import numpy as np

from matplotlib import cbook, rcParams
from matplotlib.axes import Axes
import matplotlib.axis as maxis
from matplotlib.patches import Circle
from matplotlib.path import Path
import matplotlib.spines as mspines
from matplotlib.ticker import (
    Formatter, NullLocator, FixedLocator, NullFormatter)
from matplotlib.transforms import Affine2D, BboxTransformTo, Transform


class GeoAxes(Axes):
    """An abstract base class for geographic projections."""

    class ThetaFormatter(Formatter):
        """
        Used to format the theta tick labels.  Converts the native
        unit of radians into degrees and adds a degree symbol.
        """
        def __init__(self, round_to=1.0):
            self._round_to = round_to

        def __call__(self, x, pos=None):
            degrees = round(np.rad2deg(x) / self._round_to) * self._round_to
            return f"{degrees:0.0f}\N{DEGREE SIGN}"

    RESOLUTION = 75

    def _init_axis(self):
        self.xaxis = maxis.XAxis(self)
        self.yaxis = maxis.YAxis(self)
        # Do not register xaxis or yaxis with spines -- as done in
        # Axes._init_axis() -- until GeoAxes.xaxis.cla() works.
        # self.spines['geo'].register_axis(self.yaxis)
        self._update_transScale()

    def cla(self):
        Axes.cla(self)

        self.set_longitude_grid(30)
        self.set_latitude_grid(15)
        self.set_longitude_grid_ends(75)
        self.xaxis.set_minor_locator(NullLocator())
        self.yaxis.set_minor_locator(NullLocator())
        self.xaxis.set_ticks_position('none')
        self.yaxis.set_ticks_position('none')
        self.yaxis.set_tick_params(label1On=True)
        # Why do we need to turn on yaxis tick labels, but
        # xaxis tick labels are already on?

        self.grid(rcParams['axes.grid'])

        Axes.set_xlim(self, -np.pi, np.pi)
        Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0)

    def _set_lim_and_transforms(self):
        # A (possibly non-linear) projection on the (already scaled) data
        self.transProjection = self._get_core_transform(self.RESOLUTION)

        self.transAffine = self._get_affine_transform()

        self.transAxes = BboxTransformTo(self.bbox)

        # The complete data transformation stack -- from data all the
        # way to display coordinates
        self.transData = \
            self.transProjection + \
            self.transAffine + \
            self.transAxes

        # This is the transform for longitude ticks.
        self._xaxis_pretransform = \
            Affine2D() \
            .scale(1, self._longitude_cap * 2) \
            .translate(0, -self._longitude_cap)
        self._xaxis_transform = \
            self._xaxis_pretransform + \
            self.transData
        self._xaxis_text1_transform = \
            Affine2D().scale(1, 0) + \
            self.transData + \
            Affine2D().translate(0, 4)
        self._xaxis_text2_transform = \
            Affine2D().scale(1, 0) + \
            self.transData + \
            Affine2D().translate(0, -4)

        # This is the transform for latitude ticks.
        yaxis_stretch = Affine2D().scale(np.pi * 2, 1).translate(-np.pi, 0)
        yaxis_space = Affine2D().scale(1, 1.1)
        self._yaxis_transform = \
            yaxis_stretch + \
            self.transData
        yaxis_text_base = \
            yaxis_stretch + \
            self.transProjection + \
            (yaxis_space +
             self.transAffine +
             self.transAxes)
        self._yaxis_text1_transform = \
            yaxis_text_base + \
            Affine2D().translate(-8, 0)
        self._yaxis_text2_transform = \
            yaxis_text_base + \
            Affine2D().translate(8, 0)

    def _get_affine_transform(self):
        transform = self._get_core_transform(1)
        xscale, _ = transform.transform((np.pi, 0))
        _, yscale = transform.transform((0, np.pi/2))
        return Affine2D() \
            .scale(0.5 / xscale, 0.5 / yscale) \
            .translate(0.5, 0.5)

    def get_xaxis_transform(self, which='grid'):
        cbook._check_in_list(['tick1', 'tick2', 'grid'], which=which)
        return self._xaxis_transform

    def get_xaxis_text1_transform(self, pad):
        return self._xaxis_text1_transform, 'bottom', 'center'

    def get_xaxis_text2_transform(self, pad):
        return self._xaxis_text2_transform, 'top', 'center'

    def get_yaxis_transform(self, which='grid'):
        cbook._check_in_list(['tick1', 'tick2', 'grid'], which=which)
        return self._yaxis_transform

    def get_yaxis_text1_transform(self, pad):
        return self._yaxis_text1_transform, 'center', 'right'

    def get_yaxis_text2_transform(self, pad):
        return self._yaxis_text2_transform, 'center', 'left'

    def _gen_axes_patch(self):
        return Circle((0.5, 0.5), 0.5)

    def _gen_axes_spines(self):
        return {'geo': mspines.Spine.circular_spine(self, (0.5, 0.5), 0.5)}

    def set_yscale(self, *args, **kwargs):
        if args[0] != 'linear':
            raise NotImplementedError

    set_xscale = set_yscale

    def set_xlim(self, *args, **kwargs):
        raise TypeError("Changing axes limits of a geographic projection is "
                        "not supported.  Please consider using Cartopy.")

    set_ylim = set_xlim

    def format_coord(self, lon, lat):
        """Return a format string formatting the coordinate."""
        lon, lat = np.rad2deg([lon, lat])
        if lat >= 0.0:
            ns = 'N'
        else:
            ns = 'S'
        if lon >= 0.0:
            ew = 'E'
        else:
            ew = 'W'
        return ('%f\N{DEGREE SIGN}%s, %f\N{DEGREE SIGN}%s'
                % (abs(lat), ns, abs(lon), ew))

    def set_longitude_grid(self, degrees):
        """
        Set the number of degrees between each longitude grid.
        """
        # Skip -180 and 180, which are the fixed limits.
        grid = np.arange(-180 + degrees, 180, degrees)
        self.xaxis.set_major_locator(FixedLocator(np.deg2rad(grid)))
        self.xaxis.set_major_formatter(self.ThetaFormatter(degrees))

    def set_latitude_grid(self, degrees):
        """
        Set the number of degrees between each latitude grid.
        """
        # Skip -90 and 90, which are the fixed limits.
        grid = np.arange(-90 + degrees, 90, degrees)
        self.yaxis.set_major_locator(FixedLocator(np.deg2rad(grid)))
        self.yaxis.set_major_formatter(self.ThetaFormatter(degrees))

    def set_longitude_grid_ends(self, degrees):
        """
        Set the latitude(s) at which to stop drawing the longitude grids.
        """
        self._longitude_cap = np.deg2rad(degrees)
        self._xaxis_pretransform \
            .clear() \
            .scale(1.0, self._longitude_cap * 2.0) \
            .translate(0.0, -self._longitude_cap)

    def get_data_ratio(self):
        """Return the aspect ratio of the data itself."""
        return 1.0

    ### Interactive panning

    def can_zoom(self):
        """
        Return *True* if this axes supports the zoom box button functionality.

        This axes object does not support interactive zoom box.
        """
        return False

    def can_pan(self):
        """
        Return *True* if this axes supports the pan/zoom button functionality.

        This axes object does not support interactive pan/zoom.
        """
        return False

    def start_pan(self, x, y, button):
        pass

    def end_pan(self):
        pass

    def drag_pan(self, button, key, x, y):
        pass


class _GeoTransform(Transform):
    # Factoring out some common functionality.
    input_dims = output_dims = 2

    def __init__(self, resolution):
        """
        Create a new geographical transform.

        Resolution is the number of steps to interpolate between each input
        line segment to approximate its path in curved space.
        """
        Transform.__init__(self)
        self._resolution = resolution

    def __str__(self):
        return "{}({})".format(type(self).__name__, self._resolution)

    def transform_path_non_affine(self, path):
        # docstring inherited
        ipath = path.interpolated(self._resolution)
        return Path(self.transform(ipath.vertices), ipath.codes)


class AitoffAxes(GeoAxes):
    name = 'aitoff'

    class AitoffTransform(_GeoTransform):
        """The base Aitoff transform."""

        def transform_non_affine(self, ll):
            # docstring inherited
            longitude, latitude = ll.T

            # Pre-compute some values
            half_long = longitude / 2.0
            cos_latitude = np.cos(latitude)

            alpha = np.arccos(cos_latitude * np.cos(half_long))
            # Avoid divide-by-zero errors using same method as NumPy.
            alpha[alpha == 0.0] = 1e-20
            # We want unnormalized sinc.  numpy.sinc gives us normalized
            sinc_alpha = np.sin(alpha) / alpha

            x = (cos_latitude * np.sin(half_long)) / sinc_alpha
            y = np.sin(latitude) / sinc_alpha
            return np.column_stack([x, y])

        def inverted(self):
            # docstring inherited
            return AitoffAxes.InvertedAitoffTransform(self._resolution)

    class InvertedAitoffTransform(_GeoTransform):

        def transform_non_affine(self, xy):
            # docstring inherited
            # MGDTODO: Math is hard ;(
            return xy

        def inverted(self):
            # docstring inherited
            return AitoffAxes.AitoffTransform(self._resolution)

    def __init__(self, *args, **kwargs):
        self._longitude_cap = np.pi / 2.0
        GeoAxes.__init__(self, *args, **kwargs)
        self.set_aspect(0.5, adjustable='box', anchor='C')
        self.cla()

    def _get_core_transform(self, resolution):
        return self.AitoffTransform(resolution)


class HammerAxes(GeoAxes):
    name = 'hammer'

    class HammerTransform(_GeoTransform):
        """The base Hammer transform."""

        def transform_non_affine(self, ll):
            # docstring inherited
            longitude, latitude = ll.T
            half_long = longitude / 2.0
            cos_latitude = np.cos(latitude)
            sqrt2 = np.sqrt(2.0)
            alpha = np.sqrt(1.0 + cos_latitude * np.cos(half_long))
            x = (2.0 * sqrt2) * (cos_latitude * np.sin(half_long)) / alpha
            y = (sqrt2 * np.sin(latitude)) / alpha
            return np.column_stack([x, y])

        def inverted(self):
            # docstring inherited
            return HammerAxes.InvertedHammerTransform(self._resolution)

    class InvertedHammerTransform(_GeoTransform):

        def transform_non_affine(self, xy):
            # docstring inherited
            x, y = xy.T
            z = np.sqrt(1 - (x / 4) ** 2 - (y / 2) ** 2)
            longitude = 2 * np.arctan((z * x) / (2 * (2 * z ** 2 - 1)))
            latitude = np.arcsin(y*z)
            return np.column_stack([longitude, latitude])

        def inverted(self):
            # docstring inherited
            return HammerAxes.HammerTransform(self._resolution)

    def __init__(self, *args, **kwargs):
        self._longitude_cap = np.pi / 2.0
        GeoAxes.__init__(self, *args, **kwargs)
        self.set_aspect(0.5, adjustable='box', anchor='C')
        self.cla()

    def _get_core_transform(self, resolution):
        return self.HammerTransform(resolution)


class MollweideAxes(GeoAxes):
    name = 'mollweide'

    class MollweideTransform(_GeoTransform):
        """The base Mollweide transform."""

        def transform_non_affine(self, ll):
            # docstring inherited
            def d(theta):
                delta = (-(theta + np.sin(theta) - pi_sin_l)
                         / (1 + np.cos(theta)))
                return delta, np.abs(delta) > 0.001

            longitude, latitude = ll.T

            clat = np.pi/2 - np.abs(latitude)
            ihigh = clat < 0.087  # within 5 degrees of the poles
            ilow = ~ihigh
            aux = np.empty(latitude.shape, dtype=float)

            if ilow.any():  # Newton-Raphson iteration
                pi_sin_l = np.pi * np.sin(latitude[ilow])
                theta = 2.0 * latitude[ilow]
                delta, large_delta = d(theta)
                while np.any(large_delta):
                    theta[large_delta] += delta[large_delta]
                    delta, large_delta = d(theta)
                aux[ilow] = theta / 2

            if ihigh.any():  # Taylor series-based approx. solution
                e = clat[ihigh]
                d = 0.5 * (3 * np.pi * e**2) ** (1.0/3)
                aux[ihigh] = (np.pi/2 - d) * np.sign(latitude[ihigh])

            xy = np.empty(ll.shape, dtype=float)
            xy[:, 0] = (2.0 * np.sqrt(2.0) / np.pi) * longitude * np.cos(aux)
            xy[:, 1] = np.sqrt(2.0) * np.sin(aux)

            return xy

        def inverted(self):
            # docstring inherited
            return MollweideAxes.InvertedMollweideTransform(self._resolution)

    class InvertedMollweideTransform(_GeoTransform):

        def transform_non_affine(self, xy):
            # docstring inherited
            x, y = xy.T
            # from Equations (7, 8) of
            # https://mathworld.wolfram.com/MollweideProjection.html
            theta = np.arcsin(y / np.sqrt(2))
            longitude = (np.pi / (2 * np.sqrt(2))) * x / np.cos(theta)
            latitude = np.arcsin((2 * theta + np.sin(2 * theta)) / np.pi)
            return np.column_stack([longitude, latitude])

        def inverted(self):
            # docstring inherited
            return MollweideAxes.MollweideTransform(self._resolution)

    def __init__(self, *args, **kwargs):
        self._longitude_cap = np.pi / 2.0
        GeoAxes.__init__(self, *args, **kwargs)
        self.set_aspect(0.5, adjustable='box', anchor='C')
        self.cla()

    def _get_core_transform(self, resolution):
        return self.MollweideTransform(resolution)


class LambertAxes(GeoAxes):
    name = 'lambert'

    class LambertTransform(_GeoTransform):
        """The base Lambert transform."""

        def __init__(self, center_longitude, center_latitude, resolution):
            """
            Create a new Lambert transform.  Resolution is the number of steps
            to interpolate between each input line segment to approximate its
            path in curved Lambert space.
            """
            _GeoTransform.__init__(self, resolution)
            self._center_longitude = center_longitude
            self._center_latitude = center_latitude

        def transform_non_affine(self, ll):
            # docstring inherited
            longitude, latitude = ll.T
            clong = self._center_longitude
            clat = self._center_latitude
            cos_lat = np.cos(latitude)
            sin_lat = np.sin(latitude)
            diff_long = longitude - clong
            cos_diff_long = np.cos(diff_long)

            inner_k = np.maximum(  # Prevent divide-by-zero problems
                1 + np.sin(clat)*sin_lat + np.cos(clat)*cos_lat*cos_diff_long,
                1e-15)
            k = np.sqrt(2 / inner_k)
            x = k * cos_lat*np.sin(diff_long)
            y = k * (np.cos(clat)*sin_lat - np.sin(clat)*cos_lat*cos_diff_long)

            return np.column_stack([x, y])

        def inverted(self):
            # docstring inherited
            return LambertAxes.InvertedLambertTransform(
                self._center_longitude,
                self._center_latitude,
                self._resolution)

    class InvertedLambertTransform(_GeoTransform):

        def __init__(self, center_longitude, center_latitude, resolution):
            _GeoTransform.__init__(self, resolution)
            self._center_longitude = center_longitude
            self._center_latitude = center_latitude

        def transform_non_affine(self, xy):
            # docstring inherited
            x, y = xy.T
            clong = self._center_longitude
            clat = self._center_latitude
            p = np.maximum(np.hypot(x, y), 1e-9)
            c = 2 * np.arcsin(0.5 * p)
            sin_c = np.sin(c)
            cos_c = np.cos(c)

            latitude = np.arcsin(cos_c*np.sin(clat) +
                                 ((y*sin_c*np.cos(clat)) / p))
            longitude = clong + np.arctan(
                (x*sin_c) / (p*np.cos(clat)*cos_c - y*np.sin(clat)*sin_c))

            return np.column_stack([longitude, latitude])

        def inverted(self):
            # docstring inherited
            return LambertAxes.LambertTransform(
                self._center_longitude,
                self._center_latitude,
                self._resolution)

    def __init__(self, *args, center_longitude=0, center_latitude=0, **kwargs):
        self._longitude_cap = np.pi / 2
        self._center_longitude = center_longitude
        self._center_latitude = center_latitude
        GeoAxes.__init__(self, *args, **kwargs)
        self.set_aspect('equal', adjustable='box', anchor='C')
        self.cla()

    def cla(self):
        GeoAxes.cla(self)
        self.yaxis.set_major_formatter(NullFormatter())

    def _get_core_transform(self, resolution):
        return self.LambertTransform(
            self._center_longitude,
            self._center_latitude,
            resolution)

    def _get_affine_transform(self):
        return Affine2D() \
            .scale(0.25) \
            .translate(0.5, 0.5)