from jedi.inference.base_value import ValueSet, NO_VALUES from jedi.common import monkeypatch class AbstractLazyValue(object): def __init__(self, data, min=1, max=1): self.data = data self.min = min self.max = max def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.data) def infer(self): raise NotImplementedError class LazyKnownValue(AbstractLazyValue): """data is a Value.""" def infer(self): return ValueSet([self.data]) class LazyKnownValues(AbstractLazyValue): """data is a ValueSet.""" def infer(self): return self.data class LazyUnknownValue(AbstractLazyValue): def __init__(self, min=1, max=1): super(LazyUnknownValue, self).__init__(None, min, max) def infer(self): return NO_VALUES class LazyTreeValue(AbstractLazyValue): def __init__(self, context, node, min=1, max=1): super(LazyTreeValue, self).__init__(node, min, max) self.context = context # We need to save the predefined names. It's an unfortunate side effect # that needs to be tracked otherwise results will be wrong. self._predefined_names = dict(context.predefined_names) def infer(self): with monkeypatch(self.context, 'predefined_names', self._predefined_names): return self.context.infer_node(self.data) def get_merged_lazy_value(lazy_values): if len(lazy_values) > 1: return MergedLazyValues(lazy_values) else: return lazy_values[0] class MergedLazyValues(AbstractLazyValue): """data is a list of lazy values.""" def infer(self): return ValueSet.from_sets(l.infer() for l in self.data)