""" Test the parallel module. """ # Author: Gael Varoquaux # Copyright (c) 2010-2011 Gael Varoquaux # License: BSD Style, 3 clauses. import os import sys import time import mmap import threading from traceback import format_exception from math import sqrt from time import sleep from pickle import PicklingError from multiprocessing import TimeoutError import pickle import pytest from importlib import reload import joblib from joblib import parallel from joblib import dump, load from joblib.externals.loky import get_reusable_executor from joblib.test.common import np, with_numpy from joblib.test.common import with_multiprocessing from joblib.testing import (parametrize, raises, check_subprocess_call, skipif, SkipTest, warns) from joblib.externals.loky.process_executor import TerminatedWorkerError from queue import Queue try: import posix except ImportError: posix = None try: from ._openmp_test_helper.parallel_sum import parallel_sum except ImportError: parallel_sum = None try: import distributed except ImportError: distributed = None from joblib._parallel_backends import SequentialBackend from joblib._parallel_backends import ThreadingBackend from joblib._parallel_backends import MultiprocessingBackend from joblib._parallel_backends import ParallelBackendBase from joblib._parallel_backends import LokyBackend from joblib._parallel_backends import SafeFunction from joblib.parallel import Parallel, delayed from joblib.parallel import register_parallel_backend, parallel_backend from joblib.parallel import effective_n_jobs, cpu_count from joblib.parallel import mp, BACKENDS, DEFAULT_BACKEND, EXTERNAL_BACKENDS from joblib.my_exceptions import JoblibException from joblib.my_exceptions import WorkerInterrupt ALL_VALID_BACKENDS = [None] + sorted(BACKENDS.keys()) # Add instances of backend classes deriving from ParallelBackendBase ALL_VALID_BACKENDS += [BACKENDS[backend_str]() for backend_str in BACKENDS] PROCESS_BACKENDS = ['multiprocessing', 'loky'] PARALLEL_BACKENDS = PROCESS_BACKENDS + ['threading'] if hasattr(mp, 'get_context'): # Custom multiprocessing context in Python 3.4+ ALL_VALID_BACKENDS.append(mp.get_context('spawn')) DefaultBackend = BACKENDS[DEFAULT_BACKEND] def get_workers(backend): return getattr(backend, '_pool', getattr(backend, '_workers', None)) def division(x, y): return x / y def square(x): return x ** 2 class MyExceptionWithFinickyInit(Exception): """An exception class with non trivial __init__ """ def __init__(self, a, b, c, d): pass def exception_raiser(x, custom_exception=False): if x == 7: raise (MyExceptionWithFinickyInit('a', 'b', 'c', 'd') if custom_exception else ValueError) return x def interrupt_raiser(x): time.sleep(.05) raise KeyboardInterrupt def f(x, y=0, z=0): """ A module-level function so that it can be spawn with multiprocessing. """ return x ** 2 + y + z def _active_backend_type(): return type(parallel.get_active_backend()[0]) def parallel_func(inner_n_jobs, backend): return Parallel(n_jobs=inner_n_jobs, backend=backend)( delayed(square)(i) for i in range(3)) ############################################################################### def test_cpu_count(): assert cpu_count() > 0 def test_effective_n_jobs(): assert effective_n_jobs() > 0 @pytest.mark.parametrize( "backend_n_jobs, expected_n_jobs", [(3, 3), (-1, effective_n_jobs(n_jobs=-1)), (None, 1)], ids=["positive-int", "negative-int", "None"] ) @with_multiprocessing def test_effective_n_jobs_None(backend_n_jobs, expected_n_jobs): # check the number of effective jobs when `n_jobs=None` # non-regression test for https://github.com/joblib/joblib/issues/984 with parallel_backend("threading", n_jobs=backend_n_jobs): # when using a backend, the default of number jobs will be the one set # in the backend assert effective_n_jobs(n_jobs=None) == expected_n_jobs # without any backend, None will default to a single job assert effective_n_jobs(n_jobs=None) == 1 ############################################################################### # Test parallel @parametrize('backend', ALL_VALID_BACKENDS) @parametrize('n_jobs', [1, 2, -1, -2]) @parametrize('verbose', [2, 11, 100]) def test_simple_parallel(backend, n_jobs, verbose): assert ([square(x) for x in range(5)] == Parallel(n_jobs=n_jobs, backend=backend, verbose=verbose)( delayed(square)(x) for x in range(5))) @parametrize('backend', ALL_VALID_BACKENDS) def test_main_thread_renamed_no_warning(backend, monkeypatch): # Check that no default backend relies on the name of the main thread: # https://github.com/joblib/joblib/issues/180#issuecomment-253266247 # Some programs use a different name for the main thread. This is the case # for uWSGI apps for instance. monkeypatch.setattr(target=threading.current_thread(), name='name', value='some_new_name_for_the_main_thread') with warns(None) as warninfo: results = Parallel(n_jobs=2, backend=backend)( delayed(square)(x) for x in range(3)) assert results == [0, 1, 4] # Due to the default parameters of LokyBackend, there is a chance that # warninfo catches Warnings from worker timeouts. We remove it if it exists warninfo = [w for w in warninfo if "worker timeout" not in str(w.message)] # The multiprocessing backend will raise a warning when detecting that is # started from the non-main thread. Let's check that there is no false # positive because of the name change. assert len(warninfo) == 0 def _assert_warning_nested(backend, inner_n_jobs, expected): with warns(None) as records: parallel_func(backend=backend, inner_n_jobs=inner_n_jobs) if expected: # with threading, we might see more that one records if len(records) > 0: return 'backed parallel loops cannot' in records[0].message.args[0] return False else: assert len(records) == 0 return True @with_multiprocessing @parametrize('parent_backend,child_backend,expected', [ ('loky', 'multiprocessing', True), ('loky', 'loky', False), ('multiprocessing', 'multiprocessing', True), ('multiprocessing', 'loky', True), ('threading', 'multiprocessing', True), ('threading', 'loky', True), ]) def test_nested_parallel_warnings(parent_backend, child_backend, expected): # no warnings if inner_n_jobs=1 Parallel(n_jobs=2, backend=parent_backend)( delayed(_assert_warning_nested)( backend=child_backend, inner_n_jobs=1, expected=False) for _ in range(5)) # warnings if inner_n_jobs != 1 and expected res = Parallel(n_jobs=2, backend=parent_backend)( delayed(_assert_warning_nested)( backend=child_backend, inner_n_jobs=2, expected=expected) for _ in range(5)) # warning handling is not thread safe. One thread might see multiple # warning or no warning at all. if parent_backend == "threading": assert any(res) else: assert all(res) @with_multiprocessing @parametrize('backend', ['loky', 'multiprocessing', 'threading']) def test_background_thread_parallelism(backend): is_run_parallel = [False] def background_thread(is_run_parallel): with warns(None) as records: Parallel(n_jobs=2)( delayed(sleep)(.1) for _ in range(4)) print(len(records)) is_run_parallel[0] = len(records) == 0 t = threading.Thread(target=background_thread, args=(is_run_parallel,)) t.start() t.join() assert is_run_parallel[0] def nested_loop(backend): Parallel(n_jobs=2, backend=backend)( delayed(square)(.01) for _ in range(2)) @parametrize('child_backend', BACKENDS) @parametrize('parent_backend', BACKENDS) def test_nested_loop(parent_backend, child_backend): Parallel(n_jobs=2, backend=parent_backend)( delayed(nested_loop)(child_backend) for _ in range(2)) def raise_exception(backend): raise ValueError def test_nested_loop_with_exception_with_loky(): with raises(ValueError): with Parallel(n_jobs=2, backend="loky") as parallel: parallel([delayed(nested_loop)("loky"), delayed(raise_exception)("loky")]) def test_mutate_input_with_threads(): """Input is mutable when using the threading backend""" q = Queue(maxsize=5) Parallel(n_jobs=2, backend="threading")( delayed(q.put)(1) for _ in range(5)) assert q.full() @parametrize('n_jobs', [1, 2, 3]) def test_parallel_kwargs(n_jobs): """Check the keyword argument processing of pmap.""" lst = range(10) assert ([f(x, y=1) for x in lst] == Parallel(n_jobs=n_jobs)(delayed(f)(x, y=1) for x in lst)) @parametrize('backend', PARALLEL_BACKENDS) def test_parallel_as_context_manager(backend): lst = range(10) expected = [f(x, y=1) for x in lst] with Parallel(n_jobs=4, backend=backend) as p: # Internally a pool instance has been eagerly created and is managed # via the context manager protocol managed_backend = p._backend # We make call with the managed parallel object several times inside # the managed block: assert expected == p(delayed(f)(x, y=1) for x in lst) assert expected == p(delayed(f)(x, y=1) for x in lst) # Those calls have all used the same pool instance: if mp is not None: assert get_workers(managed_backend) is get_workers(p._backend) # As soon as we exit the context manager block, the pool is terminated and # no longer referenced from the parallel object: if mp is not None: assert get_workers(p._backend) is None # It's still possible to use the parallel instance in non-managed mode: assert expected == p(delayed(f)(x, y=1) for x in lst) if mp is not None: assert get_workers(p._backend) is None @with_multiprocessing def test_parallel_pickling(): """ Check that pmap captures the errors when it is passed an object that cannot be pickled. """ class UnpicklableObject(object): def __reduce__(self): raise RuntimeError('123') with raises(PicklingError, match=r"the task to send"): Parallel(n_jobs=2)(delayed(id)(UnpicklableObject()) for _ in range(10)) @parametrize('backend', PARALLEL_BACKENDS) def test_parallel_timeout_success(backend): # Check that timeout isn't thrown when function is fast enough assert len(Parallel(n_jobs=2, backend=backend, timeout=10)( delayed(sleep)(0.001) for x in range(10))) == 10 @with_multiprocessing @parametrize('backend', PARALLEL_BACKENDS) def test_parallel_timeout_fail(backend): # Check that timeout properly fails when function is too slow with raises(TimeoutError): Parallel(n_jobs=2, backend=backend, timeout=0.01)( delayed(sleep)(10) for x in range(10)) @with_multiprocessing @parametrize('backend', PROCESS_BACKENDS) def test_error_capture(backend): # Check that error are captured, and that correct exceptions # are raised. if mp is not None: with raises(ZeroDivisionError): Parallel(n_jobs=2, backend=backend)( [delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))]) with raises(WorkerInterrupt): Parallel(n_jobs=2, backend=backend)( [delayed(interrupt_raiser)(x) for x in (1, 0)]) # Try again with the context manager API with Parallel(n_jobs=2, backend=backend) as parallel: assert get_workers(parallel._backend) is not None original_workers = get_workers(parallel._backend) with raises(ZeroDivisionError): parallel([delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))]) # The managed pool should still be available and be in a working # state despite the previously raised (and caught) exception assert get_workers(parallel._backend) is not None # The pool should have been interrupted and restarted: assert get_workers(parallel._backend) is not original_workers assert ([f(x, y=1) for x in range(10)] == parallel(delayed(f)(x, y=1) for x in range(10))) original_workers = get_workers(parallel._backend) with raises(WorkerInterrupt): parallel([delayed(interrupt_raiser)(x) for x in (1, 0)]) # The pool should still be available despite the exception assert get_workers(parallel._backend) is not None # The pool should have been interrupted and restarted: assert get_workers(parallel._backend) is not original_workers assert ([f(x, y=1) for x in range(10)] == parallel(delayed(f)(x, y=1) for x in range(10))) # Check that the inner pool has been terminated when exiting the # context manager assert get_workers(parallel._backend) is None else: with raises(KeyboardInterrupt): Parallel(n_jobs=2)( [delayed(interrupt_raiser)(x) for x in (1, 0)]) # wrapped exceptions should inherit from the class of the original # exception to make it easy to catch them with raises(ZeroDivisionError): Parallel(n_jobs=2)( [delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))]) with raises(MyExceptionWithFinickyInit): Parallel(n_jobs=2, verbose=0)( (delayed(exception_raiser)(i, custom_exception=True) for i in range(30))) try: # JoblibException wrapping is disabled in sequential mode: Parallel(n_jobs=1)( delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))) except Exception as ex: assert not isinstance(ex, JoblibException) else: raise ValueError("The excepted error has not been raised.") def consumer(queue, item): queue.append('Consumed %s' % item) @parametrize('backend', BACKENDS) @parametrize('batch_size, expected_queue', [(1, ['Produced 0', 'Consumed 0', 'Produced 1', 'Consumed 1', 'Produced 2', 'Consumed 2', 'Produced 3', 'Consumed 3', 'Produced 4', 'Consumed 4', 'Produced 5', 'Consumed 5']), (4, [ # First Batch 'Produced 0', 'Produced 1', 'Produced 2', 'Produced 3', 'Consumed 0', 'Consumed 1', 'Consumed 2', 'Consumed 3', # Second batch 'Produced 4', 'Produced 5', 'Consumed 4', 'Consumed 5'])]) def test_dispatch_one_job(backend, batch_size, expected_queue): """ Test that with only one job, Parallel does act as a iterator. """ queue = list() def producer(): for i in range(6): queue.append('Produced %i' % i) yield i Parallel(n_jobs=1, batch_size=batch_size, backend=backend)( delayed(consumer)(queue, x) for x in producer()) assert queue == expected_queue assert len(queue) == 12 @with_multiprocessing @parametrize('backend', PARALLEL_BACKENDS) def test_dispatch_multiprocessing(backend): """ Check that using pre_dispatch Parallel does indeed dispatch items lazily. """ manager = mp.Manager() queue = manager.list() def producer(): for i in range(6): queue.append('Produced %i' % i) yield i Parallel(n_jobs=2, batch_size=1, pre_dispatch=3, backend=backend)( delayed(consumer)(queue, 'any') for _ in producer()) queue_contents = list(queue) assert queue_contents[0] == 'Produced 0' # Only 3 tasks are pre-dispatched out of 6. The 4th task is dispatched only # after any of the first 3 jobs have completed. first_consumption_index = queue_contents[:4].index('Consumed any') assert first_consumption_index > -1 produced_3_index = queue_contents.index('Produced 3') # 4th task produced assert produced_3_index > first_consumption_index assert len(queue) == 12 def test_batching_auto_threading(): # batching='auto' with the threading backend leaves the effective batch # size to 1 (no batching) as it has been found to never be beneficial with # this low-overhead backend. with Parallel(n_jobs=2, batch_size='auto', backend='threading') as p: p(delayed(id)(i) for i in range(5000)) # many very fast tasks assert p._backend.compute_batch_size() == 1 @with_multiprocessing @parametrize('backend', PROCESS_BACKENDS) def test_batching_auto_subprocesses(backend): with Parallel(n_jobs=2, batch_size='auto', backend=backend) as p: p(delayed(id)(i) for i in range(5000)) # many very fast tasks # It should be strictly larger than 1 but as we don't want heisen # failures on clogged CI worker environment be safe and only check that # it's a strictly positive number. assert p._backend.compute_batch_size() > 0 def test_exception_dispatch(): """Make sure that exception raised during dispatch are indeed captured""" with raises(ValueError): Parallel(n_jobs=2, pre_dispatch=16, verbose=0)( delayed(exception_raiser)(i) for i in range(30)) def nested_function_inner(i): Parallel(n_jobs=2)( delayed(exception_raiser)(j) for j in range(30)) def nested_function_outer(i): Parallel(n_jobs=2)( delayed(nested_function_inner)(j) for j in range(30)) @with_multiprocessing @parametrize('backend', PARALLEL_BACKENDS) @pytest.mark.xfail(reason="https://github.com/joblib/loky/pull/255") def test_nested_exception_dispatch(backend): """Ensure errors for nested joblib cases gets propagated We rely on the Python 3 built-in __cause__ system that already report this kind of information to the user. """ with raises(ValueError) as excinfo: Parallel(n_jobs=2, backend=backend)( delayed(nested_function_outer)(i) for i in range(30)) # Check that important information such as function names are visible # in the final error message reported to the user report_lines = format_exception(excinfo.type, excinfo.value, excinfo.tb) report = "".join(report_lines) assert 'nested_function_outer' in report assert 'nested_function_inner' in report assert 'exception_raiser' in report assert type(excinfo.value) is ValueError class FakeParallelBackend(SequentialBackend): """Pretends to run concurrently while running sequentially.""" def configure(self, n_jobs=1, parallel=None, **backend_args): self.n_jobs = self.effective_n_jobs(n_jobs) self.parallel = parallel return n_jobs def effective_n_jobs(self, n_jobs=1): if n_jobs < 0: n_jobs = max(mp.cpu_count() + 1 + n_jobs, 1) return n_jobs def test_invalid_backend(): with raises(ValueError): Parallel(backend='unit-testing') @parametrize('backend', ALL_VALID_BACKENDS) def test_invalid_njobs(backend): with raises(ValueError) as excinfo: Parallel(n_jobs=0, backend=backend)._initialize_backend() assert "n_jobs == 0 in Parallel has no meaning" in str(excinfo.value) def test_register_parallel_backend(): try: register_parallel_backend("test_backend", FakeParallelBackend) assert "test_backend" in BACKENDS assert BACKENDS["test_backend"] == FakeParallelBackend finally: del BACKENDS["test_backend"] def test_overwrite_default_backend(): assert _active_backend_type() == DefaultBackend try: register_parallel_backend("threading", BACKENDS["threading"], make_default=True) assert _active_backend_type() == ThreadingBackend finally: # Restore the global default manually parallel.DEFAULT_BACKEND = DEFAULT_BACKEND assert _active_backend_type() == DefaultBackend def check_backend_context_manager(backend_name): with parallel_backend(backend_name, n_jobs=3): active_backend, active_n_jobs = parallel.get_active_backend() assert active_n_jobs == 3 assert effective_n_jobs(3) == 3 p = Parallel() assert p.n_jobs == 3 if backend_name == 'multiprocessing': assert type(active_backend) == MultiprocessingBackend assert type(p._backend) == MultiprocessingBackend elif backend_name == 'loky': assert type(active_backend) == LokyBackend assert type(p._backend) == LokyBackend elif backend_name == 'threading': assert type(active_backend) == ThreadingBackend assert type(p._backend) == ThreadingBackend elif backend_name.startswith('test_'): assert type(active_backend) == FakeParallelBackend assert type(p._backend) == FakeParallelBackend all_backends_for_context_manager = PARALLEL_BACKENDS[:] all_backends_for_context_manager.extend( ['test_backend_%d' % i for i in range(3)] ) @with_multiprocessing @parametrize('backend', all_backends_for_context_manager) def test_backend_context_manager(monkeypatch, backend): if backend not in BACKENDS: monkeypatch.setitem(BACKENDS, backend, FakeParallelBackend) assert _active_backend_type() == DefaultBackend # check that this possible to switch parallel backends sequentially check_backend_context_manager(backend) # The default backend is restored assert _active_backend_type() == DefaultBackend # Check that context manager switching is thread safe: Parallel(n_jobs=2, backend='threading')( delayed(check_backend_context_manager)(b) for b in all_backends_for_context_manager if not b) # The default backend is again restored assert _active_backend_type() == DefaultBackend class ParameterizedParallelBackend(SequentialBackend): """Pretends to run conncurrently while running sequentially.""" def __init__(self, param=None): if param is None: raise ValueError('param should not be None') self.param = param def test_parameterized_backend_context_manager(monkeypatch): monkeypatch.setitem(BACKENDS, 'param_backend', ParameterizedParallelBackend) assert _active_backend_type() == DefaultBackend with parallel_backend('param_backend', param=42, n_jobs=3): active_backend, active_n_jobs = parallel.get_active_backend() assert type(active_backend) == ParameterizedParallelBackend assert active_backend.param == 42 assert active_n_jobs == 3 p = Parallel() assert p.n_jobs == 3 assert p._backend is active_backend results = p(delayed(sqrt)(i) for i in range(5)) assert results == [sqrt(i) for i in range(5)] # The default backend is again restored assert _active_backend_type() == DefaultBackend def test_directly_parameterized_backend_context_manager(): assert _active_backend_type() == DefaultBackend # Check that it's possible to pass a backend instance directly, # without registration with parallel_backend(ParameterizedParallelBackend(param=43), n_jobs=5): active_backend, active_n_jobs = parallel.get_active_backend() assert type(active_backend) == ParameterizedParallelBackend assert active_backend.param == 43 assert active_n_jobs == 5 p = Parallel() assert p.n_jobs == 5 assert p._backend is active_backend results = p(delayed(sqrt)(i) for i in range(5)) assert results == [sqrt(i) for i in range(5)] # The default backend is again restored assert _active_backend_type() == DefaultBackend def sleep_and_return_pid(): sleep(.1) return os.getpid() def get_nested_pids(): assert _active_backend_type() == ThreadingBackend # Assert that the nested backend does not change the default number of # jobs used in Parallel assert Parallel()._effective_n_jobs() == 1 # Assert that the tasks are running only on one process return Parallel(n_jobs=2)(delayed(sleep_and_return_pid)() for _ in range(2)) class MyBackend(joblib._parallel_backends.LokyBackend): """Backend to test backward compatibility with older backends""" def get_nested_backend(self, ): # Older backends only return a backend, without n_jobs indications. return super(MyBackend, self).get_nested_backend()[0] register_parallel_backend('back_compat_backend', MyBackend) @with_multiprocessing @parametrize('backend', ['threading', 'loky', 'multiprocessing', 'back_compat_backend']) def test_nested_backend_context_manager(backend): # Check that by default, nested parallel calls will always use the # ThreadingBackend with parallel_backend(backend): pid_groups = Parallel(n_jobs=2)( delayed(get_nested_pids)() for _ in range(10) ) for pid_group in pid_groups: assert len(set(pid_group)) == 1 @with_multiprocessing @parametrize('n_jobs', [2, -1, None]) @parametrize('backend', PARALLEL_BACKENDS) def test_nested_backend_in_sequential(backend, n_jobs): # Check that by default, nested parallel calls will always use the # ThreadingBackend def check_nested_backend(expected_backend_type, expected_n_job): # Assert that the sequential backend at top level, does not change the # backend for nested calls. assert _active_backend_type() == BACKENDS[expected_backend_type] # Assert that the nested backend in SequentialBackend does not change # the default number of jobs used in Parallel expected_n_job = effective_n_jobs(expected_n_job) assert Parallel()._effective_n_jobs() == expected_n_job Parallel(n_jobs=1)( delayed(check_nested_backend)('loky', 1) for _ in range(10) ) with parallel_backend(backend, n_jobs=n_jobs): Parallel(n_jobs=1)( delayed(check_nested_backend)(backend, n_jobs) for _ in range(10) ) def check_nesting_level(inner_backend, expected_level): with parallel_backend(inner_backend) as (backend, n_jobs): assert backend.nesting_level == expected_level @with_multiprocessing @parametrize('outer_backend', PARALLEL_BACKENDS) @parametrize('inner_backend', PARALLEL_BACKENDS) def test_backend_nesting_level(outer_backend, inner_backend): # Check that the nesting level for the backend is correctly set check_nesting_level(outer_backend, 0) Parallel(n_jobs=2, backend=outer_backend)( delayed(check_nesting_level)(inner_backend, 1) for _ in range(10) ) with parallel_backend(inner_backend, n_jobs=2): Parallel()(delayed(check_nesting_level)(inner_backend, 1) for _ in range(10)) @with_multiprocessing def test_retrieval_context(): import contextlib class MyBackend(ThreadingBackend): i = 0 @contextlib.contextmanager def retrieval_context(self): self.i += 1 yield register_parallel_backend("retrieval", MyBackend) def nested_call(n): return Parallel(n_jobs=2)(delayed(id)(i) for i in range(n)) with parallel_backend("retrieval") as (ba, _): Parallel(n_jobs=2)( delayed(nested_call, check_pickle=False)(i) for i in range(5) ) assert ba.i == 1 ############################################################################### # Test helpers def test_joblib_exception(): # Smoke-test the custom exception e = JoblibException('foobar') # Test the repr repr(e) # Test the pickle pickle.dumps(e) def test_safe_function(): safe_division = SafeFunction(division) with raises(ZeroDivisionError): safe_division(1, 0) safe_interrupt = SafeFunction(interrupt_raiser) with raises(WorkerInterrupt): safe_interrupt('x') @parametrize('batch_size', [0, -1, 1.42]) def test_invalid_batch_size(batch_size): with raises(ValueError): Parallel(batch_size=batch_size) @parametrize('n_tasks, n_jobs, pre_dispatch, batch_size', [(2, 2, 'all', 'auto'), (2, 2, 'n_jobs', 'auto'), (10, 2, 'n_jobs', 'auto'), (517, 2, 'n_jobs', 'auto'), (10, 2, 'n_jobs', 'auto'), (10, 4, 'n_jobs', 'auto'), (200, 12, 'n_jobs', 'auto'), (25, 12, '2 * n_jobs', 1), (250, 12, 'all', 1), (250, 12, '2 * n_jobs', 7), (200, 12, '2 * n_jobs', 'auto')]) def test_dispatch_race_condition(n_tasks, n_jobs, pre_dispatch, batch_size): # Check that using (async-)dispatch does not yield a race condition on the # iterable generator that is not thread-safe natively. # This is a non-regression test for the "Pool seems closed" class of error params = {'n_jobs': n_jobs, 'pre_dispatch': pre_dispatch, 'batch_size': batch_size} expected = [square(i) for i in range(n_tasks)] results = Parallel(**params)(delayed(square)(i) for i in range(n_tasks)) assert results == expected @with_multiprocessing def test_default_mp_context(): mp_start_method = mp.get_start_method() p = Parallel(n_jobs=2, backend='multiprocessing') context = p._backend_args.get('context') start_method = context.get_start_method() assert start_method == mp_start_method @with_numpy @with_multiprocessing @parametrize('backend', PROCESS_BACKENDS) def test_no_blas_crash_or_freeze_with_subprocesses(backend): if backend == 'multiprocessing': # Use the spawn backend that is both robust and available on all # platforms backend = mp.get_context('spawn') # Check that on recent Python version, the 'spawn' start method can make # it possible to use multiprocessing in conjunction of any BLAS # implementation that happens to be used by numpy with causing a freeze or # a crash rng = np.random.RandomState(42) # call BLAS DGEMM to force the initialization of the internal thread-pool # in the main process a = rng.randn(1000, 1000) np.dot(a, a.T) # check that the internal BLAS thread-pool is not in an inconsistent state # in the worker processes managed by multiprocessing Parallel(n_jobs=2, backend=backend)( delayed(np.dot)(a, a.T) for i in range(2)) UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_NO_MAIN = """\ from joblib import Parallel, delayed def square(x): return x ** 2 backend = "{}" if backend == "spawn": from multiprocessing import get_context backend = get_context(backend) print(Parallel(n_jobs=2, backend=backend)( delayed(square)(i) for i in range(5))) """ @with_multiprocessing @parametrize('backend', PROCESS_BACKENDS) def test_parallel_with_interactively_defined_functions(backend): # When using the "-c" flag, interactive functions defined in __main__ # should work with any backend. if backend == "multiprocessing" and mp.get_start_method() != "fork": pytest.skip("Require fork start method to use interactively defined " "functions with multiprocessing.") code = UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_NO_MAIN.format(backend) check_subprocess_call( [sys.executable, '-c', code], timeout=10, stdout_regex=r'\[0, 1, 4, 9, 16\]') UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_MAIN = """\ import sys # Make sure that joblib is importable in the subprocess launching this # script. This is needed in case we run the tests from the joblib root # folder without having installed joblib sys.path.insert(0, {joblib_root_folder!r}) from joblib import Parallel, delayed def run(f, x): return f(x) {define_func} if __name__ == "__main__": backend = "{backend}" if backend == "spawn": from multiprocessing import get_context backend = get_context(backend) callable_position = "{callable_position}" if callable_position == "delayed": print(Parallel(n_jobs=2, backend=backend)( delayed(square)(i) for i in range(5))) elif callable_position == "args": print(Parallel(n_jobs=2, backend=backend)( delayed(run)(square, i) for i in range(5))) else: print(Parallel(n_jobs=2, backend=backend)( delayed(run)(f=square, x=i) for i in range(5))) """ SQUARE_MAIN = """\ def square(x): return x ** 2 """ SQUARE_LOCAL = """\ def gen_square(): def square(x): return x ** 2 return square square = gen_square() """ SQUARE_LAMBDA = """\ square = lambda x: x ** 2 """ @with_multiprocessing @parametrize('backend', PROCESS_BACKENDS + ([] if mp is None else ['spawn'])) @parametrize('define_func', [SQUARE_MAIN, SQUARE_LOCAL, SQUARE_LAMBDA]) @parametrize('callable_position', ['delayed', 'args', 'kwargs']) def test_parallel_with_unpicklable_functions_in_args( backend, define_func, callable_position, tmpdir): if backend in ['multiprocessing', 'spawn'] and ( define_func != SQUARE_MAIN or sys.platform == "win32"): pytest.skip("Not picklable with pickle") code = UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_MAIN.format( define_func=define_func, backend=backend, callable_position=callable_position, joblib_root_folder=os.path.dirname(os.path.dirname(joblib.__file__))) code_file = tmpdir.join("unpicklable_func_script.py") code_file.write(code) check_subprocess_call( [sys.executable, code_file.strpath], timeout=10, stdout_regex=r'\[0, 1, 4, 9, 16\]') INTERACTIVE_DEFINED_FUNCTION_AND_CLASS_SCRIPT_CONTENT = """\ import sys # Make sure that joblib is importable in the subprocess launching this # script. This is needed in case we run the tests from the joblib root # folder without having installed joblib sys.path.insert(0, {joblib_root_folder!r}) from joblib import Parallel, delayed from functools import partial class MyClass: '''Class defined in the __main__ namespace''' def __init__(self, value): self.value = value def square(x, ignored=None, ignored2=None): '''Function defined in the __main__ namespace''' return x.value ** 2 square2 = partial(square, ignored2='something') # Here, we do not need the `if __name__ == "__main__":` safeguard when # using the default `loky` backend (even on Windows). # The following baroque function call is meant to check that joblib # introspection rightfully uses cloudpickle instead of the (faster) pickle # module of the standard library when necessary. In particular cloudpickle is # necessary for functions and instances of classes interactively defined in the # __main__ module. print(Parallel(n_jobs=2)( delayed(square2)(MyClass(i), ignored=[dict(a=MyClass(1))]) for i in range(5) )) """.format(joblib_root_folder=os.path.dirname( os.path.dirname(joblib.__file__))) @with_multiprocessing def test_parallel_with_interactively_defined_functions_default_backend(tmpdir): # The default backend (loky) accepts interactive functions defined in # __main__ and does not require if __name__ == '__main__' even when # the __main__ module is defined by the result of the execution of a # filesystem script. script = tmpdir.join('joblib_interactively_defined_function.py') script.write(INTERACTIVE_DEFINED_FUNCTION_AND_CLASS_SCRIPT_CONTENT) check_subprocess_call([sys.executable, script.strpath], stdout_regex=r'\[0, 1, 4, 9, 16\]', timeout=5) INTERACTIVELY_DEFINED_SUBCLASS_WITH_METHOD_SCRIPT_CONTENT = """\ import sys # Make sure that joblib is importable in the subprocess launching this # script. This is needed in case we run the tests from the joblib root # folder without having installed joblib sys.path.insert(0, {joblib_root_folder!r}) from joblib import Parallel, delayed, hash import multiprocessing as mp mp.util.log_to_stderr(5) class MyList(list): '''MyList is interactively defined by MyList.append is a built-in''' def __hash__(self): # XXX: workaround limitation in cloudpickle return hash(self).__hash__() l = MyList() print(Parallel(n_jobs=2)( delayed(l.append)(i) for i in range(3) )) """.format(joblib_root_folder=os.path.dirname( os.path.dirname(joblib.__file__))) @with_multiprocessing def test_parallel_with_interactively_defined_bound_method(tmpdir): script = tmpdir.join('joblib_interactive_bound_method_script.py') script.write(INTERACTIVELY_DEFINED_SUBCLASS_WITH_METHOD_SCRIPT_CONTENT) check_subprocess_call([sys.executable, script.strpath], stdout_regex=r'\[None, None, None\]', stderr_regex=r'LokyProcess', timeout=15) def test_parallel_with_exhausted_iterator(): exhausted_iterator = iter([]) assert Parallel(n_jobs=2)(exhausted_iterator) == [] def check_memmap(a): if not isinstance(a, np.memmap): raise TypeError('Expected np.memmap instance, got %r', type(a)) return a.copy() # return a regular array instead of a memmap @with_numpy @with_multiprocessing @parametrize('backend', PROCESS_BACKENDS) def test_auto_memmap_on_arrays_from_generator(backend): # Non-regression test for a problem with a bad interaction between the # GC collecting arrays recently created during iteration inside the # parallel dispatch loop and the auto-memmap feature of Parallel. # See: https://github.com/joblib/joblib/pull/294 def generate_arrays(n): for i in range(n): yield np.ones(10, dtype=np.float32) * i # Use max_nbytes=1 to force the use of memory-mapping even for small # arrays results = Parallel(n_jobs=2, max_nbytes=1, backend=backend)( delayed(check_memmap)(a) for a in generate_arrays(100)) for result, expected in zip(results, generate_arrays(len(results))): np.testing.assert_array_equal(expected, result) # Second call to force loky to adapt the executor by growing the number # of worker processes. This is a non-regression test for: # https://github.com/joblib/joblib/issues/629. results = Parallel(n_jobs=4, max_nbytes=1, backend=backend)( delayed(check_memmap)(a) for a in generate_arrays(100)) for result, expected in zip(results, generate_arrays(len(results))): np.testing.assert_array_equal(expected, result) def identity(arg): return arg @with_numpy @with_multiprocessing def test_memmap_with_big_offset(tmpdir): fname = tmpdir.join('test.mmap').strpath size = mmap.ALLOCATIONGRANULARITY obj = [np.zeros(size, dtype='uint8'), np.ones(size, dtype='uint8')] dump(obj, fname) memmap = load(fname, mmap_mode='r') result, = Parallel(n_jobs=2)(delayed(identity)(memmap) for _ in [0]) assert isinstance(memmap[1], np.memmap) assert memmap[1].offset > size np.testing.assert_array_equal(obj, result) def test_warning_about_timeout_not_supported_by_backend(): with warns(None) as warninfo: Parallel(timeout=1)(delayed(square)(i) for i in range(50)) assert len(warninfo) == 1 w = warninfo[0] assert isinstance(w.message, UserWarning) assert str(w.message) == ( "The backend class 'SequentialBackend' does not support timeout. " "You have set 'timeout=1' in Parallel but the 'timeout' parameter " "will not be used.") @parametrize('backend', ALL_VALID_BACKENDS) @parametrize('n_jobs', [1, 2, -2, -1]) def test_abort_backend(n_jobs, backend): delays = ["a"] + [10] * 100 with raises(TypeError): t_start = time.time() Parallel(n_jobs=n_jobs, backend=backend)( delayed(time.sleep)(i) for i in delays) dt = time.time() - t_start assert dt < 20 @with_numpy @with_multiprocessing @parametrize('backend', PROCESS_BACKENDS) def test_memmapping_leaks(backend, tmpdir): # Non-regression test for memmapping backends. Ensure that the data # does not stay too long in memory tmpdir = tmpdir.strpath # Use max_nbytes=1 to force the use of memory-mapping even for small # arrays with Parallel(n_jobs=2, max_nbytes=1, backend=backend, temp_folder=tmpdir) as p: p(delayed(check_memmap)(a) for a in [np.random.random(10)] * 2) # The memmap folder should not be clean in the context scope assert len(os.listdir(tmpdir)) > 0 # Make sure that the shared memory is cleaned at the end when we exit # the context for _ in range(100): if not os.listdir(tmpdir): break sleep(.1) else: raise AssertionError('temporary directory of Parallel was not removed') # Make sure that the shared memory is cleaned at the end of a call p = Parallel(n_jobs=2, max_nbytes=1, backend=backend) p(delayed(check_memmap)(a) for a in [np.random.random(10)] * 2) for _ in range(100): if not os.listdir(tmpdir): break sleep(.1) else: raise AssertionError('temporary directory of Parallel was not removed') @parametrize('backend', [None, 'loky', 'threading']) def test_lambda_expression(backend): # cloudpickle is used to pickle delayed callables results = Parallel(n_jobs=2, backend=backend)( delayed(lambda x: x ** 2)(i) for i in range(10)) assert results == [i ** 2 for i in range(10)] def test_delayed_check_pickle_deprecated(): class UnpicklableCallable(object): def __call__(self, *args, **kwargs): return 42 def __reduce__(self): raise ValueError() with warns(DeprecationWarning): f, args, kwargs = delayed(lambda x: 42, check_pickle=False)('a') assert f('a') == 42 assert args == ('a',) assert kwargs == dict() with warns(DeprecationWarning): f, args, kwargs = delayed(UnpicklableCallable(), check_pickle=False)('a', option='b') assert f('a', option='b') == 42 assert args == ('a',) assert kwargs == dict(option='b') with warns(DeprecationWarning): with raises(ValueError): delayed(UnpicklableCallable(), check_pickle=True) @with_multiprocessing @parametrize('backend', PROCESS_BACKENDS) def test_backend_batch_statistics_reset(backend): """Test that a parallel backend correctly resets its batch statistics.""" n_jobs = 2 n_inputs = 500 task_time = 2. / n_inputs p = Parallel(verbose=10, n_jobs=n_jobs, backend=backend) p(delayed(time.sleep)(task_time) for i in range(n_inputs)) assert (p._backend._effective_batch_size == p._backend._DEFAULT_EFFECTIVE_BATCH_SIZE) assert (p._backend._smoothed_batch_duration == p._backend._DEFAULT_SMOOTHED_BATCH_DURATION) p(delayed(time.sleep)(task_time) for i in range(n_inputs)) assert (p._backend._effective_batch_size == p._backend._DEFAULT_EFFECTIVE_BATCH_SIZE) assert (p._backend._smoothed_batch_duration == p._backend._DEFAULT_SMOOTHED_BATCH_DURATION) def test_backend_hinting_and_constraints(): for n_jobs in [1, 2, -1]: assert type(Parallel(n_jobs=n_jobs)._backend) == LokyBackend p = Parallel(n_jobs=n_jobs, prefer='threads') assert type(p._backend) == ThreadingBackend p = Parallel(n_jobs=n_jobs, prefer='processes') assert type(p._backend) == LokyBackend p = Parallel(n_jobs=n_jobs, require='sharedmem') assert type(p._backend) == ThreadingBackend # Explicit backend selection can override backend hinting although it # is useless to pass a hint when selecting a backend. p = Parallel(n_jobs=2, backend='loky', prefer='threads') assert type(p._backend) == LokyBackend with parallel_backend('loky', n_jobs=2): # Explicit backend selection by the user with the context manager # should be respected when combined with backend hints only. p = Parallel(prefer='threads') assert type(p._backend) == LokyBackend assert p.n_jobs == 2 with parallel_backend('loky', n_jobs=2): # Locally hard-coded n_jobs value is respected. p = Parallel(n_jobs=3, prefer='threads') assert type(p._backend) == LokyBackend assert p.n_jobs == 3 with parallel_backend('loky', n_jobs=2): # Explicit backend selection by the user with the context manager # should be ignored when the Parallel call has hard constraints. # In this case, the default backend that supports shared mem is # used an the default number of processes is used. p = Parallel(require='sharedmem') assert type(p._backend) == ThreadingBackend assert p.n_jobs == 1 with parallel_backend('loky', n_jobs=2): p = Parallel(n_jobs=3, require='sharedmem') assert type(p._backend) == ThreadingBackend assert p.n_jobs == 3 def test_backend_hinting_and_constraints_with_custom_backends(capsys): # Custom backends can declare that they use threads and have shared memory # semantics: class MyCustomThreadingBackend(ParallelBackendBase): supports_sharedmem = True use_threads = True def apply_async(self): pass def effective_n_jobs(self, n_jobs): return n_jobs with parallel_backend(MyCustomThreadingBackend()): p = Parallel(n_jobs=2, prefer='processes') # ignored assert type(p._backend) == MyCustomThreadingBackend p = Parallel(n_jobs=2, require='sharedmem') assert type(p._backend) == MyCustomThreadingBackend class MyCustomProcessingBackend(ParallelBackendBase): supports_sharedmem = False use_threads = False def apply_async(self): pass def effective_n_jobs(self, n_jobs): return n_jobs with parallel_backend(MyCustomProcessingBackend()): p = Parallel(n_jobs=2, prefer='processes') assert type(p._backend) == MyCustomProcessingBackend out, err = capsys.readouterr() assert out == "" assert err == "" p = Parallel(n_jobs=2, require='sharedmem', verbose=10) assert type(p._backend) == ThreadingBackend out, err = capsys.readouterr() expected = ("Using ThreadingBackend as joblib.Parallel backend " "instead of MyCustomProcessingBackend as the latter " "does not provide shared memory semantics.") assert out.strip() == expected assert err == "" with raises(ValueError): Parallel(backend=MyCustomProcessingBackend(), require='sharedmem') def test_invalid_backend_hinting_and_constraints(): with raises(ValueError): Parallel(prefer='invalid') with raises(ValueError): Parallel(require='invalid') with raises(ValueError): # It is inconsistent to prefer process-based parallelism while # requiring shared memory semantics. Parallel(prefer='processes', require='sharedmem') # It is inconsistent to ask explictly for a process-based parallelism # while requiring shared memory semantics. with raises(ValueError): Parallel(backend='loky', require='sharedmem') with raises(ValueError): Parallel(backend='multiprocessing', require='sharedmem') def test_global_parallel_backend(): default = Parallel()._backend pb = parallel_backend('threading') assert isinstance(Parallel()._backend, ThreadingBackend) pb.unregister() assert type(Parallel()._backend) is type(default) def test_external_backends(): def register_foo(): BACKENDS['foo'] = ThreadingBackend EXTERNAL_BACKENDS['foo'] = register_foo with parallel_backend('foo'): assert isinstance(Parallel()._backend, ThreadingBackend) def _recursive_backend_info(limit=3, **kwargs): """Perform nested parallel calls and introspect the backend on the way""" with Parallel(n_jobs=2) as p: this_level = [(type(p._backend).__name__, p._backend.nesting_level)] if limit == 0: return this_level results = p(delayed(_recursive_backend_info)(limit=limit - 1, **kwargs) for i in range(1)) return this_level + results[0] @with_multiprocessing @parametrize('backend', ['loky', 'threading']) def test_nested_parallelism_limit(backend): with parallel_backend(backend, n_jobs=2): backend_types_and_levels = _recursive_backend_info() if cpu_count() == 1: second_level_backend_type = 'SequentialBackend' max_level = 1 else: second_level_backend_type = 'ThreadingBackend' max_level = 2 top_level_backend_type = backend.title() + 'Backend' expected_types_and_levels = [ (top_level_backend_type, 0), (second_level_backend_type, 1), ('SequentialBackend', max_level), ('SequentialBackend', max_level) ] assert backend_types_and_levels == expected_types_and_levels @with_numpy @skipif(distributed is None, reason='This test requires dask') def test_nested_parallelism_with_dask(): client = distributed.Client(n_workers=2, threads_per_worker=2) # noqa # 10 MB of data as argument to trigger implicit scattering data = np.ones(int(1e7), dtype=np.uint8) for i in range(2): with parallel_backend('dask'): backend_types_and_levels = _recursive_backend_info(data=data) assert len(backend_types_and_levels) == 4 assert all(name == 'DaskDistributedBackend' for name, _ in backend_types_and_levels) # No argument with parallel_backend('dask'): backend_types_and_levels = _recursive_backend_info() assert len(backend_types_and_levels) == 4 assert all(name == 'DaskDistributedBackend' for name, _ in backend_types_and_levels) def _recursive_parallel(nesting_limit=None): """A horrible function that does recursive parallel calls""" return Parallel()(delayed(_recursive_parallel)() for i in range(2)) @parametrize('backend', ['loky', 'threading']) def test_thread_bomb_mitigation(backend): # Test that recursive parallelism raises a recursion rather than # saturating the operating system resources by creating a unbounded number # of threads. with parallel_backend(backend, n_jobs=2): with raises(BaseException) as excinfo: _recursive_parallel() exc = excinfo.value if backend == "loky" and isinstance(exc, TerminatedWorkerError): # The recursion exception can itself cause an error when pickling it to # be send back to the parent process. In this case the worker crashes # but the original traceback is still printed on stderr. This could be # improved but does not seem simple to do and this is is not critical # for users (as long as there is no process or thread bomb happening). pytest.xfail("Loky worker crash when serializing RecursionError") else: assert isinstance(exc, RecursionError) def _run_parallel_sum(): env_vars = {} for var in ['OMP_NUM_THREADS', 'OPENBLAS_NUM_THREADS', 'MKL_NUM_THREADS', 'VECLIB_MAXIMUM_THREADS', 'NUMEXPR_NUM_THREADS', 'NUMBA_NUM_THREADS', 'ENABLE_IPC']: env_vars[var] = os.environ.get(var) return env_vars, parallel_sum(100) @parametrize("backend", [None, 'loky']) @skipif(parallel_sum is None, reason="Need OpenMP helper compiled") def test_parallel_thread_limit(backend): results = Parallel(n_jobs=2, backend=backend)( delayed(_run_parallel_sum)() for _ in range(2) ) expected_num_threads = max(cpu_count() // 2, 1) for worker_env_vars, omp_num_threads in results: assert omp_num_threads == expected_num_threads for name, value in worker_env_vars.items(): if name.endswith("_THREADS"): assert value == str(expected_num_threads) else: assert name == "ENABLE_IPC" assert value == "1" @skipif(distributed is not None, reason='This test requires dask NOT installed') def test_dask_backend_when_dask_not_installed(): with raises(ValueError, match='Please install dask'): parallel_backend('dask') def test_zero_worker_backend(): # joblib.Parallel should reject with an explicit error message parallel # backends that have no worker. class ZeroWorkerBackend(ThreadingBackend): def configure(self, *args, **kwargs): return 0 def apply_async(self, func, callback=None): # pragma: no cover raise TimeoutError("No worker available") def effective_n_jobs(self, n_jobs): # pragma: no cover return 0 expected_msg = "ZeroWorkerBackend has no active worker" with parallel_backend(ZeroWorkerBackend()): with pytest.raises(RuntimeError, match=expected_msg): Parallel(n_jobs=2)(delayed(id)(i) for i in range(2)) def test_globals_update_at_each_parallel_call(): # This is a non-regression test related to joblib issues #836 and #833. # Cloudpickle versions between 0.5.4 and 0.7 introduced a bug where global # variables changes in a parent process between two calls to # joblib.Parallel would not be propagated into the workers. global MY_GLOBAL_VARIABLE MY_GLOBAL_VARIABLE = "original value" def check_globals(): global MY_GLOBAL_VARIABLE return MY_GLOBAL_VARIABLE assert check_globals() == "original value" workers_global_variable = Parallel(n_jobs=2)( delayed(check_globals)() for i in range(2)) assert set(workers_global_variable) == {"original value"} # Change the value of MY_GLOBAL_VARIABLE, and make sure this change gets # propagated into the workers environment MY_GLOBAL_VARIABLE = "changed value" assert check_globals() == "changed value" workers_global_variable = Parallel(n_jobs=2)( delayed(check_globals)() for i in range(2)) assert set(workers_global_variable) == {"changed value"} ############################################################################## # Test environment variable in child env, in particular for limiting # the maximal number of threads in C-library threadpools. # def _check_numpy_threadpool_limits(): import numpy as np # Let's call BLAS on a Matrix Matrix multiplication with dimensions large # enough to ensure that the threadpool managed by the underlying BLAS # implementation is actually used so as to force its initialization. a = np.random.randn(100, 100) np.dot(a, a) from threadpoolctl import threadpool_info return threadpool_info() def _parent_max_num_threads_for(child_module, parent_info): for parent_module in parent_info: if parent_module['filepath'] == child_module['filepath']: return parent_module['num_threads'] raise ValueError("An unexpected module was loaded in child:\n{}" .format(child_module)) def check_child_num_threads(workers_info, parent_info, num_threads): # Check that the number of threads reported in workers_info is consistent # with the expectation. We need to be carefull to handle the cases where # the requested number of threads is below max_num_thread for the library. for child_threadpool_info in workers_info: for child_module in child_threadpool_info: parent_max_num_threads = _parent_max_num_threads_for( child_module, parent_info) expected = {min(num_threads, parent_max_num_threads), num_threads} assert child_module['num_threads'] in expected @with_numpy @with_multiprocessing @parametrize('n_jobs', [2, 4, -2, -1]) def test_threadpool_limitation_in_child(n_jobs): # Check that the protection against oversubscription in workers is working # using threadpoolctl functionalities. # Skip this test if numpy is not linked to a BLAS library parent_info = _check_numpy_threadpool_limits() if len(parent_info) == 0: pytest.skip(msg="Need a version of numpy linked to BLAS") workers_threadpool_infos = Parallel(n_jobs=n_jobs)( delayed(_check_numpy_threadpool_limits)() for i in range(2)) n_jobs = effective_n_jobs(n_jobs) expected_child_num_threads = max(cpu_count() // n_jobs, 1) check_child_num_threads(workers_threadpool_infos, parent_info, expected_child_num_threads) @with_numpy @with_multiprocessing @parametrize('inner_max_num_threads', [1, 2, 4, None]) @parametrize('n_jobs', [2, -1]) def test_threadpool_limitation_in_child_context(n_jobs, inner_max_num_threads): # Check that the protection against oversubscription in workers is working # using threadpoolctl functionalities. # Skip this test if numpy is not linked to a BLAS library parent_info = _check_numpy_threadpool_limits() if len(parent_info) == 0: pytest.skip(msg="Need a version of numpy linked to BLAS") with parallel_backend('loky', inner_max_num_threads=inner_max_num_threads): workers_threadpool_infos = Parallel(n_jobs=n_jobs)( delayed(_check_numpy_threadpool_limits)() for i in range(2)) n_jobs = effective_n_jobs(n_jobs) if inner_max_num_threads is None: expected_child_num_threads = max(cpu_count() // n_jobs, 1) else: expected_child_num_threads = inner_max_num_threads check_child_num_threads(workers_threadpool_infos, parent_info, expected_child_num_threads) @with_multiprocessing @parametrize('n_jobs', [2, -1]) @parametrize('var_name', ["OPENBLAS_NUM_THREADS", "MKL_NUM_THREADS", "OMP_NUM_THREADS"]) def test_threadpool_limitation_in_child_override(n_jobs, var_name): # Check that environment variables set by the user on the main process # always have the priority. # Clean up the existing executor because we change the environment of the # parent at runtime and it is not detected in loky intentionally. get_reusable_executor(reuse=True).shutdown() def _get_env(var_name): return os.environ.get(var_name) original_var_value = os.environ.get(var_name) try: os.environ[var_name] = "4" # Skip this test if numpy is not linked to a BLAS library results = Parallel(n_jobs=n_jobs)( delayed(_get_env)(var_name) for i in range(2)) assert results == ["4", "4"] with parallel_backend('loky', inner_max_num_threads=1): results = Parallel(n_jobs=n_jobs)( delayed(_get_env)(var_name) for i in range(2)) assert results == ["1", "1"] finally: if original_var_value is None: del os.environ[var_name] else: os.environ[var_name] = original_var_value @with_numpy @with_multiprocessing @parametrize('backend', ['multiprocessing', 'threading', MultiprocessingBackend(), ThreadingBackend()]) def test_threadpool_limitation_in_child_context_error(backend): with raises(AssertionError, match=r"does not acc.*inner_max_num_threads"): parallel_backend(backend, inner_max_num_threads=1) @with_multiprocessing @parametrize('n_jobs', [2, 4, -1]) def test_loky_reuse_workers(n_jobs): # Non-regression test for issue #967 where the workers are not reused when # calling multiple Parallel loops. def parallel_call(n_jobs): x = range(10) Parallel(n_jobs=n_jobs)(delayed(sum)(x) for i in range(10)) # Run a parallel loop and get the workers used for computations parallel_call(n_jobs) first_executor = get_reusable_executor(reuse=True) # Ensure that the workers are reused for the next calls, as the executor is # not restarted. for _ in range(10): parallel_call(n_jobs) executor = get_reusable_executor(reuse=True) assert executor == first_executor