import numpy as np from skimage._shared.testing import assert_array_almost_equal from skimage.filters import threshold_local, gaussian from skimage.util.apply_parallel import apply_parallel import pytest da = pytest.importorskip('dask.array') def test_apply_parallel(): # data a = np.arange(144).reshape(12, 12).astype(float) # apply the filter expected1 = threshold_local(a, 3) result1 = apply_parallel(threshold_local, a, chunks=(6, 6), depth=5, extra_arguments=(3,), extra_keywords={'mode': 'reflect'}) assert_array_almost_equal(result1, expected1) def wrapped_gauss(arr): return gaussian(arr, 1, mode='reflect') expected2 = gaussian(a, 1, mode='reflect') result2 = apply_parallel(wrapped_gauss, a, chunks=(6, 6), depth=5) assert_array_almost_equal(result2, expected2) expected3 = gaussian(a, 1, mode='reflect') result3 = apply_parallel( wrapped_gauss, da.from_array(a, chunks=(6, 6)), depth=5, compute=True ) assert isinstance(result3, np.ndarray) assert_array_almost_equal(result3, expected3) def test_apply_parallel_lazy(): # data a = np.arange(144).reshape(12, 12).astype(float) d = da.from_array(a, chunks=(6, 6)) # apply the filter expected1 = threshold_local(a, 3) result1 = apply_parallel(threshold_local, a, chunks=(6, 6), depth=5, extra_arguments=(3,), extra_keywords={'mode': 'reflect'}, compute=False) # apply the filter on a Dask Array result2 = apply_parallel(threshold_local, d, depth=5, extra_arguments=(3,), extra_keywords={'mode': 'reflect'}) assert isinstance(result1, da.Array) assert_array_almost_equal(result1.compute(), expected1) assert isinstance(result2, da.Array) assert_array_almost_equal(result2.compute(), expected1) def test_no_chunks(): a = np.ones(1 * 4 * 8 * 9).reshape(1, 4, 8, 9) def add_42(arr): return arr + 42 expected = add_42(a) result = apply_parallel(add_42, a) assert_array_almost_equal(result, expected) def test_apply_parallel_wrap(): def wrapped(arr): return gaussian(arr, 1, mode='wrap') a = np.arange(144).reshape(12, 12).astype(float) expected = gaussian(a, 1, mode='wrap') result = apply_parallel(wrapped, a, chunks=(6, 6), depth=5, mode='wrap') assert_array_almost_equal(result, expected) def test_apply_parallel_nearest(): def wrapped(arr): return gaussian(arr, 1, mode='nearest') a = np.arange(144).reshape(12, 12).astype(float) expected = gaussian(a, 1, mode='nearest') result = apply_parallel(wrapped, a, chunks=(6, 6), depth={0: 5, 1: 5}, mode='nearest') assert_array_almost_equal(result, expected)