from parso.python import tree from jedi._compatibility import use_metaclass from jedi import debug from jedi.inference.cache import inference_state_method_cache, CachedMetaClass from jedi.inference import compiled from jedi.inference import recursion from jedi.inference import docstrings from jedi.inference import flow_analysis from jedi.inference.signature import TreeSignature from jedi.inference.filters import ParserTreeFilter, FunctionExecutionFilter, \ AnonymousFunctionExecutionFilter from jedi.inference.names import ValueName, AbstractNameDefinition, \ AnonymousParamName, ParamName, NameWrapper from jedi.inference.base_value import ContextualizedNode, NO_VALUES, \ ValueSet, TreeValue, ValueWrapper from jedi.inference.lazy_value import LazyKnownValues, LazyKnownValue, \ LazyTreeValue from jedi.inference.context import ValueContext, TreeContextMixin from jedi.inference.value import iterable from jedi import parser_utils from jedi.inference.parser_cache import get_yield_exprs from jedi.inference.helpers import values_from_qualified_names from jedi.inference.gradual.generics import TupleGenericManager class LambdaName(AbstractNameDefinition): string_name = '' api_type = u'function' def __init__(self, lambda_value): self._lambda_value = lambda_value self.parent_context = lambda_value.parent_context @property def start_pos(self): return self._lambda_value.tree_node.start_pos def infer(self): return ValueSet([self._lambda_value]) class FunctionAndClassBase(TreeValue): def get_qualified_names(self): if self.parent_context.is_class(): n = self.parent_context.get_qualified_names() if n is None: # This means that the parent class lives within a function. return None return n + (self.py__name__(),) elif self.parent_context.is_module(): return (self.py__name__(),) else: return None class FunctionMixin(object): api_type = u'function' def get_filters(self, origin_scope=None): cls = self.py__class__() for instance in cls.execute_with_values(): for filter in instance.get_filters(origin_scope=origin_scope): yield filter def py__get__(self, instance, class_value): from jedi.inference.value.instance import BoundMethod if instance is None: # Calling the Foo.bar results in the original bar function. return ValueSet([self]) return ValueSet([BoundMethod(instance, class_value.as_context(), self)]) def get_param_names(self): return [AnonymousParamName(self, param.name) for param in self.tree_node.get_params()] @property def name(self): if self.tree_node.type == 'lambdef': return LambdaName(self) return ValueName(self, self.tree_node.name) def is_function(self): return True def py__name__(self): return self.name.string_name def get_type_hint(self, add_class_info=True): return_annotation = self.tree_node.annotation if return_annotation is None: def param_name_to_str(n): s = n.string_name annotation = n.infer().get_type_hint() if annotation is not None: s += ': ' + annotation if n.default_node is not None: s += '=' + n.default_node.get_code(include_prefix=False) return s function_execution = self.as_context() result = function_execution.infer() return_hint = result.get_type_hint() body = self.py__name__() + '(%s)' % ', '.join([ param_name_to_str(n) for n in function_execution.get_param_names() ]) if return_hint is None: return body else: return_hint = return_annotation.get_code(include_prefix=False) body = self.py__name__() + self.tree_node.children[2].get_code(include_prefix=False) return body + ' -> ' + return_hint def py__call__(self, arguments): function_execution = self.as_context(arguments) return function_execution.infer() def _as_context(self, arguments=None): if arguments is None: return AnonymousFunctionExecution(self) return FunctionExecutionContext(self, arguments) def get_signatures(self): return [TreeSignature(f) for f in self.get_signature_functions()] class FunctionValue(use_metaclass(CachedMetaClass, FunctionMixin, FunctionAndClassBase)): @classmethod def from_context(cls, context, tree_node): def create(tree_node): if context.is_class(): return MethodValue( context.inference_state, context, parent_context=parent_context, tree_node=tree_node ) else: return cls( context.inference_state, parent_context=parent_context, tree_node=tree_node ) overloaded_funcs = list(_find_overload_functions(context, tree_node)) parent_context = context while parent_context.is_class() or parent_context.is_instance(): parent_context = parent_context.parent_context function = create(tree_node) if overloaded_funcs: return OverloadedFunctionValue( function, # Get them into the correct order: lower line first. list(reversed([create(f) for f in overloaded_funcs])) ) return function def py__class__(self): c, = values_from_qualified_names(self.inference_state, u'types', u'FunctionType') return c def get_default_param_context(self): return self.parent_context def get_signature_functions(self): return [self] class FunctionNameInClass(NameWrapper): def __init__(self, class_context, name): super(FunctionNameInClass, self).__init__(name) self._class_context = class_context def get_defining_qualified_value(self): return self._class_context.get_value() # Might be None. class MethodValue(FunctionValue): def __init__(self, inference_state, class_context, *args, **kwargs): super(MethodValue, self).__init__(inference_state, *args, **kwargs) self.class_context = class_context def get_default_param_context(self): return self.class_context def get_qualified_names(self): # Need to implement this, because the parent value of a method # value is not the class value but the module. names = self.class_context.get_qualified_names() if names is None: return None return names + (self.py__name__(),) @property def name(self): return FunctionNameInClass(self.class_context, super(MethodValue, self).name) class BaseFunctionExecutionContext(ValueContext, TreeContextMixin): def infer_annotations(self): raise NotImplementedError @inference_state_method_cache(default=NO_VALUES) @recursion.execution_recursion_decorator() def get_return_values(self, check_yields=False): funcdef = self.tree_node if funcdef.type == 'lambdef': return self.infer_node(funcdef.children[-1]) if check_yields: value_set = NO_VALUES returns = get_yield_exprs(self.inference_state, funcdef) else: value_set = self.infer_annotations() if value_set: # If there are annotations, prefer them over anything else. # This will make it faster. return value_set value_set |= docstrings.infer_return_types(self._value) returns = funcdef.iter_return_stmts() for r in returns: if check_yields: value_set |= ValueSet.from_sets( lazy_value.infer() for lazy_value in self._get_yield_lazy_value(r) ) else: check = flow_analysis.reachability_check(self, funcdef, r) if check is flow_analysis.UNREACHABLE: debug.dbg('Return unreachable: %s', r) else: try: children = r.children except AttributeError: ctx = compiled.builtin_from_name(self.inference_state, u'None') value_set |= ValueSet([ctx]) else: value_set |= self.infer_node(children[1]) if check is flow_analysis.REACHABLE: debug.dbg('Return reachable: %s', r) break return value_set def _get_yield_lazy_value(self, yield_expr): if yield_expr.type == 'keyword': # `yield` just yields None. ctx = compiled.builtin_from_name(self.inference_state, u'None') yield LazyKnownValue(ctx) return node = yield_expr.children[1] if node.type == 'yield_arg': # It must be a yield from. cn = ContextualizedNode(self, node.children[1]) for lazy_value in cn.infer().iterate(cn): yield lazy_value else: yield LazyTreeValue(self, node) @recursion.execution_recursion_decorator(default=iter([])) def get_yield_lazy_values(self, is_async=False): # TODO: if is_async, wrap yield statements in Awaitable/async_generator_asend for_parents = [(y, tree.search_ancestor(y, 'for_stmt', 'funcdef', 'while_stmt', 'if_stmt')) for y in get_yield_exprs(self.inference_state, self.tree_node)] # Calculate if the yields are placed within the same for loop. yields_order = [] last_for_stmt = None for yield_, for_stmt in for_parents: # For really simple for loops we can predict the order. Otherwise # we just ignore it. parent = for_stmt.parent if parent.type == 'suite': parent = parent.parent if for_stmt.type == 'for_stmt' and parent == self.tree_node \ and parser_utils.for_stmt_defines_one_name(for_stmt): # Simplicity for now. if for_stmt == last_for_stmt: yields_order[-1][1].append(yield_) else: yields_order.append((for_stmt, [yield_])) elif for_stmt == self.tree_node: yields_order.append((None, [yield_])) else: types = self.get_return_values(check_yields=True) if types: yield LazyKnownValues(types, min=0, max=float('inf')) return last_for_stmt = for_stmt for for_stmt, yields in yields_order: if for_stmt is None: # No for_stmt, just normal yields. for yield_ in yields: for result in self._get_yield_lazy_value(yield_): yield result else: input_node = for_stmt.get_testlist() cn = ContextualizedNode(self, input_node) ordered = cn.infer().iterate(cn) ordered = list(ordered) for lazy_value in ordered: dct = {str(for_stmt.children[1].value): lazy_value.infer()} with self.predefine_names(for_stmt, dct): for yield_in_same_for_stmt in yields: for result in self._get_yield_lazy_value(yield_in_same_for_stmt): yield result def merge_yield_values(self, is_async=False): return ValueSet.from_sets( lazy_value.infer() for lazy_value in self.get_yield_lazy_values() ) def is_generator(self): return bool(get_yield_exprs(self.inference_state, self.tree_node)) def infer(self): """ Created to be used by inheritance. """ inference_state = self.inference_state is_coroutine = self.tree_node.parent.type in ('async_stmt', 'async_funcdef') from jedi.inference.gradual.base import GenericClass if is_coroutine: if self.is_generator(): if inference_state.environment.version_info < (3, 6): return NO_VALUES async_generator_classes = inference_state.typing_module \ .py__getattribute__('AsyncGenerator') yield_values = self.merge_yield_values(is_async=True) # The contravariant doesn't seem to be defined. generics = (yield_values.py__class__(), NO_VALUES) return ValueSet( # In Python 3.6 AsyncGenerator is still a class. GenericClass(c, TupleGenericManager(generics)) for c in async_generator_classes ).execute_annotation() else: if inference_state.environment.version_info < (3, 5): return NO_VALUES async_classes = inference_state.typing_module.py__getattribute__('Coroutine') return_values = self.get_return_values() # Only the first generic is relevant. generics = (return_values.py__class__(), NO_VALUES, NO_VALUES) return ValueSet( GenericClass(c, TupleGenericManager(generics)) for c in async_classes ).execute_annotation() else: if self.is_generator(): return ValueSet([iterable.Generator(inference_state, self)]) else: return self.get_return_values() class FunctionExecutionContext(BaseFunctionExecutionContext): def __init__(self, function_value, arguments): super(FunctionExecutionContext, self).__init__(function_value) self._arguments = arguments def get_filters(self, until_position=None, origin_scope=None): yield FunctionExecutionFilter( self, self._value, until_position=until_position, origin_scope=origin_scope, arguments=self._arguments ) def infer_annotations(self): from jedi.inference.gradual.annotation import infer_return_types return infer_return_types(self._value, self._arguments) def get_param_names(self): return [ ParamName(self._value, param.name, self._arguments) for param in self._value.tree_node.get_params() ] class AnonymousFunctionExecution(BaseFunctionExecutionContext): def infer_annotations(self): # I don't think inferring anonymous executions is a big thing. # Anonymous contexts are mostly there for the user to work in. ~ dave return NO_VALUES def get_filters(self, until_position=None, origin_scope=None): yield AnonymousFunctionExecutionFilter( self, self._value, until_position=until_position, origin_scope=origin_scope, ) def get_param_names(self): return self._value.get_param_names() class OverloadedFunctionValue(FunctionMixin, ValueWrapper): def __init__(self, function, overloaded_functions): super(OverloadedFunctionValue, self).__init__(function) self._overloaded_functions = overloaded_functions def py__call__(self, arguments): debug.dbg("Execute overloaded function %s", self._wrapped_value, color='BLUE') function_executions = [] for signature in self.get_signatures(): function_execution = signature.value.as_context(arguments) function_executions.append(function_execution) if signature.matches_signature(arguments): return function_execution.infer() if self.inference_state.is_analysis: # In this case we want precision. return NO_VALUES return ValueSet.from_sets(fe.infer() for fe in function_executions) def get_signature_functions(self): return self._overloaded_functions def get_type_hint(self, add_class_info=True): return 'Union[%s]' % ', '.join(f.get_type_hint() for f in self._overloaded_functions) def _find_overload_functions(context, tree_node): def _is_overload_decorated(funcdef): if funcdef.parent.type == 'decorated': decorators = funcdef.parent.children[0] if decorators.type == 'decorator': decorators = [decorators] else: decorators = decorators.children for decorator in decorators: dotted_name = decorator.children[1] if dotted_name.type == 'name' and dotted_name.value == 'overload': # TODO check with values if it's the right overload return True return False if tree_node.type == 'lambdef': return if _is_overload_decorated(tree_node): yield tree_node while True: filter = ParserTreeFilter( context, until_position=tree_node.start_pos ) names = filter.get(tree_node.name.value) assert isinstance(names, list) if not names: break found = False for name in names: funcdef = name.tree_name.parent if funcdef.type == 'funcdef' and _is_overload_decorated(funcdef): tree_node = funcdef found = True yield funcdef if not found: break