""" Grayscale morphological operations """ import functools import numpy as np from scipy import ndimage as ndi from .misc import default_selem from ..util import crop __all__ = ['erosion', 'dilation', 'opening', 'closing', 'white_tophat', 'black_tophat'] def _shift_selem(selem, shift_x, shift_y): """Shift the binary image `selem` in the left and/or up. This only affects 2D structuring elements with even number of rows or columns. Parameters ---------- selem : 2D array, shape (M, N) The input structuring element. shift_x, shift_y : bool Whether to move `selem` along each axis. Returns ------- out : 2D array, shape (M + int(shift_x), N + int(shift_y)) The shifted structuring element. """ if selem.ndim != 2: # do nothing for 1D or 3D or higher structuring elements return selem m, n = selem.shape if m % 2 == 0: extra_row = np.zeros((1, n), selem.dtype) if shift_x: selem = np.vstack((selem, extra_row)) else: selem = np.vstack((extra_row, selem)) m += 1 if n % 2 == 0: extra_col = np.zeros((m, 1), selem.dtype) if shift_y: selem = np.hstack((selem, extra_col)) else: selem = np.hstack((extra_col, selem)) return selem def _invert_selem(selem): """Change the order of the values in `selem`. This is a patch for the *weird* footprint inversion in `ndi.grey_morphology` [1]_. Parameters ---------- selem : array The input structuring element. Returns ------- inverted : array, same shape and type as `selem` The structuring element, in opposite order. Examples -------- >>> selem = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], np.uint8) >>> _invert_selem(selem) array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype=uint8) References ---------- .. [1] https://github.com/scipy/scipy/blob/ec20ababa400e39ac3ffc9148c01ef86d5349332/scipy/ndimage/morphology.py#L1285 """ inverted = selem[(slice(None, None, -1),) * selem.ndim] return inverted def pad_for_eccentric_selems(func): """Pad input images for certain morphological operations. Parameters ---------- func : callable A morphological function, either opening or closing, that supports eccentric structuring elements. Its parameters must include at least `image`, `selem`, and `out`. Returns ------- func_out : callable The same function, but correctly padding the input image before applying the input function. See Also -------- opening, closing. """ @functools.wraps(func) def func_out(image, selem, out=None, *args, **kwargs): pad_widths = [] padding = False if out is None: out = np.empty_like(image) for axis_len in selem.shape: if axis_len % 2 == 0: axis_pad_width = axis_len - 1 padding = True else: axis_pad_width = 0 pad_widths.append((axis_pad_width,) * 2) if padding: image = np.pad(image, pad_widths, mode='edge') out_temp = np.empty_like(image) else: out_temp = out out_temp = func(image, selem, out=out_temp, *args, **kwargs) if padding: out[:] = crop(out_temp, pad_widths) else: out = out_temp return out return func_out @default_selem def erosion(image, selem=None, out=None, shift_x=False, shift_y=False): """Return greyscale morphological erosion of an image. Morphological erosion sets a pixel at (i,j) to the minimum over all pixels in the neighborhood centered at (i,j). Erosion shrinks bright regions and enlarges dark regions. Parameters ---------- image : ndarray Image array. selem : ndarray, optional The neighborhood expressed as an array of 1's and 0's. If None, use cross-shaped structuring element (connectivity=1). out : ndarrays, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. shift_x, shift_y : bool, optional shift structuring element about center point. This only affects eccentric structuring elements (i.e. selem with even numbered sides). Returns ------- eroded : array, same shape as `image` The result of the morphological erosion. Notes ----- For ``uint8`` (and ``uint16`` up to a certain bit-depth) data, the lower algorithm complexity makes the `skimage.filters.rank.minimum` function more efficient for larger images and structuring elements. Examples -------- >>> # Erosion shrinks bright regions >>> import numpy as np >>> from skimage.morphology import square >>> bright_square = np.array([[0, 0, 0, 0, 0], ... [0, 1, 1, 1, 0], ... [0, 1, 1, 1, 0], ... [0, 1, 1, 1, 0], ... [0, 0, 0, 0, 0]], dtype=np.uint8) >>> erosion(bright_square, square(3)) array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ selem = np.array(selem) selem = _shift_selem(selem, shift_x, shift_y) if out is None: out = np.empty_like(image) ndi.grey_erosion(image, footprint=selem, output=out) return out @default_selem def dilation(image, selem=None, out=None, shift_x=False, shift_y=False): """Return greyscale morphological dilation of an image. Morphological dilation sets a pixel at (i,j) to the maximum over all pixels in the neighborhood centered at (i,j). Dilation enlarges bright regions and shrinks dark regions. Parameters ---------- image : ndarray Image array. selem : ndarray, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use cross-shaped structuring element (connectivity=1). out : ndarray, optional The array to store the result of the morphology. If None, is passed, a new array will be allocated. shift_x, shift_y : bool, optional shift structuring element about center point. This only affects eccentric structuring elements (i.e. selem with even numbered sides). Returns ------- dilated : uint8 array, same shape and type as `image` The result of the morphological dilation. Notes ----- For `uint8` (and `uint16` up to a certain bit-depth) data, the lower algorithm complexity makes the `skimage.filters.rank.maximum` function more efficient for larger images and structuring elements. Examples -------- >>> # Dilation enlarges bright regions >>> import numpy as np >>> from skimage.morphology import square >>> bright_pixel = np.array([[0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0], ... [0, 0, 1, 0, 0], ... [0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0]], dtype=np.uint8) >>> dilation(bright_pixel, square(3)) array([[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ selem = np.array(selem) selem = _shift_selem(selem, shift_x, shift_y) # Inside ndimage.grey_dilation, the structuring element is inverted, # eg. `selem = selem[::-1, ::-1]` for 2D [1]_, for reasons unknown to # this author (@jni). To "patch" this behaviour, we invert our own # selem before passing it to `ndi.grey_dilation`. # [1] https://github.com/scipy/scipy/blob/ec20ababa400e39ac3ffc9148c01ef86d5349332/scipy/ndimage/morphology.py#L1285 selem = _invert_selem(selem) if out is None: out = np.empty_like(image) ndi.grey_dilation(image, footprint=selem, output=out) return out @default_selem @pad_for_eccentric_selems def opening(image, selem=None, out=None): """Return greyscale morphological opening of an image. The morphological opening on an image is defined as an erosion followed by a dilation. Opening can remove small bright spots (i.e. "salt") and connect small dark cracks. This tends to "open" up (dark) gaps between (bright) features. Parameters ---------- image : ndarray Image array. selem : ndarray, optional The neighborhood expressed as an array of 1's and 0's. If None, use cross-shaped structuring element (connectivity=1). out : ndarray, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. Returns ------- opening : array, same shape and type as `image` The result of the morphological opening. Examples -------- >>> # Open up gap between two bright regions (but also shrink regions) >>> import numpy as np >>> from skimage.morphology import square >>> bad_connection = np.array([[1, 0, 0, 0, 1], ... [1, 1, 0, 1, 1], ... [1, 1, 1, 1, 1], ... [1, 1, 0, 1, 1], ... [1, 0, 0, 0, 1]], dtype=np.uint8) >>> opening(bad_connection, square(3)) array([[0, 0, 0, 0, 0], [1, 1, 0, 1, 1], [1, 1, 0, 1, 1], [1, 1, 0, 1, 1], [0, 0, 0, 0, 0]], dtype=uint8) """ eroded = erosion(image, selem) # note: shift_x, shift_y do nothing if selem side length is odd out = dilation(eroded, selem, out=out, shift_x=True, shift_y=True) return out @default_selem @pad_for_eccentric_selems def closing(image, selem=None, out=None): """Return greyscale morphological closing of an image. The morphological closing on an image is defined as a dilation followed by an erosion. Closing can remove small dark spots (i.e. "pepper") and connect small bright cracks. This tends to "close" up (dark) gaps between (bright) features. Parameters ---------- image : ndarray Image array. selem : ndarray, optional The neighborhood expressed as an array of 1's and 0's. If None, use cross-shaped structuring element (connectivity=1). out : ndarray, optional The array to store the result of the morphology. If None, is passed, a new array will be allocated. Returns ------- closing : array, same shape and type as `image` The result of the morphological closing. Examples -------- >>> # Close a gap between two bright lines >>> import numpy as np >>> from skimage.morphology import square >>> broken_line = np.array([[0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0], ... [1, 1, 0, 1, 1], ... [0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0]], dtype=np.uint8) >>> closing(broken_line, square(3)) array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ dilated = dilation(image, selem) # note: shift_x, shift_y do nothing if selem side length is odd out = erosion(dilated, selem, out=out, shift_x=True, shift_y=True) return out @default_selem def white_tophat(image, selem=None, out=None): """Return white top hat of an image. The white top hat of an image is defined as the image minus its morphological opening. This operation returns the bright spots of the image that are smaller than the structuring element. Parameters ---------- image : ndarray Image array. selem : ndarray, optional The neighborhood expressed as an array of 1's and 0's. If None, use cross-shaped structuring element (connectivity=1). out : ndarray, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. Returns ------- out : array, same shape and type as `image` The result of the morphological white top hat. See also -------- black_tophat References ---------- .. [1] https://en.wikipedia.org/wiki/Top-hat_transform Examples -------- >>> # Subtract grey background from bright peak >>> import numpy as np >>> from skimage.morphology import square >>> bright_on_grey = np.array([[2, 3, 3, 3, 2], ... [3, 4, 5, 4, 3], ... [3, 5, 9, 5, 3], ... [3, 4, 5, 4, 3], ... [2, 3, 3, 3, 2]], dtype=np.uint8) >>> white_tophat(bright_on_grey, square(3)) array([[0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 1, 5, 1, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ selem = np.array(selem) if out is image: opened = opening(image, selem) if np.issubdtype(opened.dtype, np.bool_): np.logical_xor(out, opened, out=out) else: out -= opened return out elif out is None: out = np.empty_like(image) # work-around for NumPy deprecation warning for arithmetic # operations on bool arrays if isinstance(image, np.ndarray) and image.dtype == np.bool: image_ = image.view(dtype=np.uint8) else: image_ = image if isinstance(out, np.ndarray) and out.dtype == np.bool: out_ = out.view(dtype=np.uint8) else: out_ = out out_ = ndi.white_tophat(image_, footprint=selem, output=out_) return out @default_selem def black_tophat(image, selem=None, out=None): """Return black top hat of an image. The black top hat of an image is defined as its morphological closing minus the original image. This operation returns the dark spots of the image that are smaller than the structuring element. Note that dark spots in the original image are bright spots after the black top hat. Parameters ---------- image : ndarray Image array. selem : ndarray, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use cross-shaped structuring element (connectivity=1). out : ndarray, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. Returns ------- out : array, same shape and type as `image` The result of the morphological black top hat. See also -------- white_tophat References ---------- .. [1] https://en.wikipedia.org/wiki/Top-hat_transform Examples -------- >>> # Change dark peak to bright peak and subtract background >>> import numpy as np >>> from skimage.morphology import square >>> dark_on_grey = np.array([[7, 6, 6, 6, 7], ... [6, 5, 4, 5, 6], ... [6, 4, 0, 4, 6], ... [6, 5, 4, 5, 6], ... [7, 6, 6, 6, 7]], dtype=np.uint8) >>> black_tophat(dark_on_grey, square(3)) array([[0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 1, 5, 1, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ if out is image: original = image.copy() else: original = image out = closing(image, selem, out=out) if np.issubdtype(out.dtype, np.bool_): np.logical_xor(out, original, out=out) else: out -= original return out