import pickle from io import BytesIO import numpy as np import scipy.sparse import pytest from sklearn.datasets import load_digits, load_iris from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_raises from sklearn.utils._testing import assert_raise_message from sklearn.utils._testing import assert_warns from sklearn.utils._testing import assert_no_warnings from sklearn.naive_bayes import GaussianNB, BernoulliNB from sklearn.naive_bayes import MultinomialNB, ComplementNB from sklearn.naive_bayes import CategoricalNB from sklearn.naive_bayes import BaseNB, BaseDiscreteNB # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) y = np.array([1, 1, 1, 2, 2, 2]) # A bit more random tests rng = np.random.RandomState(0) X1 = rng.normal(size=(10, 3)) y1 = (rng.normal(size=(10)) > 0).astype(np.int) # Data is 6 random integer points in a 100 dimensional space classified to # three classes. X2 = rng.randint(5, size=(6, 100)) y2 = np.array([1, 1, 2, 2, 3, 3]) def test_gnb(): # Gaussian Naive Bayes classification. # This checks that GaussianNB implements fit and predict and returns # correct values for a simple toy dataset. clf = GaussianNB() y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Test whether label mismatch between target y and classes raises # an Error # FIXME Remove this test once the more general partial_fit tests are merged assert_raises(ValueError, GaussianNB().partial_fit, X, y, classes=[0, 1]) def test_gnb_prior(): # Test whether class priors are properly set. clf = GaussianNB().fit(X, y) assert_array_almost_equal(np.array([3, 3]) / 6.0, clf.class_prior_, 8) clf.fit(X1, y1) # Check that the class priors sum to 1 assert_array_almost_equal(clf.class_prior_.sum(), 1) def test_gnb_sample_weight(): """Test whether sample weights are properly used in GNB. """ # Sample weights all being 1 should not change results sw = np.ones(6) clf = GaussianNB().fit(X, y) clf_sw = GaussianNB().fit(X, y, sw) assert_array_almost_equal(clf.theta_, clf_sw.theta_) assert_array_almost_equal(clf.sigma_, clf_sw.sigma_) # Fitting twice with half sample-weights should result # in same result as fitting once with full weights sw = rng.rand(y.shape[0]) clf1 = GaussianNB().fit(X, y, sample_weight=sw) clf2 = GaussianNB().partial_fit(X, y, classes=[1, 2], sample_weight=sw / 2) clf2.partial_fit(X, y, sample_weight=sw / 2) assert_array_almost_equal(clf1.theta_, clf2.theta_) assert_array_almost_equal(clf1.sigma_, clf2.sigma_) # Check that duplicate entries and correspondingly increased sample # weights yield the same result ind = rng.randint(0, X.shape[0], 20) sample_weight = np.bincount(ind, minlength=X.shape[0]) clf_dupl = GaussianNB().fit(X[ind], y[ind]) clf_sw = GaussianNB().fit(X, y, sample_weight) assert_array_almost_equal(clf_dupl.theta_, clf_sw.theta_) assert_array_almost_equal(clf_dupl.sigma_, clf_sw.sigma_) def test_gnb_neg_priors(): """Test whether an error is raised in case of negative priors""" clf = GaussianNB(priors=np.array([-1., 2.])) assert_raises(ValueError, clf.fit, X, y) def test_gnb_priors(): """Test whether the class prior override is properly used""" clf = GaussianNB(priors=np.array([0.3, 0.7])).fit(X, y) assert_array_almost_equal(clf.predict_proba([[-0.1, -0.1]]), np.array([[0.825303662161683, 0.174696337838317]]), 8) assert_array_almost_equal(clf.class_prior_, np.array([0.3, 0.7])) def test_gnb_priors_sum_isclose(): # test whether the class prior sum is properly tested""" X = np.array([[-1, -1], [-2, -1], [-3, -2], [-4, -5], [-5, -4], [1, 1], [2, 1], [3, 2], [4, 4], [5, 5]]) priors = np.array([0.08, 0.14, 0.03, 0.16, 0.11, 0.16, 0.07, 0.14, 0.11, 0.0]) Y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) clf = GaussianNB(priors=priors) # smoke test for issue #9633 clf.fit(X, Y) def test_gnb_wrong_nb_priors(): """ Test whether an error is raised if the number of prior is different from the number of class""" clf = GaussianNB(priors=np.array([.25, .25, .25, .25])) assert_raises(ValueError, clf.fit, X, y) def test_gnb_prior_greater_one(): """Test if an error is raised if the sum of prior greater than one""" clf = GaussianNB(priors=np.array([2., 1.])) assert_raises(ValueError, clf.fit, X, y) def test_gnb_prior_large_bias(): """Test if good prediction when class prior favor largely one class""" clf = GaussianNB(priors=np.array([0.01, 0.99])) clf.fit(X, y) assert clf.predict([[-0.1, -0.1]]) == np.array([2]) def test_gnb_check_update_with_no_data(): """ Test when the partial fit is called without any data""" # Create an empty array prev_points = 100 mean = 0. var = 1. x_empty = np.empty((0, X.shape[1])) tmean, tvar = GaussianNB._update_mean_variance(prev_points, mean, var, x_empty) assert tmean == mean assert tvar == var def test_gnb_pfit_wrong_nb_features(): """Test whether an error is raised when the number of feature changes between two partial fit""" clf = GaussianNB() # Fit for the first time the GNB clf.fit(X, y) # Partial fit a second time with an incoherent X assert_raises(ValueError, clf.partial_fit, np.hstack((X, X)), y) def test_gnb_partial_fit(): clf = GaussianNB().fit(X, y) clf_pf = GaussianNB().partial_fit(X, y, np.unique(y)) assert_array_almost_equal(clf.theta_, clf_pf.theta_) assert_array_almost_equal(clf.sigma_, clf_pf.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf.class_prior_) clf_pf2 = GaussianNB().partial_fit(X[0::2, :], y[0::2], np.unique(y)) clf_pf2.partial_fit(X[1::2], y[1::2]) assert_array_almost_equal(clf.theta_, clf_pf2.theta_) assert_array_almost_equal(clf.sigma_, clf_pf2.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf2.class_prior_) def test_gnb_naive_bayes_scale_invariance(): # Scaling the data should not change the prediction results iris = load_iris() X, y = iris.data, iris.target labels = [GaussianNB().fit(f * X, y).predict(f * X) for f in [1E-10, 1, 1E10]] assert_array_equal(labels[0], labels[1]) assert_array_equal(labels[1], labels[2]) @pytest.mark.parametrize("cls", [MultinomialNB, BernoulliNB, CategoricalNB]) def test_discretenb_prior(cls): # Test whether class priors are properly set. clf = cls().fit(X2, y2) assert_array_almost_equal(np.log(np.array([2, 2, 2]) / 6.0), clf.class_log_prior_, 8) @pytest.mark.parametrize("cls", [MultinomialNB, BernoulliNB, CategoricalNB]) def test_discretenb_partial_fit(cls): clf1 = cls() clf1.fit([[0, 1], [1, 0], [1, 1]], [0, 1, 1]) clf2 = cls() clf2.partial_fit([[0, 1], [1, 0], [1, 1]], [0, 1, 1], classes=[0, 1]) assert_array_equal(clf1.class_count_, clf2.class_count_) if cls is CategoricalNB: for i in range(len(clf1.category_count_)): assert_array_equal(clf1.category_count_[i], clf2.category_count_[i]) else: assert_array_equal(clf1.feature_count_, clf2.feature_count_) clf3 = cls() # all categories have to appear in the first partial fit clf3.partial_fit([[0, 1]], [0], classes=[0, 1]) clf3.partial_fit([[1, 0]], [1]) clf3.partial_fit([[1, 1]], [1]) assert_array_equal(clf1.class_count_, clf3.class_count_) if cls is CategoricalNB: # the categories for each feature of CategoricalNB are mapped to an # index chronologically with each call of partial fit and therefore # the category_count matrices cannot be compared for equality for i in range(len(clf1.category_count_)): assert_array_equal(clf1.category_count_[i].shape, clf3.category_count_[i].shape) assert_array_equal(np.sum(clf1.category_count_[i], axis=1), np.sum(clf3.category_count_[i], axis=1)) # assert category 0 occurs 1x in the first class and 0x in the 2nd # class assert_array_equal(clf1.category_count_[0][0], np.array([1, 0])) # assert category 1 occurs 0x in the first class and 2x in the 2nd # class assert_array_equal(clf1.category_count_[0][1], np.array([0, 2])) # assert category 0 occurs 0x in the first class and 1x in the 2nd # class assert_array_equal(clf1.category_count_[1][0], np.array([0, 1])) # assert category 1 occurs 1x in the first class and 1x in the 2nd # class assert_array_equal(clf1.category_count_[1][1], np.array([1, 1])) else: assert_array_equal(clf1.feature_count_, clf3.feature_count_) @pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, GaussianNB, CategoricalNB]) def test_discretenb_pickle(cls): # Test picklability of discrete naive Bayes classifiers clf = cls().fit(X2, y2) y_pred = clf.predict(X2) store = BytesIO() pickle.dump(clf, store) clf = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf.predict(X2)) # Test pickling of estimator trained with partial_fit clf2 = cls().partial_fit(X2[:3], y2[:3], classes=np.unique(y2)) clf2.partial_fit(X2[3:], y2[3:]) store = BytesIO() pickle.dump(clf2, store) clf2 = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf2.predict(X2)) @pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, GaussianNB, CategoricalNB]) def test_discretenb_input_check_fit(cls): # Test input checks for the fit method # check shape consistency for number of samples at fit time assert_raises(ValueError, cls().fit, X2, y2[:-1]) # check shape consistency for number of input features at predict time clf = cls().fit(X2, y2) assert_raises(ValueError, clf.predict, X2[:, :-1]) @pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, CategoricalNB]) def test_discretenb_input_check_partial_fit(cls): # check shape consistency assert_raises(ValueError, cls().partial_fit, X2, y2[:-1], classes=np.unique(y2)) # classes is required for first call to partial fit assert_raises(ValueError, cls().partial_fit, X2, y2) # check consistency of consecutive classes values clf = cls() clf.partial_fit(X2, y2, classes=np.unique(y2)) assert_raises(ValueError, clf.partial_fit, X2, y2, classes=np.arange(42)) # check consistency of input shape for partial_fit assert_raises(ValueError, clf.partial_fit, X2[:, :-1], y2) # check consistency of input shape for predict assert_raises(ValueError, clf.predict, X2[:, :-1]) def test_discretenb_predict_proba(): # Test discrete NB classes' probability scores # The 100s below distinguish Bernoulli from multinomial. # FIXME: write a test to show this. X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]] X_multinomial = [[0, 1], [1, 3], [4, 0]] # test binary case (1-d output) y = [0, 0, 2] # 2 is regression test for binary case, 02e673 for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert clf.predict(X[-1:]) == 2 assert clf.predict_proba([X[0]]).shape == (1, 2) assert_array_almost_equal(clf.predict_proba(X[:2]).sum(axis=1), np.array([1., 1.]), 6) # test multiclass case (2-d output, must sum to one) y = [0, 1, 2] for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert clf.predict_proba(X[0:1]).shape == (1, 3) assert clf.predict_proba(X[:2]).shape == (2, 3) assert_almost_equal(np.sum(clf.predict_proba([X[1]])), 1) assert_almost_equal(np.sum(clf.predict_proba([X[-1]])), 1) assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1) assert_almost_equal(np.sum(np.exp(clf.intercept_)), 1) @pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, CategoricalNB]) def test_discretenb_uniform_prior(cls): # Test whether discrete NB classes fit a uniform prior # when fit_prior=False and class_prior=None clf = cls() clf.set_params(fit_prior=False) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_almost_equal(prior, np.array([.5, .5])) @pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, CategoricalNB]) def test_discretenb_provide_prior(cls): # Test whether discrete NB classes use provided prior clf = cls(class_prior=[0.5, 0.5]) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_almost_equal(prior, np.array([.5, .5])) # Inconsistent number of classes with prior assert_raises(ValueError, clf.fit, [[0], [1], [2]], [0, 1, 2]) assert_raises(ValueError, clf.partial_fit, [[0], [1]], [0, 1], classes=[0, 1, 1]) @pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, CategoricalNB]) def test_discretenb_provide_prior_with_partial_fit(cls): # Test whether discrete NB classes use provided prior # when using partial_fit iris = load_iris() iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split( iris.data, iris.target, test_size=0.4, random_state=415) for prior in [None, [0.3, 0.3, 0.4]]: clf_full = cls(class_prior=prior) clf_full.fit(iris.data, iris.target) clf_partial = cls(class_prior=prior) clf_partial.partial_fit(iris_data1, iris_target1, classes=[0, 1, 2]) clf_partial.partial_fit(iris_data2, iris_target2) assert_array_almost_equal(clf_full.class_log_prior_, clf_partial.class_log_prior_) @pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, CategoricalNB]) def test_discretenb_sample_weight_multiclass(cls): # check shape consistency for number of samples at fit time X = [ [0, 0, 1], [0, 1, 1], [0, 1, 1], [1, 0, 0], ] y = [0, 0, 1, 2] sample_weight = np.array([1, 1, 2, 2], dtype=np.float64) sample_weight /= sample_weight.sum() clf = cls().fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) # Check sample weight using the partial_fit method clf = cls() clf.partial_fit(X[:2], y[:2], classes=[0, 1, 2], sample_weight=sample_weight[:2]) clf.partial_fit(X[2:3], y[2:3], sample_weight=sample_weight[2:3]) clf.partial_fit(X[3:], y[3:], sample_weight=sample_weight[3:]) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) @pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB]) def test_discretenb_coef_intercept_shape(cls): # coef_ and intercept_ should have shapes as in other linear models. # Non-regression test for issue #2127. X = [[1, 0, 0], [1, 1, 1]] y = [1, 2] # binary classification clf = cls() clf.fit(X, y) assert clf.coef_.shape == (1, 3) assert clf.intercept_.shape == (1,) @pytest.mark.parametrize('kind', ('dense', 'sparse')) def test_mnnb(kind): # Test Multinomial Naive Bayes classification. # This checks that MultinomialNB implements fit and predict and returns # correct values for a simple toy dataset. if kind == 'dense': X = X2 elif kind == 'sparse': X = scipy.sparse.csr_matrix(X2) # Check the ability to predict the learning set. clf = MultinomialNB() assert_raises(ValueError, clf.fit, -X, y2) y_pred = clf.fit(X, y2).predict(X) assert_array_equal(y_pred, y2) # Verify that np.log(clf.predict_proba(X)) gives the same results as # clf.predict_log_proba(X) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Check that incremental fitting yields the same results clf2 = MultinomialNB() clf2.partial_fit(X[:2], y2[:2], classes=np.unique(y2)) clf2.partial_fit(X[2:5], y2[2:5]) clf2.partial_fit(X[5:], y2[5:]) y_pred2 = clf2.predict(X) assert_array_equal(y_pred2, y2) y_pred_proba2 = clf2.predict_proba(X) y_pred_log_proba2 = clf2.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba2), y_pred_log_proba2, 8) assert_array_almost_equal(y_pred_proba2, y_pred_proba) assert_array_almost_equal(y_pred_log_proba2, y_pred_log_proba) # Partial fit on the whole data at once should be the same as fit too clf3 = MultinomialNB() clf3.partial_fit(X, y2, classes=np.unique(y2)) y_pred3 = clf3.predict(X) assert_array_equal(y_pred3, y2) y_pred_proba3 = clf3.predict_proba(X) y_pred_log_proba3 = clf3.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba3), y_pred_log_proba3, 8) assert_array_almost_equal(y_pred_proba3, y_pred_proba) assert_array_almost_equal(y_pred_log_proba3, y_pred_log_proba) def test_mnb_prior_unobserved_targets(): # test smoothing of prior for yet unobserved targets # Create toy training data X = np.array([[0, 1], [1, 0]]) y = np.array([0, 1]) clf = MultinomialNB() assert_no_warnings( clf.partial_fit, X, y, classes=[0, 1, 2] ) assert clf.predict([[0, 1]]) == 0 assert clf.predict([[1, 0]]) == 1 assert clf.predict([[1, 1]]) == 0 # add a training example with previously unobserved class assert_no_warnings( clf.partial_fit, [[1, 1]], [2] ) assert clf.predict([[0, 1]]) == 0 assert clf.predict([[1, 0]]) == 1 assert clf.predict([[1, 1]]) == 2 def test_mnb_sample_weight(): clf = MultinomialNB() clf.fit([[1, 2], [1, 2], [1, 0]], [0, 0, 1], sample_weight=[1, 1, 4]) assert_array_equal(clf.predict([[1, 0]]), [1]) positive_prior = np.exp(clf.intercept_[0]) assert_array_almost_equal([1 - positive_prior, positive_prior], [1 / 3., 2 / 3.]) def test_bnb(): # Tests that BernoulliNB when alpha=1.0 gives the same values as # those given for the toy example in Manning, Raghavan, and # Schuetze's "Introduction to Information Retrieval" book: # https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html # Training data points are: # Chinese Beijing Chinese (class: China) # Chinese Chinese Shanghai (class: China) # Chinese Macao (class: China) # Tokyo Japan Chinese (class: Japan) # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo X = np.array([[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]]) # Classes are China (0), Japan (1) Y = np.array([0, 0, 0, 1]) # Fit BernoulliBN w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Check the class prior is correct class_prior = np.array([0.75, 0.25]) assert_array_almost_equal(np.exp(clf.class_log_prior_), class_prior) # Check the feature probabilities are correct feature_prob = np.array([[0.4, 0.8, 0.2, 0.4, 0.4, 0.2], [1 / 3.0, 2 / 3.0, 2 / 3.0, 1 / 3.0, 1 / 3.0, 2 / 3.0]]) assert_array_almost_equal(np.exp(clf.feature_log_prob_), feature_prob) # Testing data point is: # Chinese Chinese Chinese Tokyo Japan X_test = np.array([[0, 1, 1, 0, 0, 1]]) # Check the predictive probabilities are correct unnorm_predict_proba = np.array([[0.005183999999999999, 0.02194787379972565]]) predict_proba = unnorm_predict_proba / np.sum(unnorm_predict_proba) assert_array_almost_equal(clf.predict_proba(X_test), predict_proba) def test_bnb_feature_log_prob(): # Test for issue #4268. # Tests that the feature log prob value computed by BernoulliNB when # alpha=1.0 is equal to the expression given in Manning, Raghavan, # and Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]]) Y = np.array([0, 0, 1, 2, 2]) # Fit Bernoulli NB w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Manually form the (log) numerator and denominator that # constitute P(feature presence | class) num = np.log(clf.feature_count_ + 1.0) denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T # Check manual estimate matches assert_array_almost_equal(clf.feature_log_prob_, (num - denom)) def test_cnb(): # Tests ComplementNB when alpha=1.0 for the toy example in Manning, # Raghavan, and Schuetze's "Introduction to Information Retrieval" book: # https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html # Training data points are: # Chinese Beijing Chinese (class: China) # Chinese Chinese Shanghai (class: China) # Chinese Macao (class: China) # Tokyo Japan Chinese (class: Japan) # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo. X = np.array([[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]]) # Classes are China (0), Japan (1). Y = np.array([0, 0, 0, 1]) # Check that weights are correct. See steps 4-6 in Table 4 of # Rennie et al. (2003). theta = np.array([ [ (0 + 1) / (3 + 6), (1 + 1) / (3 + 6), (1 + 1) / (3 + 6), (0 + 1) / (3 + 6), (0 + 1) / (3 + 6), (1 + 1) / (3 + 6) ], [ (1 + 1) / (6 + 6), (3 + 1) / (6 + 6), (0 + 1) / (6 + 6), (1 + 1) / (6 + 6), (1 + 1) / (6 + 6), (0 + 1) / (6 + 6) ]]) weights = np.zeros(theta.shape) normed_weights = np.zeros(theta.shape) for i in range(2): weights[i] = -np.log(theta[i]) normed_weights[i] = weights[i] / weights[i].sum() # Verify inputs are nonnegative. clf = ComplementNB(alpha=1.0) assert_raises(ValueError, clf.fit, -X, Y) clf.fit(X, Y) # Check that counts/weights are correct. feature_count = np.array([[1, 3, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1]]) assert_array_equal(clf.feature_count_, feature_count) class_count = np.array([3, 1]) assert_array_equal(clf.class_count_, class_count) feature_all = np.array([1, 4, 1, 1, 1, 1]) assert_array_equal(clf.feature_all_, feature_all) assert_array_almost_equal(clf.feature_log_prob_, weights) clf = ComplementNB(alpha=1.0, norm=True) clf.fit(X, Y) assert_array_almost_equal(clf.feature_log_prob_, normed_weights) def test_categoricalnb(): # Check the ability to predict the training set. clf = CategoricalNB() y_pred = clf.fit(X2, y2).predict(X2) assert_array_equal(y_pred, y2) X3 = np.array([[1, 4], [2, 5]]) y3 = np.array([1, 2]) clf = CategoricalNB(alpha=1, fit_prior=False) clf.fit(X3, y3) # Check error is raised for X with negative entries X = np.array([[0, -1]]) y = np.array([1]) error_msg = "Negative values in data passed to CategoricalNB (input X)" assert_raise_message(ValueError, error_msg, clf.predict, X) assert_raise_message(ValueError, error_msg, clf.fit, X, y) # Check error is raised for incorrect X X = np.array([[1, 4, 1], [2, 5, 6]]) msg = "Expected input with 2 features, got 3 instead" assert_raise_message(ValueError, msg, clf.predict, X) # Test alpha X3_test = np.array([[2, 5]]) # alpha=1 increases the count of all categories by one so the final # probability for each category is not 50/50 but 1/3 to 2/3 bayes_numerator = np.array([[1/3*1/3, 2/3*2/3]]) bayes_denominator = bayes_numerator.sum() assert_array_almost_equal(clf.predict_proba(X3_test), bayes_numerator / bayes_denominator) # Assert category_count has counted all features assert len(clf.category_count_) == X3.shape[1] # Check sample_weight X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]]) y = np.array([1, 1, 2, 2]) clf = CategoricalNB(alpha=1, fit_prior=False) clf.fit(X, y) assert_array_equal(clf.predict(np.array([[0, 0]])), np.array([1])) for factor in [1., 0.3, 5, 0.0001]: X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]]) y = np.array([1, 1, 2, 2]) sample_weight = np.array([1, 1, 10, 0.1]) * factor clf = CategoricalNB(alpha=1, fit_prior=False) clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(np.array([[0, 0]])), np.array([2])) def test_alpha(): # Setting alpha=0 should not output nan results when p(x_i|y_j)=0 is a case X = np.array([[1, 0], [1, 1]]) y = np.array([0, 1]) nb = BernoulliNB(alpha=0.) assert_warns(UserWarning, nb.partial_fit, X, y, classes=[0, 1]) assert_warns(UserWarning, nb.fit, X, y) prob = np.array([[1, 0], [0, 1]]) assert_array_almost_equal(nb.predict_proba(X), prob) nb = MultinomialNB(alpha=0.) assert_warns(UserWarning, nb.partial_fit, X, y, classes=[0, 1]) assert_warns(UserWarning, nb.fit, X, y) prob = np.array([[2. / 3, 1. / 3], [0, 1]]) assert_array_almost_equal(nb.predict_proba(X), prob) nb = CategoricalNB(alpha=0.) assert_warns(UserWarning, nb.fit, X, y) prob = np.array([[1., 0.], [0., 1.]]) assert_array_almost_equal(nb.predict_proba(X), prob) # Test sparse X X = scipy.sparse.csr_matrix(X) nb = BernoulliNB(alpha=0.) assert_warns(UserWarning, nb.fit, X, y) prob = np.array([[1, 0], [0, 1]]) assert_array_almost_equal(nb.predict_proba(X), prob) nb = MultinomialNB(alpha=0.) assert_warns(UserWarning, nb.fit, X, y) prob = np.array([[2. / 3, 1. / 3], [0, 1]]) assert_array_almost_equal(nb.predict_proba(X), prob) # Test for alpha < 0 X = np.array([[1, 0], [1, 1]]) y = np.array([0, 1]) expected_msg = ('Smoothing parameter alpha = -1.0e-01. ' 'alpha should be > 0.') b_nb = BernoulliNB(alpha=-0.1) m_nb = MultinomialNB(alpha=-0.1) c_nb = CategoricalNB(alpha=-0.1) assert_raise_message(ValueError, expected_msg, b_nb.fit, X, y) assert_raise_message(ValueError, expected_msg, m_nb.fit, X, y) assert_raise_message(ValueError, expected_msg, c_nb.fit, X, y) b_nb = BernoulliNB(alpha=-0.1) m_nb = MultinomialNB(alpha=-0.1) assert_raise_message(ValueError, expected_msg, b_nb.partial_fit, X, y, classes=[0, 1]) assert_raise_message(ValueError, expected_msg, m_nb.partial_fit, X, y, classes=[0, 1]) def test_alpha_vector(): X = np.array([[1, 0], [1, 1]]) y = np.array([0, 1]) # Setting alpha=np.array with same length # as number of features should be fine alpha = np.array([1, 2]) nb = MultinomialNB(alpha=alpha) nb.partial_fit(X, y, classes=[0, 1]) # Test feature probabilities uses pseudo-counts (alpha) feature_prob = np.array([[1 / 2, 1 / 2], [2 / 5, 3 / 5]]) assert_array_almost_equal(nb.feature_log_prob_, np.log(feature_prob)) # Test predictions prob = np.array([[5 / 9, 4 / 9], [25 / 49, 24 / 49]]) assert_array_almost_equal(nb.predict_proba(X), prob) # Test alpha non-negative alpha = np.array([1., -0.1]) expected_msg = ('Smoothing parameter alpha = -1.0e-01. ' 'alpha should be > 0.') m_nb = MultinomialNB(alpha=alpha) assert_raise_message(ValueError, expected_msg, m_nb.fit, X, y) # Test that too small pseudo-counts are replaced ALPHA_MIN = 1e-10 alpha = np.array([ALPHA_MIN / 2, 0.5]) m_nb = MultinomialNB(alpha=alpha) m_nb.partial_fit(X, y, classes=[0, 1]) assert_array_almost_equal(m_nb._check_alpha(), [ALPHA_MIN, 0.5], decimal=12) # Test correct dimensions alpha = np.array([1., 2., 3.]) m_nb = MultinomialNB(alpha=alpha) expected_msg = ('alpha should be a scalar or a numpy array ' 'with shape [n_features]') assert_raise_message(ValueError, expected_msg, m_nb.fit, X, y) def test_check_accuracy_on_digits(): # Non regression test to make sure that any further refactoring / optim # of the NB models do not harm the performance on a slightly non-linearly # separable dataset X, y = load_digits(return_X_y=True) binary_3v8 = np.logical_or(y == 3, y == 8) X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8] # Multinomial NB scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10) assert scores.mean() > 0.86 scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10) assert scores.mean() > 0.94 # Bernoulli NB scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10) assert scores.mean() > 0.83 scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10) assert scores.mean() > 0.92 # Gaussian NB scores = cross_val_score(GaussianNB(), X, y, cv=10) assert scores.mean() > 0.77 scores = cross_val_score(GaussianNB(var_smoothing=0.1), X, y, cv=10) assert scores.mean() > 0.89 scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10) assert scores.mean() > 0.86 # TODO: remove in 0.24 def test_deprecations(): class A(BaseNB, GaussianNB): pass class B(BaseDiscreteNB, CategoricalNB): pass with pytest.warns(FutureWarning, match="is deprecated in version 0.22"): A() with pytest.warns(FutureWarning, match="is deprecated in version 0.22"): B()