for which QMF needs to be computed. Returns ------- qm_filter : ndarray Quadrature mirror of the input filter. """ qm_filter = np.array(filt)[::-1] qm_filter[1::2] = -qm_filter[1::2] return qm_filter def orthogonal_filter_bank(scaling_filter): """ Returns the orthogonal filter bank. The orthogonal filter bank consists of the HPFs and LPFs at decomposition and reconstruction stage for the input scaling filter. Parameters ---------- scaling_filter : array_like Input scaling filter (father wavelet). Returns ------- orth_filt_bank : tuple of 4 ndarrays The orthogonal filter bank of the input scaling filter in the order : 1] Decomposition LPF 2] Decomposition HPF 3] Reconstruction LPF 4] Reconstruction HPF """ if not (len(scaling_filter) % 2 == 0): raise ValueError("`scaling_filter` length has to be even.") scaling_filter = np.asarray(scaling_filter, dtype=np.float64) rec_lo = np.sqrt(2) * scaling_filter / np.sum(scaling_filter) dec_lo = rec_lo[::-1] rec_hi = qmf(rec_lo) dec_hi = rec_hi[::-1] orth_filt_bank = (dec_lo, dec_hi, rec_lo, rec_hi) return orth_filt_bank