import numpy as np import scipy.sparse __all__ = ['save_npz', 'load_npz'] # Make loading safe vs. malicious input PICKLE_KWARGS = dict(allow_pickle=False) def save_npz(file, matrix, compressed=True): """ Save a sparse matrix to a file using ``.npz`` format. Parameters ---------- file : str or file-like object Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. matrix: spmatrix (format: ``csc``, ``csr``, ``bsr``, ``dia`` or coo``) The sparse matrix to save. compressed : bool, optional Allow compressing the file. Default: True See Also -------- scipy.sparse.load_npz: Load a sparse matrix from a file using ``.npz`` format. numpy.savez: Save several arrays into a ``.npz`` archive. numpy.savez_compressed : Save several arrays into a compressed ``.npz`` archive. Examples -------- Store sparse matrix to disk, and load it again: >>> import scipy.sparse >>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]])) >>> sparse_matrix <2x3 sparse matrix of type '' with 2 stored elements in Compressed Sparse Column format> >>> sparse_matrix.todense() matrix([[0, 0, 3], [4, 0, 0]], dtype=int64) >>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix) >>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz') >>> sparse_matrix <2x3 sparse matrix of type '' with 2 stored elements in Compressed Sparse Column format> >>> sparse_matrix.todense() matrix([[0, 0, 3], [4, 0, 0]], dtype=int64) """ arrays_dict = {} if matrix.format in ('csc', 'csr', 'bsr'): arrays_dict.update(indices=matrix.indices, indptr=matrix.indptr) elif matrix.format == 'dia': arrays_dict.update(offsets=matrix.offsets) elif matrix.format == 'coo': arrays_dict.update(row=matrix.row, col=matrix.col) else: raise NotImplementedError('Save is not implemented for sparse matrix of format {}.'.format(matrix.format)) arrays_dict.update( format=matrix.format.encode('ascii'), shape=matrix.shape, data=matrix.data ) if compressed: np.savez_compressed(file, **arrays_dict) else: np.savez(file, **arrays_dict) def load_npz(file): """ Load a sparse matrix from a file using ``.npz`` format. Parameters ---------- file : str or file-like object Either the file name (string) or an open file (file-like object) where the data will be loaded. Returns ------- result : csc_matrix, csr_matrix, bsr_matrix, dia_matrix or coo_matrix A sparse matrix containing the loaded data. Raises ------ IOError If the input file does not exist or cannot be read. See Also -------- scipy.sparse.save_npz: Save a sparse matrix to a file using ``.npz`` format. numpy.load: Load several arrays from a ``.npz`` archive. Examples -------- Store sparse matrix to disk, and load it again: >>> import scipy.sparse >>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]])) >>> sparse_matrix <2x3 sparse matrix of type '' with 2 stored elements in Compressed Sparse Column format> >>> sparse_matrix.todense() matrix([[0, 0, 3], [4, 0, 0]], dtype=int64) >>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix) >>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz') >>> sparse_matrix <2x3 sparse matrix of type '' with 2 stored elements in Compressed Sparse Column format> >>> sparse_matrix.todense() matrix([[0, 0, 3], [4, 0, 0]], dtype=int64) """ with np.load(file, **PICKLE_KWARGS) as loaded: try: matrix_format = loaded['format'] except KeyError: raise ValueError('The file {} does not contain a sparse matrix.'.format(file)) matrix_format = matrix_format.item() if not isinstance(matrix_format, str): # Play safe with Python 2 vs 3 backward compatibility; # files saved with SciPy < 1.0.0 may contain unicode or bytes. matrix_format = matrix_format.decode('ascii') try: cls = getattr(scipy.sparse, '{}_matrix'.format(matrix_format)) except AttributeError: raise ValueError('Unknown matrix format "{}"'.format(matrix_format)) if matrix_format in ('csc', 'csr', 'bsr'): return cls((loaded['data'], loaded['indices'], loaded['indptr']), shape=loaded['shape']) elif matrix_format == 'dia': return cls((loaded['data'], loaded['offsets']), shape=loaded['shape']) elif matrix_format == 'coo': return cls((loaded['data'], (loaded['row'], loaded['col'])), shape=loaded['shape']) else: raise NotImplementedError('Load is not implemented for ' 'sparse matrix of format {}.'.format(matrix_format))