from collections import OrderedDict from contextlib import ExitStack import inspect import itertools import logging import math from numbers import Real from operator import attrgetter import types import numpy as np import matplotlib as mpl from matplotlib import cbook from matplotlib.cbook import _OrderedSet, _check_1d, index_of from matplotlib import docstring import matplotlib.colors as mcolors import matplotlib.lines as mlines import matplotlib.patches as mpatches import matplotlib.artist as martist import matplotlib.transforms as mtransforms import matplotlib.ticker as mticker import matplotlib.axis as maxis import matplotlib.spines as mspines import matplotlib.font_manager as font_manager import matplotlib.text as mtext import matplotlib.image as mimage from matplotlib.rcsetup import cycler, validate_axisbelow _log = logging.getLogger(__name__) class _axis_method_wrapper: """ Helper to generate Axes methods wrapping Axis methods. After :: get_foo = _axis_method_wrapper("xaxis", "get_bar") (in the body of a class) ``get_foo`` is a method that forwards it arguments to the ``get_bar`` method of the ``xaxis`` attribute, and gets its signature and docstring from ``Axis.get_bar``. The docstring of ``get_foo`` is built by replacing "this Axis" by "the {attr_name}" (i.e., "the xaxis", "the yaxis") in the wrapped method's docstring; additional replacements can by given in *doc_sub*. The docstring is also dedented to simplify further manipulations. """ def __init__(self, attr_name, method_name, *, doc_sub=None): self.attr_name = attr_name self.method_name = method_name self.doc_sub = doc_sub def __set_name__(self, owner, name): # This is called at the end of the class body as # ``self.__set_name__(cls, name_under_which_self_is_assigned)``; we # rely on that to give the wrapper the correct __name__/__qualname__. get_method = attrgetter(f"{self.attr_name}.{self.method_name}") def wrapper(self, *args, **kwargs): return get_method(self)(*args, **kwargs) wrapper.__module__ = owner.__module__ wrapper.__name__ = name wrapper.__qualname__ = f"{owner.__qualname__}.{name}" # Manually copy the signature instead of using functools.wraps because # displaying the Axis method source when asking for the Axes method # source would be confusing. wrapped_method = getattr(maxis.Axis, self.method_name) wrapper.__signature__ = inspect.signature(wrapped_method) doc = wrapped_method.__doc__ if doc: doc_sub = {"this Axis": f"the {self.attr_name}", **(self.doc_sub or {})} for k, v in doc_sub.items(): assert k in doc, \ (f"The definition of {wrapper.__qualname__} expected that " f"the docstring of Axis.{self.method_name} contains " f"{k!r} as a substring.") doc = doc.replace(k, v) wrapper.__doc__ = inspect.cleandoc(doc) setattr(owner, name, wrapper) def _process_plot_format(fmt): """ Convert a MATLAB style color/line style format string to a (*linestyle*, *marker*, *color*) tuple. Example format strings include: * 'ko': black circles * '.b': blue dots * 'r--': red dashed lines * 'C2--': the third color in the color cycle, dashed lines See Also -------- matplotlib.Line2D.lineStyles, matplotlib.colors.cnames All possible styles and color format strings. """ linestyle = None marker = None color = None # Is fmt just a colorspec? try: color = mcolors.to_rgba(fmt) # We need to differentiate grayscale '1.0' from tri_down marker '1' try: fmtint = str(int(fmt)) except ValueError: return linestyle, marker, color # Yes else: if fmt != fmtint: # user definitely doesn't want tri_down marker return linestyle, marker, color # Yes else: # ignore converted color color = None except ValueError: pass # No, not just a color. i = 0 while i < len(fmt): c = fmt[i] if fmt[i:i+2] in mlines.lineStyles: # First, the two-char styles. if linestyle is not None: raise ValueError( 'Illegal format string "%s"; two linestyle symbols' % fmt) linestyle = fmt[i:i+2] i += 2 elif c in mlines.lineStyles: if linestyle is not None: raise ValueError( 'Illegal format string "%s"; two linestyle symbols' % fmt) linestyle = c i += 1 elif c in mlines.lineMarkers: if marker is not None: raise ValueError( 'Illegal format string "%s"; two marker symbols' % fmt) marker = c i += 1 elif c in mcolors.get_named_colors_mapping(): if color is not None: raise ValueError( 'Illegal format string "%s"; two color symbols' % fmt) color = c i += 1 elif c == 'C' and i < len(fmt) - 1: color_cycle_number = int(fmt[i + 1]) color = mcolors.to_rgba("C{}".format(color_cycle_number)) i += 2 else: raise ValueError( 'Unrecognized character %c in format string' % c) if linestyle is None and marker is None: linestyle = mpl.rcParams['lines.linestyle'] if linestyle is None: linestyle = 'None' if marker is None: marker = 'None' return linestyle, marker, color class _process_plot_var_args: """ Process variable length arguments to `~.Axes.plot`, to support :: plot(t, s) plot(t1, s1, t2, s2) plot(t1, s1, 'ko', t2, s2) plot(t1, s1, 'ko', t2, s2, 'r--', t3, e3) an arbitrary number of *x*, *y*, *fmt* are allowed """ def __init__(self, axes, command='plot'): self.axes = axes self.command = command self.set_prop_cycle() def __getstate__(self): # note: it is not possible to pickle a generator (and thus a cycler). return {'axes': self.axes, 'command': self.command} def __setstate__(self, state): self.__dict__ = state.copy() self.set_prop_cycle() def set_prop_cycle(self, *args, **kwargs): # Can't do `args == (None,)` as that crashes cycler. if not (args or kwargs) or (len(args) == 1 and args[0] is None): prop_cycler = mpl.rcParams['axes.prop_cycle'] else: prop_cycler = cycler(*args, **kwargs) self.prop_cycler = itertools.cycle(prop_cycler) # This should make a copy self._prop_keys = prop_cycler.keys def __call__(self, *args, data=None, **kwargs): self.axes._process_unit_info(kwargs=kwargs) for pos_only in "xy": if pos_only in kwargs: raise TypeError("{} got an unexpected keyword argument {!r}" .format(self.command, pos_only)) if not args: return if data is None: # Process dict views args = [cbook.sanitize_sequence(a) for a in args] else: # Process the 'data' kwarg. replaced = [mpl._replacer(data, arg) for arg in args] if len(args) == 1: label_namer_idx = 0 elif len(args) == 2: # Can be x, y or y, c. # Figure out what the second argument is. # 1) If the second argument cannot be a format shorthand, the # second argument is the label_namer. # 2) Otherwise (it could have been a format shorthand), # a) if we did perform a substitution, emit a warning, and # use it as label_namer. # b) otherwise, it is indeed a format shorthand; use the # first argument as label_namer. try: _process_plot_format(args[1]) except ValueError: # case 1) label_namer_idx = 1 else: if replaced[1] is not args[1]: # case 2a) cbook._warn_external( f"Second argument {args[1]!r} is ambiguous: could " f"be a format string but is in 'data'; using as " f"data. If it was intended as data, set the " f"format string to an empty string to suppress " f"this warning. If it was intended as a format " f"string, explicitly pass the x-values as well. " f"Alternatively, rename the entry in 'data'.", RuntimeWarning) label_namer_idx = 1 else: # case 2b) label_namer_idx = 0 elif len(args) == 3: label_namer_idx = 1 else: raise ValueError( "Using arbitrary long args with data is not supported due " "to ambiguity of arguments; use multiple plotting calls " "instead") if kwargs.get("label") is None: kwargs["label"] = mpl._label_from_arg( replaced[label_namer_idx], args[label_namer_idx]) args = replaced # Repeatedly grab (x, y) or (x, y, format) from the front of args and # massage them into arguments to plot() or fill(). while args: this, args = args[:2], args[2:] if args and isinstance(args[0], str): this += args[0], args = args[1:] yield from self._plot_args(this, kwargs) def get_next_color(self): """Return the next color in the cycle.""" if 'color' not in self._prop_keys: return 'k' return next(self.prop_cycler)['color'] def _getdefaults(self, ignore, kw): """ If some keys in the property cycle (excluding those in the set *ignore*) are absent or set to None in the dict *kw*, return a copy of the next entry in the property cycle, excluding keys in *ignore*. Otherwise, don't advance the property cycle, and return an empty dict. """ prop_keys = self._prop_keys - ignore if any(kw.get(k, None) is None for k in prop_keys): # Need to copy this dictionary or else the next time around # in the cycle, the dictionary could be missing entries. default_dict = next(self.prop_cycler).copy() for p in ignore: default_dict.pop(p, None) else: default_dict = {} return default_dict def _setdefaults(self, defaults, kw): """ Add to the dict *kw* the entries in the dict *default* that are absent or set to None in *kw*. """ for k in defaults: if kw.get(k, None) is None: kw[k] = defaults[k] def _makeline(self, x, y, kw, kwargs): kw = {**kw, **kwargs} # Don't modify the original kw. default_dict = self._getdefaults(set(), kw) self._setdefaults(default_dict, kw) seg = mlines.Line2D(x, y, **kw) return seg def _makefill(self, x, y, kw, kwargs): # Polygon doesn't directly support unitized inputs. x = self.axes.convert_xunits(x) y = self.axes.convert_yunits(y) kw = kw.copy() # Don't modify the original kw. kwargs = kwargs.copy() # Ignore 'marker'-related properties as they aren't Polygon # properties, but they are Line2D properties, and so they are # likely to appear in the default cycler construction. # This is done here to the defaults dictionary as opposed to the # other two dictionaries because we do want to capture when a # *user* explicitly specifies a marker which should be an error. # We also want to prevent advancing the cycler if there are no # defaults needed after ignoring the given properties. ignores = {'marker', 'markersize', 'markeredgecolor', 'markerfacecolor', 'markeredgewidth'} # Also ignore anything provided by *kwargs*. for k, v in kwargs.items(): if v is not None: ignores.add(k) # Only using the first dictionary to use as basis # for getting defaults for back-compat reasons. # Doing it with both seems to mess things up in # various places (probably due to logic bugs elsewhere). default_dict = self._getdefaults(ignores, kw) self._setdefaults(default_dict, kw) # Looks like we don't want "color" to be interpreted to # mean both facecolor and edgecolor for some reason. # So the "kw" dictionary is thrown out, and only its # 'color' value is kept and translated as a 'facecolor'. # This design should probably be revisited as it increases # complexity. facecolor = kw.get('color', None) # Throw out 'color' as it is now handled as a facecolor default_dict.pop('color', None) # To get other properties set from the cycler # modify the kwargs dictionary. self._setdefaults(default_dict, kwargs) seg = mpatches.Polygon(np.column_stack((x, y)), facecolor=facecolor, fill=kwargs.get('fill', True), closed=kw['closed']) seg.set(**kwargs) return seg def _plot_args(self, tup, kwargs): if len(tup) > 1 and isinstance(tup[-1], str): linestyle, marker, color = _process_plot_format(tup[-1]) tup = tup[:-1] elif len(tup) == 3: raise ValueError('third arg must be a format string') else: linestyle, marker, color = None, None, None # Don't allow any None value; these would be up-converted to one # element array of None which causes problems downstream. if any(v is None for v in tup): raise ValueError("x, y, and format string must not be None") kw = {} for k, v in zip(('linestyle', 'marker', 'color'), (linestyle, marker, color)): if v is not None: kw[k] = v if len(tup) == 2: x = _check_1d(tup[0]) y = _check_1d(tup[-1]) else: x, y = index_of(tup[-1]) if self.axes.xaxis is not None: self.axes.xaxis.update_units(x) if self.axes.yaxis is not None: self.axes.yaxis.update_units(y) if x.shape[0] != y.shape[0]: raise ValueError(f"x and y must have same first dimension, but " f"have shapes {x.shape} and {y.shape}") if x.ndim > 2 or y.ndim > 2: raise ValueError(f"x and y can be no greater than 2-D, but have " f"shapes {x.shape} and {y.shape}") if x.ndim == 1: x = x[:, np.newaxis] if y.ndim == 1: y = y[:, np.newaxis] if self.command == 'plot': func = self._makeline else: kw['closed'] = kwargs.get('closed', True) func = self._makefill ncx, ncy = x.shape[1], y.shape[1] if ncx > 1 and ncy > 1 and ncx != ncy: raise ValueError(f"x has {ncx} columns but y has {ncy} columns") return [func(x[:, j % ncx], y[:, j % ncy], kw, kwargs) for j in range(max(ncx, ncy))] @cbook._define_aliases({"facecolor": ["fc"]}) class _AxesBase(martist.Artist): name = "rectilinear" _shared_x_axes = cbook.Grouper() _shared_y_axes = cbook.Grouper() _twinned_axes = cbook.Grouper() def __str__(self): return "{0}({1[0]:g},{1[1]:g};{1[2]:g}x{1[3]:g})".format( type(self).__name__, self._position.bounds) def __init__(self, fig, rect, facecolor=None, # defaults to rc axes.facecolor frameon=True, sharex=None, # use Axes instance's xaxis info sharey=None, # use Axes instance's yaxis info label='', xscale=None, yscale=None, box_aspect=None, **kwargs ): """ Build an axes in a figure. Parameters ---------- fig : `~matplotlib.figure.Figure` The axes is build in the `.Figure` *fig*. rect : [left, bottom, width, height] The axes is build in the rectangle *rect*. *rect* is in `.Figure` coordinates. sharex, sharey : `~.axes.Axes`, optional The x or y `~.matplotlib.axis` is shared with the x or y axis in the input `~.axes.Axes`. frameon : bool, default: True Whether the axes frame is visible. box_aspect : None, or a number, optional Sets the aspect of the axes box. See `~.axes.Axes.set_box_aspect` for details. **kwargs Other optional keyword arguments: %(Axes)s Returns ------- `~.axes.Axes` The new `~.axes.Axes` object. """ martist.Artist.__init__(self) if isinstance(rect, mtransforms.Bbox): self._position = rect else: self._position = mtransforms.Bbox.from_bounds(*rect) if self._position.width < 0 or self._position.height < 0: raise ValueError('Width and height specified must be non-negative') self._originalPosition = self._position.frozen() self.axes = self self._aspect = 'auto' self._adjustable = 'box' self._anchor = 'C' self._stale_viewlim_x = False self._stale_viewlim_y = False self._sharex = sharex self._sharey = sharey self.set_label(label) self.set_figure(fig) self.set_box_aspect(box_aspect) self._axes_locator = None # Optionally set via update(kwargs). self.spines = self._gen_axes_spines() # this call may differ for non-sep axes, e.g., polar self._init_axis() if facecolor is None: facecolor = mpl.rcParams['axes.facecolor'] self._facecolor = facecolor self._frameon = frameon self.set_axisbelow(mpl.rcParams['axes.axisbelow']) self._rasterization_zorder = None self.cla() # funcs used to format x and y - fall back on major formatters self.fmt_xdata = None self.fmt_ydata = None self.set_navigate(True) self.set_navigate_mode(None) if xscale: self.set_xscale(xscale) if yscale: self.set_yscale(yscale) self.update(kwargs) if self.xaxis is not None: self._xcid = self.xaxis.callbacks.connect( 'units finalize', lambda: self._on_units_changed(scalex=True)) if self.yaxis is not None: self._ycid = self.yaxis.callbacks.connect( 'units finalize', lambda: self._on_units_changed(scaley=True)) rcParams = mpl.rcParams self.tick_params( top=rcParams['xtick.top'] and rcParams['xtick.minor.top'], bottom=rcParams['xtick.bottom'] and rcParams['xtick.minor.bottom'], labeltop=(rcParams['xtick.labeltop'] and rcParams['xtick.minor.top']), labelbottom=(rcParams['xtick.labelbottom'] and rcParams['xtick.minor.bottom']), left=rcParams['ytick.left'] and rcParams['ytick.minor.left'], right=rcParams['ytick.right'] and rcParams['ytick.minor.right'], labelleft=(rcParams['ytick.labelleft'] and rcParams['ytick.minor.left']), labelright=(rcParams['ytick.labelright'] and rcParams['ytick.minor.right']), which='minor') self.tick_params( top=rcParams['xtick.top'] and rcParams['xtick.major.top'], bottom=rcParams['xtick.bottom'] and rcParams['xtick.major.bottom'], labeltop=(rcParams['xtick.labeltop'] and rcParams['xtick.major.top']), labelbottom=(rcParams['xtick.labelbottom'] and rcParams['xtick.major.bottom']), left=rcParams['ytick.left'] and rcParams['ytick.major.left'], right=rcParams['ytick.right'] and rcParams['ytick.major.right'], labelleft=(rcParams['ytick.labelleft'] and rcParams['ytick.major.left']), labelright=(rcParams['ytick.labelright'] and rcParams['ytick.major.right']), which='major') self._layoutbox = None self._poslayoutbox = None def __getstate__(self): # The renderer should be re-created by the figure, and then cached at # that point. state = super().__getstate__() for key in ['_layoutbox', '_poslayoutbox']: state[key] = None # Prune the sharing & twinning info to only contain the current group. for grouper_name in [ '_shared_x_axes', '_shared_y_axes', '_twinned_axes']: grouper = getattr(self, grouper_name) state[grouper_name] = (grouper.get_siblings(self) if self in grouper else None) return state def __setstate__(self, state): # Merge the grouping info back into the global groupers. for grouper_name in [ '_shared_x_axes', '_shared_y_axes', '_twinned_axes']: siblings = state.pop(grouper_name) if siblings: getattr(self, grouper_name).join(*siblings) self.__dict__ = state self._stale = True def get_window_extent(self, *args, **kwargs): """ Return the axes bounding box in display space; *args* and *kwargs* are empty. This bounding box does not include the spines, ticks, ticklables, or other labels. For a bounding box including these elements use `~matplotlib.axes.Axes.get_tightbbox`. See Also -------- matplotlib.axes.Axes.get_tightbbox matplotlib.axis.Axis.get_tightbbox matplotlib.spines.get_window_extent """ return self.bbox def _init_axis(self): # This is moved out of __init__ because non-separable axes don't use it self.xaxis = maxis.XAxis(self) self.spines['bottom'].register_axis(self.xaxis) self.spines['top'].register_axis(self.xaxis) self.yaxis = maxis.YAxis(self) self.spines['left'].register_axis(self.yaxis) self.spines['right'].register_axis(self.yaxis) self._update_transScale() def set_figure(self, fig): # docstring inherited martist.Artist.set_figure(self, fig) self.bbox = mtransforms.TransformedBbox(self._position, fig.transFigure) # these will be updated later as data is added self.dataLim = mtransforms.Bbox.null() self._viewLim = mtransforms.Bbox.unit() self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) self._set_lim_and_transforms() def _unstale_viewLim(self): # We should arrange to store this information once per share-group # instead of on every axis. scalex = any(ax._stale_viewlim_x for ax in self._shared_x_axes.get_siblings(self)) scaley = any(ax._stale_viewlim_y for ax in self._shared_y_axes.get_siblings(self)) if scalex or scaley: for ax in self._shared_x_axes.get_siblings(self): ax._stale_viewlim_x = False for ax in self._shared_y_axes.get_siblings(self): ax._stale_viewlim_y = False self.autoscale_view(scalex=scalex, scaley=scaley) @property def viewLim(self): self._unstale_viewLim() return self._viewLim # API could be better, right now this is just to match the old calls to # autoscale_view() after each plotting method. def _request_autoscale_view(self, tight=None, scalex=True, scaley=True): if tight is not None: self._tight = tight if scalex: self._stale_viewlim_x = True # Else keep old state. if scaley: self._stale_viewlim_y = True def _set_lim_and_transforms(self): """ Set the *_xaxis_transform*, *_yaxis_transform*, *transScale*, *transData*, *transLimits* and *transAxes* transformations. .. note:: This method is primarily used by rectilinear projections of the `~matplotlib.axes.Axes` class, and is meant to be overridden by new kinds of projection axes that need different transformations and limits. (See `~matplotlib.projections.polar.PolarAxes` for an example.) """ self.transAxes = mtransforms.BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor. # It is assumed that this part will have non-linear components # (e.g., for a log scale). self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) # An affine transformation on the data, generally to limit the # range of the axes self.transLimits = mtransforms.BboxTransformFrom( mtransforms.TransformedBbox(self._viewLim, self.transScale)) # The parentheses are important for efficiency here -- they # group the last two (which are usually affines) separately # from the first (which, with log-scaling can be non-affine). self.transData = self.transScale + (self.transLimits + self.transAxes) self._xaxis_transform = mtransforms.blended_transform_factory( self.transData, self.transAxes) self._yaxis_transform = mtransforms.blended_transform_factory( self.transAxes, self.transData) def get_xaxis_transform(self, which='grid'): """ Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in data coordinates and the y-direction is in axis coordinates. .. note:: This transformation is primarily used by the `~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ if which == 'grid': return self._xaxis_transform elif which == 'tick1': # for cartesian projection, this is bottom spine return self.spines['bottom'].get_spine_transform() elif which == 'tick2': # for cartesian projection, this is top spine return self.spines['top'].get_spine_transform() else: raise ValueError('unknown value for which') def get_xaxis_text1_transform(self, pad_points): """ Returns ------- transform : Transform The transform used for drawing x-axis labels, which will add *pad_points* of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis corrdinates valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'} The text vertical alignment. halign : {'center', 'left', 'right'} The text horizontal alignment. Notes ----- This transformation is primarily used by the `~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ labels_align = mpl.rcParams["xtick.alignment"] return (self.get_xaxis_transform(which='tick1') + mtransforms.ScaledTranslation(0, -1 * pad_points / 72, self.figure.dpi_scale_trans), "top", labels_align) def get_xaxis_text2_transform(self, pad_points): """ Returns ------- transform : Transform The transform used for drawing secondary x-axis labels, which will add *pad_points* of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis corrdinates valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'} The text vertical alignment. halign : {'center', 'left', 'right'} The text horizontal alignment. Notes ----- This transformation is primarily used by the `~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ labels_align = mpl.rcParams["xtick.alignment"] return (self.get_xaxis_transform(which='tick2') + mtransforms.ScaledTranslation(0, pad_points / 72, self.figure.dpi_scale_trans), "bottom", labels_align) def get_yaxis_transform(self, which='grid'): """ Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in axis coordinates and the y-direction is in data coordinates. .. note:: This transformation is primarily used by the `~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ if which == 'grid': return self._yaxis_transform elif which == 'tick1': # for cartesian projection, this is bottom spine return self.spines['left'].get_spine_transform() elif which == 'tick2': # for cartesian projection, this is top spine return self.spines['right'].get_spine_transform() else: raise ValueError('unknown value for which') def get_yaxis_text1_transform(self, pad_points): """ Returns ------- transform : Transform The transform used for drawing y-axis labels, which will add *pad_points* of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data corrdinates valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'} The text vertical alignment. halign : {'center', 'left', 'right'} The text horizontal alignment. Notes ----- This transformation is primarily used by the `~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ labels_align = mpl.rcParams["ytick.alignment"] return (self.get_yaxis_transform(which='tick1') + mtransforms.ScaledTranslation(-1 * pad_points / 72, 0, self.figure.dpi_scale_trans), labels_align, "right") def get_yaxis_text2_transform(self, pad_points): """ Returns ------- transform : Transform The transform used for drawing secondart y-axis labels, which will add *pad_points* of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data corrdinates valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'} The text vertical alignment. halign : {'center', 'left', 'right'} The text horizontal alignment. Notes ----- This transformation is primarily used by the `~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ labels_align = mpl.rcParams["ytick.alignment"] return (self.get_yaxis_transform(which='tick2') + mtransforms.ScaledTranslation(pad_points / 72, 0, self.figure.dpi_scale_trans), labels_align, "left") def _update_transScale(self): self.transScale.set( mtransforms.blended_transform_factory( self.xaxis.get_transform(), self.yaxis.get_transform())) for line in getattr(self, "lines", []): # Not set during init. try: line._transformed_path.invalidate() except AttributeError: pass def get_position(self, original=False): """ Get a copy of the axes rectangle as a `.Bbox`. Parameters ---------- original : bool If ``True``, return the original position. Otherwise return the active position. For an explanation of the positions see `.set_position`. Returns ------- `.Bbox` """ if original: return self._originalPosition.frozen() else: locator = self.get_axes_locator() if not locator: self.apply_aspect() return self._position.frozen() def set_position(self, pos, which='both'): """ Set the axes position. Axes have two position attributes. The 'original' position is the position allocated for the Axes. The 'active' position is the position the Axes is actually drawn at. These positions are usually the same unless a fixed aspect is set to the Axes. See `.set_aspect` for details. Parameters ---------- pos : [left, bottom, width, height] or `~matplotlib.transforms.Bbox` The new position of the in `.Figure` coordinates. which : {'both', 'active', 'original'}, default: 'both' Determines which position variables to change. """ self._set_position(pos, which=which) # because this is being called externally to the library we # zero the constrained layout parts. self._layoutbox = None self._poslayoutbox = None def _set_position(self, pos, which='both'): """ Private version of set_position. Call this internally to get the same functionality of `get_position`, but not to take the axis out of the constrained_layout hierarchy. """ if not isinstance(pos, mtransforms.BboxBase): pos = mtransforms.Bbox.from_bounds(*pos) for ax in self._twinned_axes.get_siblings(self): if which in ('both', 'active'): ax._position.set(pos) if which in ('both', 'original'): ax._originalPosition.set(pos) self.stale = True def reset_position(self): """ Reset the active position to the original position. This resets the a possible position change due to aspect constraints. For an explanation of the positions see `.set_position`. """ for ax in self._twinned_axes.get_siblings(self): pos = ax.get_position(original=True) ax.set_position(pos, which='active') def set_axes_locator(self, locator): """ Set the axes locator. Parameters ---------- locator : Callable[[Axes, Renderer], Bbox] """ self._axes_locator = locator self.stale = True def get_axes_locator(self): """ Return the axes_locator. """ return self._axes_locator def _set_artist_props(self, a): """Set the boilerplate props for artists added to axes.""" a.set_figure(self.figure) if not a.is_transform_set(): a.set_transform(self.transData) a.axes = self if a.mouseover: self._mouseover_set.add(a) def _gen_axes_patch(self): """ Returns ------- Patch The patch used to draw the background of the axes. It is also used as the clipping path for any data elements on the axes. In the standard axes, this is a rectangle, but in other projections it may not be. Notes ----- Intended to be overridden by new projection types. """ return mpatches.Rectangle((0.0, 0.0), 1.0, 1.0) def _gen_axes_spines(self, locations=None, offset=0.0, units='inches'): """ Returns ------- dict Mapping of spine names to `.Line2D` or `.Patch` instances that are used to draw axes spines. In the standard axes, spines are single line segments, but in other projections they may not be. Notes ----- Intended to be overridden by new projection types. """ return OrderedDict((side, mspines.Spine.linear_spine(self, side)) for side in ['left', 'right', 'bottom', 'top']) def sharex(self, other): """ Share the x-axis with *other*. This is equivalent to passing ``sharex=other`` when constructing the axes, and cannot be used if the x-axis is already being shared with another axes. """ cbook._check_isinstance(_AxesBase, other=other) if self._sharex is not None and other is not self._sharex: raise ValueError("x-axis is already shared") self._shared_x_axes.join(self, other) self._sharex = other self.xaxis.major = other.xaxis.major # Ticker instances holding self.xaxis.minor = other.xaxis.minor # locator and formatter. x0, x1 = other.get_xlim() self.set_xlim(x0, x1, emit=False, auto=other.get_autoscalex_on()) self.xaxis._scale = other.xaxis._scale def sharey(self, other): """ Share the y-axis with *other*. This is equivalent to passing ``sharey=other`` when constructing the axes, and cannot be used if the y-axis is already being shared with another axes. """ cbook._check_isinstance(_AxesBase, other=other) if self._sharey is not None and other is not self._sharey: raise ValueError("y-axis is already shared") self._shared_y_axes.join(self, other) self._sharey = other self.yaxis.major = other.yaxis.major # Ticker instances holding self.yaxis.minor = other.yaxis.minor # locator and formatter. y0, y1 = other.get_ylim() self.set_ylim(y0, y1, emit=False, auto=other.get_autoscaley_on()) self.yaxis._scale = other.yaxis._scale def cla(self): """Clear the current axes.""" # Note: this is called by Axes.__init__() # stash the current visibility state if hasattr(self, 'patch'): patch_visible = self.patch.get_visible() else: patch_visible = True xaxis_visible = self.xaxis.get_visible() yaxis_visible = self.yaxis.get_visible() self.xaxis.cla() self.yaxis.cla() for name, spine in self.spines.items(): spine.cla() self.ignore_existing_data_limits = True self.callbacks = cbook.CallbackRegistry() if self._sharex is not None: self.sharex(self._sharex) else: self.xaxis._set_scale('linear') try: self.set_xlim(0, 1) except TypeError: pass if self._sharey is not None: self.sharey(self._sharey) else: self.yaxis._set_scale('linear') try: self.set_ylim(0, 1) except TypeError: pass # update the minor locator for x and y axis based on rcParams if mpl.rcParams['xtick.minor.visible']: self.xaxis.set_minor_locator(mticker.AutoMinorLocator()) if mpl.rcParams['ytick.minor.visible']: self.yaxis.set_minor_locator(mticker.AutoMinorLocator()) if self._sharex is None: self._autoscaleXon = True if self._sharey is None: self._autoscaleYon = True self._xmargin = mpl.rcParams['axes.xmargin'] self._ymargin = mpl.rcParams['axes.ymargin'] self._tight = None self._use_sticky_edges = True self._update_transScale() # needed? self._get_lines = _process_plot_var_args(self) self._get_patches_for_fill = _process_plot_var_args(self, 'fill') self._gridOn = mpl.rcParams['axes.grid'] self.lines = [] self.patches = [] self.texts = [] self.tables = [] self.artists = [] self.images = [] self._mouseover_set = _OrderedSet() self.child_axes = [] self._current_image = None # strictly for pyplot via _sci, _gci self.legend_ = None self.collections = [] # collection.Collection instances self.containers = [] self.grid(False) # Disable grid on init to use rcParameter self.grid(self._gridOn, which=mpl.rcParams['axes.grid.which'], axis=mpl.rcParams['axes.grid.axis']) props = font_manager.FontProperties( size=mpl.rcParams['axes.titlesize'], weight=mpl.rcParams['axes.titleweight']) y = mpl.rcParams['axes.titley'] if y is None: y = 1.0 self._autotitlepos = True else: self._autotitlepos = False self.title = mtext.Text( x=0.5, y=y, text='', fontproperties=props, verticalalignment='baseline', horizontalalignment='center', ) self._left_title = mtext.Text( x=0.0, y=y, text='', fontproperties=props.copy(), verticalalignment='baseline', horizontalalignment='left', ) self._right_title = mtext.Text( x=1.0, y=y, text='', fontproperties=props.copy(), verticalalignment='baseline', horizontalalignment='right', ) title_offset_points = mpl.rcParams['axes.titlepad'] # refactor this out so it can be called in ax.set_title if # pad argument used... self._set_title_offset_trans(title_offset_points) for _title in (self.title, self._left_title, self._right_title): self._set_artist_props(_title) # The patch draws the background of the axes. We want this to be below # the other artists. We use the frame to draw the edges so we are # setting the edgecolor to None. self.patch = self._gen_axes_patch() self.patch.set_figure(self.figure) self.patch.set_facecolor(self._facecolor) self.patch.set_edgecolor('None') self.patch.set_linewidth(0) self.patch.set_transform(self.transAxes) self.set_axis_on() self.xaxis.set_clip_path(self.patch) self.yaxis.set_clip_path(self.patch) self._shared_x_axes.clean() self._shared_y_axes.clean() if self._sharex is not None: self.xaxis.set_visible(xaxis_visible) self.patch.set_visible(patch_visible) if self._sharey is not None: self.yaxis.set_visible(yaxis_visible) self.patch.set_visible(patch_visible) self.stale = True def clear(self): """Clear the axes.""" self.cla() def get_facecolor(self): """Get the facecolor of the Axes.""" return self.patch.get_facecolor() def set_facecolor(self, color): """ Set the facecolor of the Axes. Parameters ---------- color : color """ self._facecolor = color self.stale = True return self.patch.set_facecolor(color) def _set_title_offset_trans(self, title_offset_points): """ Set the offset for the title either from :rc:`axes.titlepad` or from set_title kwarg ``pad``. """ self.titleOffsetTrans = mtransforms.ScaledTranslation( 0.0, title_offset_points / 72, self.figure.dpi_scale_trans) for _title in (self.title, self._left_title, self._right_title): _title.set_transform(self.transAxes + self.titleOffsetTrans) _title.set_clip_box(None) def set_prop_cycle(self, *args, **kwargs): """ Set the property cycle of the Axes. The property cycle controls the style properties such as color, marker and linestyle of future plot commands. The style properties of data already added to the Axes are not modified. Call signatures:: set_prop_cycle(cycler) set_prop_cycle(label=values[, label2=values2[, ...]]) set_prop_cycle(label, values) Form 1 sets given `~cycler.Cycler` object. Form 2 creates a `~cycler.Cycler` which cycles over one or more properties simultaneously and set it as the property cycle of the axes. If multiple properties are given, their value lists must have the same length. This is just a shortcut for explicitly creating a cycler and passing it to the function, i.e. it's short for ``set_prop_cycle(cycler(label=values label2=values2, ...))``. Form 3 creates a `~cycler.Cycler` for a single property and set it as the property cycle of the axes. This form exists for compatibility with the original `cycler.cycler` interface. Its use is discouraged in favor of the kwarg form, i.e. ``set_prop_cycle(label=values)``. Parameters ---------- cycler : Cycler Set the given Cycler. *None* resets to the cycle defined by the current style. label : str The property key. Must be a valid `.Artist` property. For example, 'color' or 'linestyle'. Aliases are allowed, such as 'c' for 'color' and 'lw' for 'linewidth'. values : iterable Finite-length iterable of the property values. These values are validated and will raise a ValueError if invalid. See Also -------- matplotlib.rcsetup.cycler Convenience function for creating validated cyclers for properties. cycler.cycler The original function for creating unvalidated cyclers. Examples -------- Setting the property cycle for a single property: >>> ax.set_prop_cycle(color=['red', 'green', 'blue']) Setting the property cycle for simultaneously cycling over multiple properties (e.g. red circle, green plus, blue cross): >>> ax.set_prop_cycle(color=['red', 'green', 'blue'], ... marker=['o', '+', 'x']) """ if args and kwargs: raise TypeError("Cannot supply both positional and keyword " "arguments to this method.") # Can't do `args == (None,)` as that crashes cycler. if len(args) == 1 and args[0] is None: prop_cycle = None else: prop_cycle = cycler(*args, **kwargs) self._get_lines.set_prop_cycle(prop_cycle) self._get_patches_for_fill.set_prop_cycle(prop_cycle) def get_aspect(self): return self._aspect def set_aspect(self, aspect, adjustable=None, anchor=None, share=False): """ Set the aspect of the axis scaling, i.e. the ratio of y-unit to x-unit. Parameters ---------- aspect : {'auto'} or num Possible values: ======== ================================================= value description ======== ================================================= 'auto' automatic; fill the position rectangle with data. num a circle will be stretched such that the height is *num* times the width. 'equal' is a synonym for ``aspect=1``, i.e. same scaling for x and y. ======== ================================================= adjustable : None or {'box', 'datalim'}, optional If not ``None``, this defines which parameter will be adjusted to meet the required aspect. See `.set_adjustable` for further details. anchor : None or str or 2-tuple of float, optional If not ``None``, this defines where the Axes will be drawn if there is extra space due to aspect constraints. The most common way to to specify the anchor are abbreviations of cardinal directions: ===== ===================== value description ===== ===================== 'C' centered 'SW' lower left corner 'S' middle of bottom edge 'SE' lower right corner etc. ===== ===================== See `.set_anchor` for further details. share : bool, default: False If ``True``, apply the settings to all shared Axes. See Also -------- matplotlib.axes.Axes.set_adjustable Set how the Axes adjusts to achieve the required aspect ratio. matplotlib.axes.Axes.set_anchor Set the position in case of extra space. """ if cbook._str_equal(aspect, 'equal'): aspect = 1 if not cbook._str_equal(aspect, 'auto'): aspect = float(aspect) # raise ValueError if necessary if share: axes = {*self._shared_x_axes.get_siblings(self), *self._shared_y_axes.get_siblings(self)} else: axes = [self] for ax in axes: ax._aspect = aspect if adjustable is None: adjustable = self._adjustable self.set_adjustable(adjustable, share=share) # Handle sharing. if anchor is not None: self.set_anchor(anchor, share=share) self.stale = True def get_adjustable(self): """ Return whether the Axes will adjust its physical dimension ('box') or its data limits ('datalim') to achieve the desired aspect ratio. See Also -------- matplotlib.axes.Axes.set_adjustable Set how the Axes adjusts to achieve the required aspect ratio. matplotlib.axes.Axes.set_aspect For a description of aspect handling. """ return self._adjustable def set_adjustable(self, adjustable, share=False): """ Set how the Axes adjusts to achieve the required aspect ratio. Parameters ---------- adjustable : {'box', 'datalim'} If 'box', change the physical dimensions of the Axes. If 'datalim', change the ``x`` or ``y`` data limits. share : bool, default: False If ``True``, apply the settings to all shared Axes. See Also -------- matplotlib.axes.Axes.set_aspect For a description of aspect handling. Notes ----- Shared Axes (of which twinned Axes are a special case) impose restrictions on how aspect ratios can be imposed. For twinned Axes, use 'datalim'. For Axes that share both x and y, use 'box'. Otherwise, either 'datalim' or 'box' may be used. These limitations are partly a requirement to avoid over-specification, and partly a result of the particular implementation we are currently using, in which the adjustments for aspect ratios are done sequentially and independently on each Axes as it is drawn. """ cbook._check_in_list(["box", "datalim"], adjustable=adjustable) if share: axs = {*self._shared_x_axes.get_siblings(self), *self._shared_y_axes.get_siblings(self)} else: axs = [self] if (adjustable == "datalim" and any(getattr(ax.get_data_ratio, "__func__", None) != _AxesBase.get_data_ratio for ax in axs)): # Limits adjustment by apply_aspect assumes that the axes' aspect # ratio can be computed from the data limits and scales. raise ValueError("Cannot set axes adjustable to 'datalim' for " "Axes which override 'get_data_ratio'") for ax in axs: ax._adjustable = adjustable self.stale = True def get_box_aspect(self): """ Get the axes box aspect. Will be ``None`` if not explicitly specified. See Also -------- matplotlib.axes.Axes.set_box_aspect for a description of box aspect. matplotlib.axes.Axes.set_aspect for a description of aspect handling. """ return self._box_aspect def set_box_aspect(self, aspect=None): """ Set the axes box aspect. The box aspect is the ratio of the axes height to the axes width in physical units. This is not to be confused with the data aspect, set via `~.Axes.set_aspect`. Parameters ---------- aspect : None, or a number Changes the physical dimensions of the Axes, such that the ratio of the axes height to the axes width in physical units is equal to *aspect*. If *None*, the axes geometry will not be adjusted. Note that calling this function with a number changes the *adjustable* to *datalim*. See Also -------- matplotlib.axes.Axes.set_aspect for a description of aspect handling. """ axs = {*self._twinned_axes.get_siblings(self), *self._twinned_axes.get_siblings(self)} if aspect is not None: aspect = float(aspect) # when box_aspect is set to other than ´None`, # adjustable must be "datalim" for ax in axs: ax.set_adjustable("datalim") for ax in axs: ax._box_aspect = aspect ax.stale = True def get_anchor(self): """ Get the anchor location. See Also -------- matplotlib.axes.Axes.set_anchor for a description of the anchor. matplotlib.axes.Axes.set_aspect for a description of aspect handling. """ return self._anchor def set_anchor(self, anchor, share=False): """ Define the anchor location. The actual drawing area (active position) of the Axes may be smaller than the Bbox (original position) when a fixed aspect is required. The anchor defines where the drawing area will be located within the available space. Parameters ---------- anchor : 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...} The anchor position may be either: - a sequence (*cx*, *cy*). *cx* and *cy* may range from 0 to 1, where 0 is left or bottom and 1 is right or top. - a string using cardinal directions as abbreviation: - 'C' for centered - 'S' (south) for bottom-center - 'SW' (south west) for bottom-left - etc. Here is an overview of the possible positions: +------+------+------+ | 'NW' | 'N' | 'NE' | +------+------+------+ | 'W' | 'C' | 'E' | +------+------+------+ | 'SW' | 'S' | 'SE' | +------+------+------+ share : bool, default: False If ``True``, apply the settings to all shared Axes. See Also -------- matplotlib.axes.Axes.set_aspect for a description of aspect handling. """ if not (anchor in mtransforms.Bbox.coefs or len(anchor) == 2): raise ValueError('argument must be among %s' % ', '.join(mtransforms.Bbox.coefs)) if share: axes = {*self._shared_x_axes.get_siblings(self), *self._shared_y_axes.get_siblings(self)} else: axes = [self] for ax in axes: ax._anchor = anchor self.stale = True def get_data_ratio(self): """ Return the aspect ratio of the scaled data. Notes ----- This method is intended to be overridden by new projection types. """ txmin, txmax = self.xaxis.get_transform().transform(self.get_xbound()) tymin, tymax = self.yaxis.get_transform().transform(self.get_ybound()) xsize = max(abs(txmax - txmin), 1e-30) ysize = max(abs(tymax - tymin), 1e-30) return ysize / xsize @cbook.deprecated("3.2") def get_data_ratio_log(self): """ Return the aspect ratio of the raw data in log scale. Notes ----- Will be used when both axis are in log scale. """ xmin, xmax = self.get_xbound() ymin, ymax = self.get_ybound() xsize = max(abs(math.log10(xmax) - math.log10(xmin)), 1e-30) ysize = max(abs(math.log10(ymax) - math.log10(ymin)), 1e-30) return ysize / xsize def apply_aspect(self, position=None): """ Adjust the Axes for a specified data aspect ratio. Depending on `.get_adjustable` this will modify either the Axes box (position) or the view limits. In the former case, `~matplotlib.axes.Axes.get_anchor` will affect the position. Notes ----- This is called automatically when each Axes is drawn. You may need to call it yourself if you need to update the Axes position and/or view limits before the Figure is drawn. See Also -------- matplotlib.axes.Axes.set_aspect For a description of aspect ratio handling. matplotlib.axes.Axes.set_adjustable Set how the Axes adjusts to achieve the required aspect ratio. matplotlib.axes.Axes.set_anchor Set the position in case of extra space. """ if position is None: position = self.get_position(original=True) aspect = self.get_aspect() if aspect == 'auto' and self._box_aspect is None: self._set_position(position, which='active') return fig_width, fig_height = self.get_figure().get_size_inches() fig_aspect = fig_height / fig_width if self._adjustable == 'box': if self in self._twinned_axes: raise RuntimeError("Adjustable 'box' is not allowed in a " "twinned Axes; use 'datalim' instead") box_aspect = aspect * self.get_data_ratio() pb = position.frozen() pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect) self._set_position(pb1.anchored(self.get_anchor(), pb), 'active') return # The following is only seen if self._adjustable == 'datalim' if self._box_aspect is not None: pb = position.frozen() pb1 = pb.shrunk_to_aspect(self._box_aspect, pb, fig_aspect) self._set_position(pb1.anchored(self.get_anchor(), pb), 'active') if aspect == "auto": return # reset active to original in case it had been changed by prior use # of 'box' if self._box_aspect is None: self._set_position(position, which='active') else: position = pb1.anchored(self.get_anchor(), pb) x_trf = self.xaxis.get_transform() y_trf = self.yaxis.get_transform() xmin, xmax = x_trf.transform(self.get_xbound()) ymin, ymax = y_trf.transform(self.get_ybound()) xsize = max(abs(xmax - xmin), 1e-30) ysize = max(abs(ymax - ymin), 1e-30) box_aspect = fig_aspect * (position.height / position.width) data_ratio = box_aspect / aspect y_expander = data_ratio * xsize / ysize - 1 # If y_expander > 0, the dy/dx viewLim ratio needs to increase if abs(y_expander) < 0.005: return dL = self.dataLim x0, x1 = x_trf.transform(dL.intervalx) y0, y1 = y_trf.transform(dL.intervaly) xr = 1.05 * (x1 - x0) yr = 1.05 * (y1 - y0) xmarg = xsize - xr ymarg = ysize - yr Ysize = data_ratio * xsize Xsize = ysize / data_ratio Xmarg = Xsize - xr Ymarg = Ysize - yr # Setting these targets to, e.g., 0.05*xr does not seem to help. xm = 0 ym = 0 shared_x = self in self._shared_x_axes shared_y = self in self._shared_y_axes # Not sure whether we need this check: if shared_x and shared_y: raise RuntimeError("adjustable='datalim' is not allowed when both " "axes are shared") # If y is shared, then we are only allowed to change x, etc. if shared_y: adjust_y = False else: if xmarg > xm and ymarg > ym: adjy = ((Ymarg > 0 and y_expander < 0) or (Xmarg < 0 and y_expander > 0)) else: adjy = y_expander > 0 adjust_y = shared_x or adjy # (Ymarg > xmarg) if adjust_y: yc = 0.5 * (ymin + ymax) y0 = yc - Ysize / 2.0 y1 = yc + Ysize / 2.0 self.set_ybound(y_trf.inverted().transform([y0, y1])) else: xc = 0.5 * (xmin + xmax) x0 = xc - Xsize / 2.0 x1 = xc + Xsize / 2.0 self.set_xbound(x_trf.inverted().transform([x0, x1])) def axis(self, *args, emit=True, **kwargs): """ Convenience method to get or set some axis properties. Call signatures:: xmin, xmax, ymin, ymax = axis() xmin, xmax, ymin, ymax = axis([xmin, xmax, ymin, ymax]) xmin, xmax, ymin, ymax = axis(option) xmin, xmax, ymin, ymax = axis(**kwargs) Parameters ---------- xmin, xmax, ymin, ymax : float, optional The axis limits to be set. This can also be achieved using :: ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax)) option : bool or str If a bool, turns axis lines and labels on or off. If a string, possible values are: ======== ========================================================== Value Description ======== ========================================================== 'on' Turn on axis lines and labels. Same as ``True``. 'off' Turn off axis lines and labels. Same as ``False``. 'equal' Set equal scaling (i.e., make circles circular) by changing axis limits. This is the same as ``ax.set_aspect('equal', adjustable='datalim')``. Explicit data limits may not be respected in this case. 'scaled' Set equal scaling (i.e., make circles circular) by changing dimensions of the plot box. This is the same as ``ax.set_aspect('equal', adjustable='box', anchor='C')``. Additionally, further autoscaling will be disabled. 'tight' Set limits just large enough to show all data, then disable further autoscaling. 'auto' Automatic scaling (fill plot box with data). 'image' 'scaled' with axis limits equal to data limits. 'square' Square plot; similar to 'scaled', but initially forcing ``xmax-xmin == ymax-ymin``. ======== ========================================================== emit : bool, default: True Whether observers are notified of the axis limit change. This option is passed on to `~.Axes.set_xlim` and `~.Axes.set_ylim`. Returns ------- xmin, xmax, ymin, ymax : float The axis limits. See Also -------- matplotlib.axes.Axes.set_xlim matplotlib.axes.Axes.set_ylim """ if len(args) == 1 and isinstance(args[0], (str, bool)): s = args[0] if s is True: s = 'on' if s is False: s = 'off' s = s.lower() if s == 'on': self.set_axis_on() elif s == 'off': self.set_axis_off() elif s in ('equal', 'tight', 'scaled', 'auto', 'image', 'square'): self.set_autoscale_on(True) self.set_aspect('auto') self.autoscale_view(tight=False) # self.apply_aspect() if s == 'equal': self.set_aspect('equal', adjustable='datalim') elif s == 'scaled': self.set_aspect('equal', adjustable='box', anchor='C') self.set_autoscale_on(False) # Req. by Mark Bakker elif s == 'tight': self.autoscale_view(tight=True) self.set_autoscale_on(False) elif s == 'image': self.autoscale_view(tight=True) self.set_autoscale_on(False) self.set_aspect('equal', adjustable='box', anchor='C') elif s == 'square': self.set_aspect('equal', adjustable='box', anchor='C') self.set_autoscale_on(False) xlim = self.get_xlim() ylim = self.get_ylim() edge_size = max(np.diff(xlim), np.diff(ylim))[0] self.set_xlim([xlim[0], xlim[0] + edge_size], emit=emit, auto=False) self.set_ylim([ylim[0], ylim[0] + edge_size], emit=emit, auto=False) else: raise ValueError('Unrecognized string %s to axis; ' 'try on or off' % s) else: if len(args) >= 1: if len(args) != 1: cbook.warn_deprecated( "3.2", message="Passing more than one positional " "argument to axis() is deprecated and will raise a " "TypeError %(removal)s.") limits = args[0] try: xmin, xmax, ymin, ymax = limits except (TypeError, ValueError) as err: raise TypeError('the first argument to axis() must be an ' 'interable of the form ' '[xmin, xmax, ymin, ymax]') from err else: xmin = kwargs.pop('xmin', None) xmax = kwargs.pop('xmax', None) ymin = kwargs.pop('ymin', None) ymax = kwargs.pop('ymax', None) xauto = (None # Keep autoscale state as is. if xmin is None and xmax is None else False) # Turn off autoscale. yauto = (None if ymin is None and ymax is None else False) self.set_xlim(xmin, xmax, emit=emit, auto=xauto) self.set_ylim(ymin, ymax, emit=emit, auto=yauto) if kwargs: raise TypeError(f"axis() got an unexpected keyword argument " f"'{next(iter(kwargs))}'") return (*self.get_xlim(), *self.get_ylim()) def get_legend(self): """Return the `.Legend` instance, or None if no legend is defined.""" return self.legend_ def get_images(self): r"""Return a list of `.AxesImage`\s contained by the Axes.""" return cbook.silent_list('AxesImage', self.images) def get_lines(self): """Return a list of lines contained by the Axes.""" return cbook.silent_list('Line2D', self.lines) def get_xaxis(self): """Return the XAxis instance.""" return self.xaxis def get_yaxis(self): """Return the YAxis instance.""" return self.yaxis get_xgridlines = _axis_method_wrapper("xaxis", "get_gridlines") get_xticklines = _axis_method_wrapper("xaxis", "get_ticklines") get_ygridlines = _axis_method_wrapper("yaxis", "get_gridlines") get_yticklines = _axis_method_wrapper("yaxis", "get_ticklines") # Adding and tracking artists def _sci(self, im): """ Set the current image. This image will be the target of colormap functions like `~.pyplot.viridis`, and other functions such as `~.pyplot.clim`. The current image is an attribute of the current axes. """ if isinstance(im, mpl.contour.ContourSet): if im.collections[0] not in self.collections: raise ValueError("ContourSet must be in current Axes") elif im not in self.images and im not in self.collections: raise ValueError("Argument must be an image, collection, or " "ContourSet in this Axes") self._current_image = im def _gci(self): """Helper for `~matplotlib.pyplot.gci`; do not use elsewhere.""" return self._current_image def has_data(self): """ Return *True* if any artists have been added to axes. This should not be used to determine whether the *dataLim* need to be updated, and may not actually be useful for anything. """ return ( len(self.collections) + len(self.images) + len(self.lines) + len(self.patches)) > 0 def add_artist(self, a): """ Add an `~.Artist` to the axes, and return the artist. Use `add_artist` only for artists for which there is no dedicated "add" method; and if necessary, use a method such as `update_datalim` to manually update the dataLim if the artist is to be included in autoscaling. If no ``transform`` has been specified when creating the artist (e.g. ``artist.get_transform() == None``) then the transform is set to ``ax.transData``. """ a.axes = self self.artists.append(a) a._remove_method = self.artists.remove self._set_artist_props(a) a.set_clip_path(self.patch) self.stale = True return a def add_child_axes(self, ax): """ Add an `~.AxesBase` to the axes' children; return the child axes. This is the lowlevel version. See `.axes.Axes.inset_axes`. """ # normally axes have themselves as the axes, but these need to have # their parent... # Need to bypass the getter... ax._axes = self ax.stale_callback = martist._stale_axes_callback self.child_axes.append(ax) ax._remove_method = self.child_axes.remove self.stale = True return ax def add_collection(self, collection, autolim=True): """ Add a `~.Collection` to the axes' collections; return the collection. """ label = collection.get_label() if not label: collection.set_label('_collection%d' % len(self.collections)) self.collections.append(collection) collection._remove_method = self.collections.remove self._set_artist_props(collection) if collection.get_clip_path() is None: collection.set_clip_path(self.patch) if autolim: # Make sure viewLim is not stale (mostly to match # pre-lazy-autoscale behavior, which is not really better). self._unstale_viewLim() self.update_datalim(collection.get_datalim(self.transData)) self.stale = True return collection def add_image(self, image): """ Add an `~.AxesImage` to the axes' images; return the image. """ self._set_artist_props(image) if not image.get_label(): image.set_label('_image%d' % len(self.images)) self.images.append(image) image._remove_method = self.images.remove self.stale = True return image def _update_image_limits(self, image): xmin, xmax, ymin, ymax = image.get_extent() self.axes.update_datalim(((xmin, ymin), (xmax, ymax))) def add_line(self, line): """ Add a `.Line2D` to the axes' lines; return the line. """ self._set_artist_props(line) if line.get_clip_path() is None: line.set_clip_path(self.patch) self._update_line_limits(line) if not line.get_label(): line.set_label('_line%d' % len(self.lines)) self.lines.append(line) line._remove_method = self.lines.remove self.stale = True return line def _add_text(self, txt): """ Add a `~.Text` to the axes' texts; return the text. """ self._set_artist_props(txt) self.texts.append(txt) txt._remove_method = self.texts.remove self.stale = True return txt def _update_line_limits(self, line): """ Figures out the data limit of the given line, updating self.dataLim. """ path = line.get_path() if path.vertices.size == 0: return line_trans = line.get_transform() if line_trans == self.transData: data_path = path elif any(line_trans.contains_branch_seperately(self.transData)): # identify the transform to go from line's coordinates # to data coordinates trans_to_data = line_trans - self.transData # if transData is affine we can use the cached non-affine component # of line's path. (since the non-affine part of line_trans is # entirely encapsulated in trans_to_data). if self.transData.is_affine: line_trans_path = line._get_transformed_path() na_path, _ = line_trans_path.get_transformed_path_and_affine() data_path = trans_to_data.transform_path_affine(na_path) else: data_path = trans_to_data.transform_path(path) else: # for backwards compatibility we update the dataLim with the # coordinate range of the given path, even though the coordinate # systems are completely different. This may occur in situations # such as when ax.transAxes is passed through for absolute # positioning. data_path = path if data_path.vertices.size > 0: updatex, updatey = line_trans.contains_branch_seperately( self.transData) self.dataLim.update_from_path(data_path, self.ignore_existing_data_limits, updatex=updatex, updatey=updatey) self.ignore_existing_data_limits = False def add_patch(self, p): """ Add a `~.Patch` to the axes' patches; return the patch. """ self._set_artist_props(p) if p.get_clip_path() is None: p.set_clip_path(self.patch) self._update_patch_limits(p) self.patches.append(p) p._remove_method = self.patches.remove return p def _update_patch_limits(self, patch): """Update the data limits for the given patch.""" # hist can add zero height Rectangles, which is useful to keep # the bins, counts and patches lined up, but it throws off log # scaling. We'll ignore rects with zero height or width in # the auto-scaling # cannot check for '==0' since unitized data may not compare to zero # issue #2150 - we update the limits if patch has non zero width # or height. if (isinstance(patch, mpatches.Rectangle) and ((not patch.get_width()) and (not patch.get_height()))): return vertices = patch.get_path().vertices if vertices.size > 0: xys = patch.get_patch_transform().transform(vertices) if patch.get_data_transform() != self.transData: patch_to_data = (patch.get_data_transform() - self.transData) xys = patch_to_data.transform(xys) updatex, updatey = patch.get_transform().\ contains_branch_seperately(self.transData) self.update_datalim(xys, updatex=updatex, updatey=updatey) def add_table(self, tab): """ Add a `~.Table` to the axes' tables; return the table. """ self._set_artist_props(tab) self.tables.append(tab) tab.set_clip_path(self.patch) tab._remove_method = self.tables.remove return tab def add_container(self, container): """ Add a `~.Container` to the axes' containers; return the container. """ label = container.get_label() if not label: container.set_label('_container%d' % len(self.containers)) self.containers.append(container) container._remove_method = self.containers.remove return container def _on_units_changed(self, scalex=False, scaley=False): """ Callback for processing changes to axis units. Currently requests updates of data limits and view limits. """ self.relim() self._request_autoscale_view(scalex=scalex, scaley=scaley) def relim(self, visible_only=False): """ Recompute the data limits based on current artists. At present, `~.Collection` instances are not supported. Parameters ---------- visible_only : bool, default: False Whether to exclude invisible artists. """ # Collections are deliberately not supported (yet); see # the TODO note in artists.py. self.dataLim.ignore(True) self.dataLim.set_points(mtransforms.Bbox.null().get_points()) self.ignore_existing_data_limits = True for line in self.lines: if not visible_only or line.get_visible(): self._update_line_limits(line) for p in self.patches: if not visible_only or p.get_visible(): self._update_patch_limits(p) for image in self.images: if not visible_only or image.get_visible(): self._update_image_limits(image) def update_datalim(self, xys, updatex=True, updatey=True): """ Extend the `~.Axes.dataLim` Bbox to include the given points. If no data is set currently, the Bbox will ignore its limits and set the bound to be the bounds of the xydata (*xys*). Otherwise, it will compute the bounds of the union of its current data and the data in *xys*. Parameters ---------- xys : 2D array-like The points to include in the data limits Bbox. This can be either a list of (x, y) tuples or a Nx2 array. updatex, updatey : bool, default: True Whether to update the x/y limits. """ xys = np.asarray(xys) if not np.any(np.isfinite(xys)): return self.dataLim.update_from_data_xy(xys, self.ignore_existing_data_limits, updatex=updatex, updatey=updatey) self.ignore_existing_data_limits = False @cbook.deprecated( "3.3", alternative="ax.dataLim.set(Bbox.union([ax.dataLim, bounds]))") def update_datalim_bounds(self, bounds): """ Extend the `~.Axes.datalim` Bbox to include the given `~matplotlib.transforms.Bbox`. Parameters ---------- bounds : `~matplotlib.transforms.Bbox` """ self.dataLim.set(mtransforms.Bbox.union([self.dataLim, bounds])) def _process_unit_info(self, xdata=None, ydata=None, kwargs=None): """Look for unit *kwargs* and update the axis instances as necessary""" def _process_single_axis(data, axis, unit_name, kwargs): # Return if there's no axis set if axis is None: return kwargs if data is not None: # We only need to update if there is nothing set yet. if not axis.have_units(): axis.update_units(data) # Check for units in the kwargs, and if present update axis if kwargs is not None: units = kwargs.pop(unit_name, axis.units) if self.name == 'polar': polar_units = {'xunits': 'thetaunits', 'yunits': 'runits'} units = kwargs.pop(polar_units[unit_name], units) if units != axis.units: axis.set_units(units) # If the units being set imply a different converter, # we need to update. if data is not None: axis.update_units(data) return kwargs kwargs = _process_single_axis(xdata, self.xaxis, 'xunits', kwargs) kwargs = _process_single_axis(ydata, self.yaxis, 'yunits', kwargs) return kwargs def in_axes(self, mouseevent): """ Return *True* if the given *mouseevent* (in display coords) is in the Axes """ return self.patch.contains(mouseevent)[0] def get_autoscale_on(self): """ Get whether autoscaling is applied for both axes on plot commands """ return self._autoscaleXon and self._autoscaleYon def get_autoscalex_on(self): """ Get whether autoscaling for the x-axis is applied on plot commands """ return self._autoscaleXon def get_autoscaley_on(self): """ Get whether autoscaling for the y-axis is applied on plot commands """ return self._autoscaleYon def set_autoscale_on(self, b): """ Set whether autoscaling is applied on plot commands Parameters ---------- b : bool """ self._autoscaleXon = b self._autoscaleYon = b def set_autoscalex_on(self, b): """ Set whether autoscaling for the x-axis is applied on plot commands Parameters ---------- b : bool """ self._autoscaleXon = b def set_autoscaley_on(self, b): """ Set whether autoscaling for the y-axis is applied on plot commands Parameters ---------- b : bool """ self._autoscaleYon = b @property def use_sticky_edges(self): """ When autoscaling, whether to obey all `Artist.sticky_edges`. Default is ``True``. Setting this to ``False`` ensures that the specified margins will be applied, even if the plot includes an image, for example, which would otherwise force a view limit to coincide with its data limit. The changing this property does not change the plot until `autoscale` or `autoscale_view` is called. """ return self._use_sticky_edges @use_sticky_edges.setter def use_sticky_edges(self, b): self._use_sticky_edges = bool(b) # No effect until next autoscaling, which will mark the axes as stale. def set_xmargin(self, m): """ Set padding of X data limits prior to autoscaling. *m* times the data interval will be added to each end of that interval before it is used in autoscaling. For example, if your data is in the range [0, 2], a factor of ``m = 0.1`` will result in a range [-0.2, 2.2]. Negative values -0.5 < m < 0 will result in clipping of the data range. I.e. for a data range [0, 2], a factor of ``m = -0.1`` will result in a range [0.2, 1.8]. Parameters ---------- m : float greater than -0.5 """ if m <= -0.5: raise ValueError("margin must be greater than -0.5") self._xmargin = m self._request_autoscale_view(scalex=True, scaley=False) self.stale = True def set_ymargin(self, m): """ Set padding of Y data limits prior to autoscaling. *m* times the data interval will be added to each end of that interval before it is used in autoscaling. For example, if your data is in the range [0, 2], a factor of ``m = 0.1`` will result in a range [-0.2, 2.2]. Negative values -0.5 < m < 0 will result in clipping of the data range. I.e. for a data range [0, 2], a factor of ``m = -0.1`` will result in a range [0.2, 1.8]. Parameters ---------- m : float greater than -0.5 """ if m <= -0.5: raise ValueError("margin must be greater than -0.5") self._ymargin = m self._request_autoscale_view(scalex=False, scaley=True) self.stale = True def margins(self, *margins, x=None, y=None, tight=True): """ Set or retrieve autoscaling margins. The padding added to each limit of the axes is the *margin* times the data interval. All input parameters must be floats within the range [0, 1]. Passing both positional and keyword arguments is invalid and will raise a TypeError. If no arguments (positional or otherwise) are provided, the current margins will remain in place and simply be returned. Specifying any margin changes only the autoscaling; for example, if *xmargin* is not None, then *xmargin* times the X data interval will be added to each end of that interval before it is used in autoscaling. Parameters ---------- *margins : float, optional If a single positional argument is provided, it specifies both margins of the x-axis and y-axis limits. If two positional arguments are provided, they will be interpreted as *xmargin*, *ymargin*. If setting the margin on a single axis is desired, use the keyword arguments described below. x, y : float, optional Specific margin values for the x-axis and y-axis, respectively. These cannot be used with positional arguments, but can be used individually to alter on e.g., only the y-axis. tight : bool or None, default: True The *tight* parameter is passed to :meth:`autoscale_view`, which is executed after a margin is changed; the default here is *True*, on the assumption that when margins are specified, no additional padding to match tick marks is usually desired. Set *tight* to *None* will preserve the previous setting. Returns ------- xmargin, ymargin : float Notes ----- If a previously used Axes method such as :meth:`pcolor` has set :attr:`use_sticky_edges` to `True`, only the limits not set by the "sticky artists" will be modified. To force all of the margins to be set, set :attr:`use_sticky_edges` to `False` before calling :meth:`margins`. """ if margins and x is not None and y is not None: raise TypeError('Cannot pass both positional and keyword ' 'arguments for x and/or y.') elif len(margins) == 1: x = y = margins[0] elif len(margins) == 2: x, y = margins elif margins: raise TypeError('Must pass a single positional argument for all ' 'margins, or one for each margin (x, y).') if x is None and y is None: if tight is not True: cbook._warn_external(f'ignoring tight={tight!r} in get mode') return self._xmargin, self._ymargin if tight is not None: self._tight = tight if x is not None: self.set_xmargin(x) if y is not None: self.set_ymargin(y) def set_rasterization_zorder(self, z): """ Parameters ---------- z : float or None zorder below which artists are rasterized. ``None`` means that artists do not get rasterized based on zorder. """ self._rasterization_zorder = z self.stale = True def get_rasterization_zorder(self): """Return the zorder value below which artists will be rasterized.""" return self._rasterization_zorder def autoscale(self, enable=True, axis='both', tight=None): """ Autoscale the axis view to the data (toggle). Convenience method for simple axis view autoscaling. It turns autoscaling on or off, and then, if autoscaling for either axis is on, it performs the autoscaling on the specified axis or axes. Parameters ---------- enable : bool or None, default: True True turns autoscaling on, False turns it off. None leaves the autoscaling state unchanged. axis : {'both', 'x', 'y'}, default: 'both' Which axis to operate on. tight : bool or None, default: None If True, first set the margins to zero. Then, this argument is forwarded to `autoscale_view` (regardless of its value); see the description of its behavior there. """ if enable is None: scalex = True scaley = True else: scalex = False scaley = False if axis in ['x', 'both']: self._autoscaleXon = bool(enable) scalex = self._autoscaleXon if axis in ['y', 'both']: self._autoscaleYon = bool(enable) scaley = self._autoscaleYon if tight and scalex: self._xmargin = 0 if tight and scaley: self._ymargin = 0 self._request_autoscale_view(tight=tight, scalex=scalex, scaley=scaley) def autoscale_view(self, tight=None, scalex=True, scaley=True): """ Autoscale the view limits using the data limits. Parameters ---------- tight : bool or None If *True*, only expand the axis limits using the margins. Note that unlike for `autoscale`, ``tight=True`` does *not* set the margins to zero. If *False* and :rc:`axes.autolimit_mode` is 'round_numbers', then after expansion by the margins, further expand the axis limits using the axis major locator. If None (the default), reuse the value set in the previous call to `autoscale_view` (the initial value is False, but the default style sets :rc:`axes.autolimit_mode` to 'data', in which case this behaves like True). scalex : bool, default: True Whether to autoscale the x axis. scaley : bool, default: True Whether to autoscale the y axis. Notes ----- The autoscaling preserves any preexisting axis direction reversal. The data limits are not updated automatically when artist data are changed after the artist has been added to an Axes instance. In that case, use :meth:`matplotlib.axes.Axes.relim` prior to calling autoscale_view. If the views of the axes are fixed, e.g. via `set_xlim`, they will not be changed by autoscale_view(). See :meth:`matplotlib.axes.Axes.autoscale` for an alternative. """ if tight is not None: self._tight = bool(tight) x_stickies = y_stickies = np.array([]) if self.use_sticky_edges: # Only iterate over axes and artists if needed. The check for # ``hasattr(ax, "lines")`` is necessary because this can be called # very early in the axes init process (e.g., for twin axes) when # these attributes don't even exist yet, in which case # `get_children` would raise an AttributeError. if self._xmargin and scalex and self._autoscaleXon: x_stickies = np.sort(np.concatenate([ artist.sticky_edges.x for ax in self._shared_x_axes.get_siblings(self) if hasattr(ax, "lines") for artist in ax.get_children()])) if self._ymargin and scaley and self._autoscaleYon: y_stickies = np.sort(np.concatenate([ artist.sticky_edges.y for ax in self._shared_y_axes.get_siblings(self) if hasattr(ax, "lines") for artist in ax.get_children()])) if self.get_xscale().lower() == 'log': x_stickies = x_stickies[x_stickies > 0] if self.get_yscale().lower() == 'log': y_stickies = y_stickies[y_stickies > 0] def handle_single_axis(scale, autoscaleon, shared_axes, interval, minpos, axis, margin, stickies, set_bound): if not (scale and autoscaleon): return # nothing to do... shared = shared_axes.get_siblings(self) dl = [ax.dataLim for ax in shared] # ignore non-finite data limits if good limits exist finite_dl = [d for d in dl if np.isfinite(d).all()] if len(finite_dl): # if finite limits exist for at least one axis (and the # other is infinite), restore the finite limits x_finite = [d for d in dl if (np.isfinite(d.intervalx).all() and (d not in finite_dl))] y_finite = [d for d in dl if (np.isfinite(d.intervaly).all() and (d not in finite_dl))] dl = finite_dl dl.extend(x_finite) dl.extend(y_finite) bb = mtransforms.BboxBase.union(dl) x0, x1 = getattr(bb, interval) # If x0 and x1 are non finite, use the locator to figure out # default limits. locator = axis.get_major_locator() x0, x1 = locator.nonsingular(x0, x1) # Prevent margin addition from crossing a sticky value. A small # tolerance must be added due to floating point issues with # streamplot; it is defined relative to x0, x1, x1-x0 but has # no absolute term (e.g. "+1e-8") to avoid issues when working with # datasets where all values are tiny (less than 1e-8). tol = 1e-5 * max(abs(x0), abs(x1), abs(x1 - x0)) # Index of largest element < x0 + tol, if any. i0 = stickies.searchsorted(x0 + tol) - 1 x0bound = stickies[i0] if i0 != -1 else None # Index of smallest element > x1 - tol, if any. i1 = stickies.searchsorted(x1 - tol) x1bound = stickies[i1] if i1 != len(stickies) else None # Add the margin in figure space and then transform back, to handle # non-linear scales. minpos = getattr(bb, minpos) transform = axis.get_transform() inverse_trans = transform.inverted() x0, x1 = axis._scale.limit_range_for_scale(x0, x1, minpos) x0t, x1t = transform.transform([x0, x1]) delta = (x1t - x0t) * margin if not np.isfinite(delta): delta = 0 # If a bound isn't finite, set margin to zero. x0, x1 = inverse_trans.transform([x0t - delta, x1t + delta]) # Apply sticky bounds. if x0bound is not None: x0 = max(x0, x0bound) if x1bound is not None: x1 = min(x1, x1bound) if not self._tight: x0, x1 = locator.view_limits(x0, x1) set_bound(x0, x1) # End of definition of internal function 'handle_single_axis'. handle_single_axis( scalex, self._autoscaleXon, self._shared_x_axes, 'intervalx', 'minposx', self.xaxis, self._xmargin, x_stickies, self.set_xbound) handle_single_axis( scaley, self._autoscaleYon, self._shared_y_axes, 'intervaly', 'minposy', self.yaxis, self._ymargin, y_stickies, self.set_ybound) def _get_axis_list(self): return self.xaxis, self.yaxis def _get_axis_map(self): """ Return a mapping of `Axis` "names" to `Axis` instances. The `Axis` name is derived from the attribute under which the instance is stored, so e.g. for polar axes, the theta-axis is still named "x" and the r-axis is still named "y" (for back-compatibility). In practice, this means that the entries are typically "x" and "y", and additionally "z" for 3D axes. """ d = {} axis_list = self._get_axis_list() for k, v in vars(self).items(): if k.endswith("axis") and v in axis_list: d[k[:-len("axis")]] = v return d def _update_title_position(self, renderer): """ Update the title position based on the bounding box enclosing all the ticklabels and x-axis spine and xlabel... """ if self._autotitlepos is not None and not self._autotitlepos: _log.debug('title position was updated manually, not adjusting') return titles = (self.title, self._left_title, self._right_title) for title in titles: x, _ = title.get_position() # need to start again in case of window resizing title.set_position((x, 1.0)) # need to check all our twins too... axs = self._twinned_axes.get_siblings(self) # and all the children for ax in self.child_axes: if ax is not None: locator = ax.get_axes_locator() if locator: pos = locator(self, renderer) ax.apply_aspect(pos) else: ax.apply_aspect() axs = axs + [ax] top = -np.Inf for ax in axs: if (ax.xaxis.get_ticks_position() in ['top', 'unknown'] or ax.xaxis.get_label_position() == 'top'): bb = ax.xaxis.get_tightbbox(renderer) else: bb = ax.get_window_extent(renderer) if bb is not None: top = max(top, bb.ymax) if top < 0: # the top of axes is not even on the figure, so don't try and # automatically place it. _log.debug('top of axes not in the figure, so title not moved') return if title.get_window_extent(renderer).ymin < top: _, y = self.transAxes.inverted().transform((0, top)) title.set_position((x, y)) # empirically, this doesn't always get the min to top, # so we need to adjust again. if title.get_window_extent(renderer).ymin < top: _, y = self.transAxes.inverted().transform( (0., 2 * top - title.get_window_extent(renderer).ymin)) title.set_position((x, y)) ymax = max(title.get_position()[1] for title in titles) for title in titles: # now line up all the titles at the highest baseline. x, _ = title.get_position() title.set_position((x, ymax)) # Drawing @martist.allow_rasterization @cbook._delete_parameter( "3.3", "inframe", alternative="Axes.redraw_in_frame()") def draw(self, renderer=None, inframe=False): # docstring inherited if renderer is None: cbook.warn_deprecated( "3.3", message="Support for not passing the 'renderer' " "parameter to Axes.draw() is deprecated since %(since)s and " "will be removed %(removal)s. Use axes.draw_artist(axes) " "instead.") renderer = self.figure._cachedRenderer if renderer is None: raise RuntimeError('No renderer defined') if not self.get_visible(): return self._unstale_viewLim() renderer.open_group('axes', gid=self.get_gid()) # prevent triggering call backs during the draw process self._stale = True # loop over self and child axes... locator = self.get_axes_locator() if locator: pos = locator(self, renderer) self.apply_aspect(pos) else: self.apply_aspect() artists = self.get_children() artists.remove(self.patch) # the frame draws the edges around the axes patch -- we # decouple these so the patch can be in the background and the # frame in the foreground. Do this before drawing the axis # objects so that the spine has the opportunity to update them. if not (self.axison and self._frameon): for spine in self.spines.values(): artists.remove(spine) self._update_title_position(renderer) if not self.axison or inframe: for _axis in self._get_axis_list(): artists.remove(_axis) if inframe: artists.remove(self.title) artists.remove(self._left_title) artists.remove(self._right_title) if not self.figure.canvas.is_saving(): artists = [a for a in artists if not a.get_animated() or a in self.images] artists = sorted(artists, key=attrgetter('zorder')) # rasterize artists with negative zorder # if the minimum zorder is negative, start rasterization rasterization_zorder = self._rasterization_zorder if (rasterization_zorder is not None and artists and artists[0].zorder < rasterization_zorder): renderer.start_rasterizing() artists_rasterized = [a for a in artists if a.zorder < rasterization_zorder] artists = [a for a in artists if a.zorder >= rasterization_zorder] else: artists_rasterized = [] # the patch draws the background rectangle -- the frame below # will draw the edges if self.axison and self._frameon: self.patch.draw(renderer) if artists_rasterized: for a in artists_rasterized: a.draw(renderer) renderer.stop_rasterizing() mimage._draw_list_compositing_images(renderer, self, artists) renderer.close_group('axes') self.stale = False def draw_artist(self, a): """ Efficiently redraw a single artist. This method can only be used after an initial draw which caches the renderer. """ if self.figure._cachedRenderer is None: raise AttributeError("draw_artist can only be used after an " "initial draw which caches the renderer") a.draw(self.figure._cachedRenderer) def redraw_in_frame(self): """ Efficiently redraw Axes data, but not axis ticks, labels, etc. This method can only be used after an initial draw which caches the renderer. """ if self.figure._cachedRenderer is None: raise AttributeError("redraw_in_frame can only be used after an " "initial draw which caches the renderer") with ExitStack() as stack: for artist in [*self._get_axis_list(), self.title, self._left_title, self._right_title]: stack.push(artist.set_visible, artist.get_visible()) artist.set_visible(False) self.draw(self.figure._cachedRenderer) def get_renderer_cache(self): return self.figure._cachedRenderer # Axes rectangle characteristics def get_frame_on(self): """Get whether the axes rectangle patch is drawn.""" return self._frameon def set_frame_on(self, b): """ Set whether the axes rectangle patch is drawn. Parameters ---------- b : bool """ self._frameon = b self.stale = True def get_axisbelow(self): """ Get whether axis ticks and gridlines are above or below most artists. Returns ------- bool or 'line' See Also -------- set_axisbelow """ return self._axisbelow def set_axisbelow(self, b): """ Set whether axis ticks and gridlines are above or below most artists. This controls the zorder of the ticks and gridlines. For more information on the zorder see :doc:`/gallery/misc/zorder_demo`. Parameters ---------- b : bool or 'line' Possible values: - *True* (zorder = 0.5): Ticks and gridlines are below all Artists. - 'line' (zorder = 1.5): Ticks and gridlines are above patches (e.g. rectangles, with default zorder = 1) but still below lines and markers (with their default zorder = 2). - *False* (zorder = 2.5): Ticks and gridlines are above patches and lines / markers. See Also -------- get_axisbelow """ self._axisbelow = axisbelow = validate_axisbelow(b) if axisbelow is True: zorder = 0.5 elif axisbelow is False: zorder = 2.5 elif axisbelow == "line": zorder = 1.5 else: raise ValueError("Unexpected axisbelow value") for axis in self._get_axis_list(): axis.set_zorder(zorder) self.stale = True @docstring.dedent_interpd def grid(self, b=None, which='major', axis='both', **kwargs): """ Configure the grid lines. Parameters ---------- b : bool or None, optional Whether to show the grid lines. If any *kwargs* are supplied, it is assumed you want the grid on and *b* will be set to True. If *b* is *None* and there are no *kwargs*, this toggles the visibility of the lines. which : {'major', 'minor', 'both'}, optional The grid lines to apply the changes on. axis : {'both', 'x', 'y'}, optional The axis to apply the changes on. **kwargs : `.Line2D` properties Define the line properties of the grid, e.g.:: grid(color='r', linestyle='-', linewidth=2) Valid keyword arguments are: %(_Line2D_docstr)s Notes ----- The axis is drawn as a unit, so the effective zorder for drawing the grid is determined by the zorder of each axis, not by the zorder of the `.Line2D` objects comprising the grid. Therefore, to set grid zorder, use `.set_axisbelow` or, for more control, call the `~.Artist.set_zorder` method of each axis. """ if len(kwargs): b = True cbook._check_in_list(['x', 'y', 'both'], axis=axis) if axis in ['x', 'both']: self.xaxis.grid(b, which=which, **kwargs) if axis in ['y', 'both']: self.yaxis.grid(b, which=which, **kwargs) def ticklabel_format(self, *, axis='both', style='', scilimits=None, useOffset=None, useLocale=None, useMathText=None): r""" Configure the `.ScalarFormatter` used by default for linear axes. If a parameter is not set, the corresponding property of the formatter is left unchanged. Parameters ---------- axis : {'x', 'y', 'both'}, default: 'both' The axes to configure. Only major ticks are affected. style : {'sci', 'scientific', 'plain'} Whether to use scientific notation. The formatter default is to use scientific notation. scilimits : pair of ints (m, n) Scientific notation is used only for numbers outside the range 10\ :sup:`m` to 10\ :sup:`n` (and only if the formatter is configured to use scientific notation at all). Use (0, 0) to include all numbers. Use (m, m) where m != 0 to fix the order of magnitude to 10\ :sup:`m`. The formatter default is :rc:`axes.formatter.limits`. useOffset : bool or float If True, the offset is calculated as needed. If False, no offset is used. If a numeric value, it sets the offset. The formatter default is :rc:`axes.formatter.useoffset`. useLocale : bool Whether to format the number using the current locale or using the C (English) locale. This affects e.g. the decimal separator. The formatter default is :rc:`axes.formatter.use_locale`. useMathText : bool Render the offset and scientific notation in mathtext. The formatter default is :rc:`axes.formatter.use_mathtext`. Raises ------ AttributeError If the current formatter is not a `.ScalarFormatter`. """ style = style.lower() axis = axis.lower() if scilimits is not None: try: m, n = scilimits m + n + 1 # check that both are numbers except (ValueError, TypeError) as err: raise ValueError("scilimits must be a sequence of 2 integers" ) from err STYLES = {'sci': True, 'scientific': True, 'plain': False, '': None} is_sci_style = cbook._check_getitem(STYLES, style=style) axis_map = {**{k: [v] for k, v in self._get_axis_map().items()}, 'both': self._get_axis_list()} axises = cbook._check_getitem(axis_map, axis=axis) try: for axis in axises: if is_sci_style is not None: axis.major.formatter.set_scientific(is_sci_style) if scilimits is not None: axis.major.formatter.set_powerlimits(scilimits) if useOffset is not None: axis.major.formatter.set_useOffset(useOffset) if useLocale is not None: axis.major.formatter.set_useLocale(useLocale) if useMathText is not None: axis.major.formatter.set_useMathText(useMathText) except AttributeError as err: raise AttributeError( "This method only works with the ScalarFormatter") from err def locator_params(self, axis='both', tight=None, **kwargs): """ Control behavior of major tick locators. Because the locator is involved in autoscaling, `~.Axes.autoscale_view` is called automatically after the parameters are changed. Parameters ---------- axis : {'both', 'x', 'y'}, default: 'both' The axis on which to operate. tight : bool or None, optional Parameter passed to `~.Axes.autoscale_view`. Default is None, for no change. Other Parameters ---------------- **kwargs Remaining keyword arguments are passed to directly to the ``set_params()`` method of the locator. Supported keywords depend on the type of the locator. See for example `~.ticker.MaxNLocator.set_params` for the `.ticker.MaxNLocator` used by default for linear axes. Examples -------- When plotting small subplots, one might want to reduce the maximum number of ticks and use tight bounds, for example:: ax.locator_params(tight=True, nbins=4) """ cbook._check_in_list(['x', 'y', 'both'], axis=axis) update_x = axis in ['x', 'both'] update_y = axis in ['y', 'both'] if update_x: self.xaxis.get_major_locator().set_params(**kwargs) if update_y: self.yaxis.get_major_locator().set_params(**kwargs) self._request_autoscale_view(tight=tight, scalex=update_x, scaley=update_y) self.stale = True def tick_params(self, axis='both', **kwargs): """ Change the appearance of ticks, tick labels, and gridlines. Tick properties that are not explicitly set using the keyword arguments remain unchanged unless *reset* is True. Parameters ---------- axis : {'x', 'y', 'both'}, default: 'both' The axis to which the parameters are applied. which : {'major', 'minor', 'both'}, default: 'major' The group of ticks to which the parameters are applied. reset : bool, default: False Whether to reset the ticks to defaults before updating them. Other Parameters ---------------- direction : {'in', 'out', 'inout'} Puts ticks inside the axes, outside the axes, or both. length : float Tick length in points. width : float Tick width in points. color : color Tick color. pad : float Distance in points between tick and label. labelsize : float or str Tick label font size in points or as a string (e.g., 'large'). labelcolor : color Tick label color. colors : color Tick color and label color. zorder : float Tick and label zorder. bottom, top, left, right : bool Whether to draw the respective ticks. labelbottom, labeltop, labelleft, labelright : bool Whether to draw the respective tick labels. labelrotation : float Tick label rotation grid_color : color Gridline color. grid_alpha : float Transparency of gridlines: 0 (transparent) to 1 (opaque). grid_linewidth : float Width of gridlines in points. grid_linestyle : str Any valid `.Line2D` line style spec. Examples -------- :: ax.tick_params(direction='out', length=6, width=2, colors='r', grid_color='r', grid_alpha=0.5) This will make all major ticks be red, pointing out of the box, and with dimensions 6 points by 2 points. Tick labels will also be red. Gridlines will be red and translucent. """ cbook._check_in_list(['x', 'y', 'both'], axis=axis) if axis in ['x', 'both']: xkw = dict(kwargs) xkw.pop('left', None) xkw.pop('right', None) xkw.pop('labelleft', None) xkw.pop('labelright', None) self.xaxis.set_tick_params(**xkw) if axis in ['y', 'both']: ykw = dict(kwargs) ykw.pop('top', None) ykw.pop('bottom', None) ykw.pop('labeltop', None) ykw.pop('labelbottom', None) self.yaxis.set_tick_params(**ykw) def set_axis_off(self): """ Turn the x- and y-axis off. This affects the axis lines, ticks, ticklabels, grid and axis labels. """ self.axison = False self.stale = True def set_axis_on(self): """ Turn the x- and y-axis on. This affects the axis lines, ticks, ticklabels, grid and axis labels. """ self.axison = True self.stale = True # data limits, ticks, tick labels, and formatting def invert_xaxis(self): """ Invert the x-axis. See Also -------- xaxis_inverted get_xlim, set_xlim get_xbound, set_xbound """ self.xaxis.set_inverted(not self.xaxis.get_inverted()) xaxis_inverted = _axis_method_wrapper("xaxis", "get_inverted") def get_xbound(self): """ Return the lower and upper x-axis bounds, in increasing order. See Also -------- set_xbound get_xlim, set_xlim invert_xaxis, xaxis_inverted """ left, right = self.get_xlim() if left < right: return left, right else: return right, left def set_xbound(self, lower=None, upper=None): """ Set the lower and upper numerical bounds of the x-axis. This method will honor axes inversion regardless of parameter order. It will not change the autoscaling setting (`.get_autoscalex_on()`). Parameters ---------- lower, upper : float or None The lower and upper bounds. If *None*, the respective axis bound is not modified. See Also -------- get_xbound get_xlim, set_xlim invert_xaxis, xaxis_inverted """ if upper is None and np.iterable(lower): lower, upper = lower old_lower, old_upper = self.get_xbound() if lower is None: lower = old_lower if upper is None: upper = old_upper self.set_xlim(sorted((lower, upper), reverse=bool(self.xaxis_inverted())), auto=None) def get_xlim(self): """ Return the x-axis view limits. Returns ------- left, right : (float, float) The current x-axis limits in data coordinates. See Also -------- set_xlim set_xbound, get_xbound invert_xaxis, xaxis_inverted Notes ----- The x-axis may be inverted, in which case the *left* value will be greater than the *right* value. """ return tuple(self.viewLim.intervalx) def _validate_converted_limits(self, limit, convert): """ Raise ValueError if converted limits are non-finite. Note that this function also accepts None as a limit argument. Returns ------- The limit value after call to convert(), or None if limit is None. """ if limit is not None: converted_limit = convert(limit) if (isinstance(converted_limit, Real) and not np.isfinite(converted_limit)): raise ValueError("Axis limits cannot be NaN or Inf") return converted_limit def set_xlim(self, left=None, right=None, emit=True, auto=False, *, xmin=None, xmax=None): """ Set the x-axis view limits. Parameters ---------- left : float, optional The left xlim in data coordinates. Passing *None* leaves the limit unchanged. The left and right xlims may also be passed as the tuple (*left*, *right*) as the first positional argument (or as the *left* keyword argument). .. ACCEPTS: (bottom: float, top: float) right : float, optional The right xlim in data coordinates. Passing *None* leaves the limit unchanged. emit : bool, default: True Whether to notify observers of limit change. auto : bool or None, default: False Whether to turn on autoscaling of the x-axis. True turns on, False turns off, None leaves unchanged. xmin, xmax : float, optional They are equivalent to left and right respectively, and it is an error to pass both *xmin* and *left* or *xmax* and *right*. Returns ------- left, right : (float, float) The new x-axis limits in data coordinates. See Also -------- get_xlim set_xbound, get_xbound invert_xaxis, xaxis_inverted Notes ----- The *left* value may be greater than the *right* value, in which case the x-axis values will decrease from left to right. Examples -------- >>> set_xlim(left, right) >>> set_xlim((left, right)) >>> left, right = set_xlim(left, right) One limit may be left unchanged. >>> set_xlim(right=right_lim) Limits may be passed in reverse order to flip the direction of the x-axis. For example, suppose *x* represents the number of years before present. The x-axis limits might be set like the following so 5000 years ago is on the left of the plot and the present is on the right. >>> set_xlim(5000, 0) """ if right is None and np.iterable(left): left, right = left if xmin is not None: if left is not None: raise TypeError('Cannot pass both `xmin` and `left`') left = xmin if xmax is not None: if right is not None: raise TypeError('Cannot pass both `xmax` and `right`') right = xmax self._process_unit_info(xdata=(left, right)) left = self._validate_converted_limits(left, self.convert_xunits) right = self._validate_converted_limits(right, self.convert_xunits) if left is None or right is None: # Axes init calls set_xlim(0, 1) before get_xlim() can be called, # so only grab the limits if we really need them. old_left, old_right = self.get_xlim() if left is None: left = old_left if right is None: right = old_right if self.get_xscale() == 'log' and (left <= 0 or right <= 0): # Axes init calls set_xlim(0, 1) before get_xlim() can be called, # so only grab the limits if we really need them. old_left, old_right = self.get_xlim() if left <= 0: cbook._warn_external( 'Attempted to set non-positive left xlim on a ' 'log-scaled axis.\n' 'Invalid limit will be ignored.') left = old_left if right <= 0: cbook._warn_external( 'Attempted to set non-positive right xlim on a ' 'log-scaled axis.\n' 'Invalid limit will be ignored.') right = old_right if left == right: cbook._warn_external( f"Attempting to set identical left == right == {left} results " f"in singular transformations; automatically expanding.") reverse = left > right left, right = self.xaxis.get_major_locator().nonsingular(left, right) left, right = self.xaxis.limit_range_for_scale(left, right) # cast to bool to avoid bad interaction between python 3.8 and np.bool_ left, right = sorted([left, right], reverse=bool(reverse)) self._viewLim.intervalx = (left, right) # Mark viewlims as no longer stale without triggering an autoscale. for ax in self._shared_x_axes.get_siblings(self): ax._stale_viewlim_x = False if auto is not None: self._autoscaleXon = bool(auto) if emit: self.callbacks.process('xlim_changed', self) # Call all of the other x-axes that are shared with this one for other in self._shared_x_axes.get_siblings(self): if other is not self: other.set_xlim(self.viewLim.intervalx, emit=False, auto=auto) if other.figure != self.figure: other.figure.canvas.draw_idle() self.stale = True return left, right get_xscale = _axis_method_wrapper("xaxis", "get_scale") def set_xscale(self, value, **kwargs): """ Set the x-axis scale. Parameters ---------- value : {"linear", "log", "symlog", "logit", ...} The axis scale type to apply. **kwargs Different keyword arguments are accepted, depending on the scale. See the respective class keyword arguments: - `matplotlib.scale.LinearScale` - `matplotlib.scale.LogScale` - `matplotlib.scale.SymmetricalLogScale` - `matplotlib.scale.LogitScale` Notes ----- By default, Matplotlib supports the above mentioned scales. Additionally, custom scales may be registered using `matplotlib.scale.register_scale`. These scales can then also be used here. """ old_default_lims = (self.xaxis.get_major_locator() .nonsingular(-np.inf, np.inf)) g = self.get_shared_x_axes() for ax in g.get_siblings(self): ax.xaxis._set_scale(value, **kwargs) ax._update_transScale() ax.stale = True new_default_lims = (self.xaxis.get_major_locator() .nonsingular(-np.inf, np.inf)) if old_default_lims != new_default_lims: # Force autoscaling now, to take advantage of the scale locator's # nonsingular() before it possibly gets swapped out by the user. self.autoscale_view(scaley=False) get_xticks = _axis_method_wrapper("xaxis", "get_ticklocs") set_xticks = _axis_method_wrapper("xaxis", "set_ticks") get_xmajorticklabels = _axis_method_wrapper("xaxis", "get_majorticklabels") get_xminorticklabels = _axis_method_wrapper("xaxis", "get_minorticklabels") get_xticklabels = _axis_method_wrapper("xaxis", "get_ticklabels") set_xticklabels = _axis_method_wrapper( "xaxis", "_set_ticklabels", doc_sub={"Axis.set_ticks": "Axes.set_xticks"}) def invert_yaxis(self): """ Invert the y-axis. See Also -------- yaxis_inverted get_ylim, set_ylim get_ybound, set_ybound """ self.yaxis.set_inverted(not self.yaxis.get_inverted()) yaxis_inverted = _axis_method_wrapper("yaxis", "get_inverted") def get_ybound(self): """ Return the lower and upper y-axis bounds, in increasing order. See Also -------- set_ybound get_ylim, set_ylim invert_yaxis, yaxis_inverted """ bottom, top = self.get_ylim() if bottom < top: return bottom, top else: return top, bottom def set_ybound(self, lower=None, upper=None): """ Set the lower and upper numerical bounds of the y-axis. This method will honor axes inversion regardless of parameter order. It will not change the autoscaling setting (`.get_autoscaley_on()`). Parameters ---------- lower, upper : float or None The lower and upper bounds. If *None*, the respective axis bound is not modified. See Also -------- get_ybound get_ylim, set_ylim invert_yaxis, yaxis_inverted """ if upper is None and np.iterable(lower): lower, upper = lower old_lower, old_upper = self.get_ybound() if lower is None: lower = old_lower if upper is None: upper = old_upper self.set_ylim(sorted((lower, upper), reverse=bool(self.yaxis_inverted())), auto=None) def get_ylim(self): """ Return the y-axis view limits. Returns ------- bottom, top : (float, float) The current y-axis limits in data coordinates. See Also -------- set_ylim set_ybound, get_ybound invert_yaxis, yaxis_inverted Notes ----- The y-axis may be inverted, in which case the *bottom* value will be greater than the *top* value. """ return tuple(self.viewLim.intervaly) def set_ylim(self, bottom=None, top=None, emit=True, auto=False, *, ymin=None, ymax=None): """ Set the y-axis view limits. Parameters ---------- bottom : float, optional The bottom ylim in data coordinates. Passing *None* leaves the limit unchanged. The bottom and top ylims may also be passed as the tuple (*bottom*, *top*) as the first positional argument (or as the *bottom* keyword argument). .. ACCEPTS: (bottom: float, top: float) top : float, optional The top ylim in data coordinates. Passing *None* leaves the limit unchanged. emit : bool, default: True Whether to notify observers of limit change. auto : bool or None, default: False Whether to turn on autoscaling of the y-axis. *True* turns on, *False* turns off, *None* leaves unchanged. ymin, ymax : float, optional They are equivalent to bottom and top respectively, and it is an error to pass both *ymin* and *bottom* or *ymax* and *top*. Returns ------- bottom, top : (float, float) The new y-axis limits in data coordinates. See Also -------- get_ylim set_ybound, get_ybound invert_yaxis, yaxis_inverted Notes ----- The *bottom* value may be greater than the *top* value, in which case the y-axis values will decrease from *bottom* to *top*. Examples -------- >>> set_ylim(bottom, top) >>> set_ylim((bottom, top)) >>> bottom, top = set_ylim(bottom, top) One limit may be left unchanged. >>> set_ylim(top=top_lim) Limits may be passed in reverse order to flip the direction of the y-axis. For example, suppose ``y`` represents depth of the ocean in m. The y-axis limits might be set like the following so 5000 m depth is at the bottom of the plot and the surface, 0 m, is at the top. >>> set_ylim(5000, 0) """ if top is None and np.iterable(bottom): bottom, top = bottom if ymin is not None: if bottom is not None: raise TypeError('Cannot pass both `ymin` and `bottom`') bottom = ymin if ymax is not None: if top is not None: raise TypeError('Cannot pass both `ymax` and `top`') top = ymax self._process_unit_info(ydata=(bottom, top)) bottom = self._validate_converted_limits(bottom, self.convert_yunits) top = self._validate_converted_limits(top, self.convert_yunits) if bottom is None or top is None: # Axes init calls set_ylim(0, 1) before get_ylim() can be called, # so only grab the limits if we really need them. old_bottom, old_top = self.get_ylim() if bottom is None: bottom = old_bottom if top is None: top = old_top if self.get_yscale() == 'log' and (bottom <= 0 or top <= 0): # Axes init calls set_xlim(0, 1) before get_xlim() can be called, # so only grab the limits if we really need them. old_bottom, old_top = self.get_ylim() if bottom <= 0: cbook._warn_external( 'Attempted to set non-positive bottom ylim on a ' 'log-scaled axis.\n' 'Invalid limit will be ignored.') bottom = old_bottom if top <= 0: cbook._warn_external( 'Attempted to set non-positive top ylim on a ' 'log-scaled axis.\n' 'Invalid limit will be ignored.') top = old_top if bottom == top: cbook._warn_external( f"Attempting to set identical bottom == top == {bottom} " f"results in singular transformations; automatically " f"expanding.") reverse = bottom > top bottom, top = self.yaxis.get_major_locator().nonsingular(bottom, top) bottom, top = self.yaxis.limit_range_for_scale(bottom, top) # cast to bool to avoid bad interaction between python 3.8 and np.bool_ bottom, top = sorted([bottom, top], reverse=bool(reverse)) self._viewLim.intervaly = (bottom, top) # Mark viewlims as no longer stale without triggering an autoscale. for ax in self._shared_y_axes.get_siblings(self): ax._stale_viewlim_y = False if auto is not None: self._autoscaleYon = bool(auto) if emit: self.callbacks.process('ylim_changed', self) # Call all of the other y-axes that are shared with this one for other in self._shared_y_axes.get_siblings(self): if other is not self: other.set_ylim(self.viewLim.intervaly, emit=False, auto=auto) if other.figure != self.figure: other.figure.canvas.draw_idle() self.stale = True return bottom, top get_yscale = _axis_method_wrapper("yaxis", "get_scale") def set_yscale(self, value, **kwargs): """ Set the y-axis scale. Parameters ---------- value : {"linear", "log", "symlog", "logit", ...} The axis scale type to apply. **kwargs Different keyword arguments are accepted, depending on the scale. See the respective class keyword arguments: - `matplotlib.scale.LinearScale` - `matplotlib.scale.LogScale` - `matplotlib.scale.SymmetricalLogScale` - `matplotlib.scale.LogitScale` Notes ----- By default, Matplotlib supports the above mentioned scales. Additionally, custom scales may be registered using `matplotlib.scale.register_scale`. These scales can then also be used here. """ old_default_lims = (self.yaxis.get_major_locator() .nonsingular(-np.inf, np.inf)) g = self.get_shared_y_axes() for ax in g.get_siblings(self): ax.yaxis._set_scale(value, **kwargs) ax._update_transScale() ax.stale = True new_default_lims = (self.yaxis.get_major_locator() .nonsingular(-np.inf, np.inf)) if old_default_lims != new_default_lims: # Force autoscaling now, to take advantage of the scale locator's # nonsingular() before it possibly gets swapped out by the user. self.autoscale_view(scalex=False) get_yticks = _axis_method_wrapper("yaxis", "get_ticklocs") set_yticks = _axis_method_wrapper("yaxis", "set_ticks") get_ymajorticklabels = _axis_method_wrapper("yaxis", "get_majorticklabels") get_yminorticklabels = _axis_method_wrapper("yaxis", "get_minorticklabels") get_yticklabels = _axis_method_wrapper("yaxis", "get_ticklabels") set_yticklabels = _axis_method_wrapper( "yaxis", "_set_ticklabels", doc_sub={"Axis.set_ticks": "Axes.set_yticks"}) xaxis_date = _axis_method_wrapper("xaxis", "axis_date") yaxis_date = _axis_method_wrapper("yaxis", "axis_date") def format_xdata(self, x): """ Return *x* formatted as an x-value. This function will use the `.fmt_xdata` attribute if it is not None, else will fall back on the xaxis major formatter. """ return (self.fmt_xdata if self.fmt_xdata is not None else self.xaxis.get_major_formatter().format_data_short)(x) def format_ydata(self, y): """ Return *y* formatted as an y-value. This function will use the `.fmt_ydata` attribute if it is not None, else will fall back on the yaxis major formatter. """ return (self.fmt_ydata if self.fmt_ydata is not None else self.yaxis.get_major_formatter().format_data_short)(y) def format_coord(self, x, y): """Return a format string formatting the *x*, *y* coordinates.""" if x is None: xs = '???' else: xs = self.format_xdata(x) if y is None: ys = '???' else: ys = self.format_ydata(y) return 'x=%s y=%s' % (xs, ys) def minorticks_on(self): """ Display minor ticks on the axes. Displaying minor ticks may reduce performance; you may turn them off using `minorticks_off()` if drawing speed is a problem. """ for ax in (self.xaxis, self.yaxis): scale = ax.get_scale() if scale == 'log': s = ax._scale ax.set_minor_locator(mticker.LogLocator(s.base, s.subs)) elif scale == 'symlog': s = ax._scale ax.set_minor_locator( mticker.SymmetricalLogLocator(s._transform, s.subs)) else: ax.set_minor_locator(mticker.AutoMinorLocator()) def minorticks_off(self): """Remove minor ticks from the axes.""" self.xaxis.set_minor_locator(mticker.NullLocator()) self.yaxis.set_minor_locator(mticker.NullLocator()) # Interactive manipulation def can_zoom(self): """ Return *True* if this axes supports the zoom box button functionality. """ return True def can_pan(self): """ Return *True* if this axes supports any pan/zoom button functionality. """ return True def get_navigate(self): """ Get whether the axes responds to navigation commands """ return self._navigate def set_navigate(self, b): """ Set whether the axes responds to navigation toolbar commands Parameters ---------- b : bool """ self._navigate = b def get_navigate_mode(self): """ Get the navigation toolbar button status: 'PAN', 'ZOOM', or None """ return self._navigate_mode def set_navigate_mode(self, b): """ Set the navigation toolbar button status; .. warning:: this is not a user-API function. """ self._navigate_mode = b def _get_view(self): """ Save information required to reproduce the current view. Called before a view is changed, such as during a pan or zoom initiated by the user. You may return any information you deem necessary to describe the view. .. note:: Intended to be overridden by new projection types, but if not, the default implementation saves the view limits. You *must* implement :meth:`_set_view` if you implement this method. """ xmin, xmax = self.get_xlim() ymin, ymax = self.get_ylim() return xmin, xmax, ymin, ymax def _set_view(self, view): """ Apply a previously saved view. Called when restoring a view, such as with the navigation buttons. .. note:: Intended to be overridden by new projection types, but if not, the default implementation restores the view limits. You *must* implement :meth:`_get_view` if you implement this method. """ xmin, xmax, ymin, ymax = view self.set_xlim((xmin, xmax)) self.set_ylim((ymin, ymax)) def _set_view_from_bbox(self, bbox, direction='in', mode=None, twinx=False, twiny=False): """ Update view from a selection bbox. .. note:: Intended to be overridden by new projection types, but if not, the default implementation sets the view limits to the bbox directly. Parameters ---------- bbox : 4-tuple or 3 tuple * If bbox is a 4 tuple, it is the selected bounding box limits, in *display* coordinates. * If bbox is a 3 tuple, it is an (xp, yp, scl) triple, where (xp, yp) is the center of zooming and scl the scale factor to zoom by. direction : str The direction to apply the bounding box. * `'in'` - The bounding box describes the view directly, i.e., it zooms in. * `'out'` - The bounding box describes the size to make the existing view, i.e., it zooms out. mode : str or None The selection mode, whether to apply the bounding box in only the `'x'` direction, `'y'` direction or both (`None`). twinx : bool Whether this axis is twinned in the *x*-direction. twiny : bool Whether this axis is twinned in the *y*-direction. """ if len(bbox) == 3: Xmin, Xmax = self.get_xlim() Ymin, Ymax = self.get_ylim() xp, yp, scl = bbox # Zooming code if scl == 0: # Should not happen scl = 1. if scl > 1: direction = 'in' else: direction = 'out' scl = 1/scl # get the limits of the axes tranD2C = self.transData.transform xmin, ymin = tranD2C((Xmin, Ymin)) xmax, ymax = tranD2C((Xmax, Ymax)) # set the range xwidth = xmax - xmin ywidth = ymax - ymin xcen = (xmax + xmin)*.5 ycen = (ymax + ymin)*.5 xzc = (xp*(scl - 1) + xcen)/scl yzc = (yp*(scl - 1) + ycen)/scl bbox = [xzc - xwidth/2./scl, yzc - ywidth/2./scl, xzc + xwidth/2./scl, yzc + ywidth/2./scl] elif len(bbox) != 4: # should be len 3 or 4 but nothing else cbook._warn_external( "Warning in _set_view_from_bbox: bounding box is not a tuple " "of length 3 or 4. Ignoring the view change.") return # Original limits. xmin0, xmax0 = self.get_xbound() ymin0, ymax0 = self.get_ybound() # The zoom box in screen coords. startx, starty, stopx, stopy = bbox # Convert to data coords. (startx, starty), (stopx, stopy) = self.transData.inverted().transform( [(startx, starty), (stopx, stopy)]) # Clip to axes limits. xmin, xmax = np.clip(sorted([startx, stopx]), xmin0, xmax0) ymin, ymax = np.clip(sorted([starty, stopy]), ymin0, ymax0) # Don't double-zoom twinned axes or if zooming only the other axis. if twinx or mode == "y": xmin, xmax = xmin0, xmax0 if twiny or mode == "x": ymin, ymax = ymin0, ymax0 if direction == "in": new_xbound = xmin, xmax new_ybound = ymin, ymax elif direction == "out": x_trf = self.xaxis.get_transform() sxmin0, sxmax0, sxmin, sxmax = x_trf.transform( [xmin0, xmax0, xmin, xmax]) # To screen space. factor = (sxmax0 - sxmin0) / (sxmax - sxmin) # Unzoom factor. # Move original bounds away by # (factor) x (distance between unzoom box and axes bbox). sxmin1 = sxmin0 - factor * (sxmin - sxmin0) sxmax1 = sxmax0 + factor * (sxmax0 - sxmax) # And back to data space. new_xbound = x_trf.inverted().transform([sxmin1, sxmax1]) y_trf = self.yaxis.get_transform() symin0, symax0, symin, symax = y_trf.transform( [ymin0, ymax0, ymin, ymax]) factor = (symax0 - symin0) / (symax - symin) symin1 = symin0 - factor * (symin - symin0) symax1 = symax0 + factor * (symax0 - symax) new_ybound = y_trf.inverted().transform([symin1, symax1]) if not twinx and mode != "y": self.set_xbound(new_xbound) if not twiny and mode != "x": self.set_ybound(new_ybound) def start_pan(self, x, y, button): """ Called when a pan operation has started. Parameters ---------- x, y : float The mouse coordinates in display coords. button : `.MouseButton` The pressed mouse button. Notes ----- This is intended to be overridden by new projection types. """ self._pan_start = types.SimpleNamespace( lim=self.viewLim.frozen(), trans=self.transData.frozen(), trans_inverse=self.transData.inverted().frozen(), bbox=self.bbox.frozen(), x=x, y=y) def end_pan(self): """ Called when a pan operation completes (when the mouse button is up.) Notes ----- This is intended to be overridden by new projection types. """ del self._pan_start def drag_pan(self, button, key, x, y): """ Called when the mouse moves during a pan operation. Parameters ---------- button : `.MouseButton` The pressed mouse button. key : str or None The pressed key, if any. x, y : float The mouse coordinates in display coords. Notes ----- This is intended to be overridden by new projection types. """ def format_deltas(key, dx, dy): if key == 'control': if abs(dx) > abs(dy): dy = dx else: dx = dy elif key == 'x': dy = 0 elif key == 'y': dx = 0 elif key == 'shift': if 2 * abs(dx) < abs(dy): dx = 0 elif 2 * abs(dy) < abs(dx): dy = 0 elif abs(dx) > abs(dy): dy = dy / abs(dy) * abs(dx) else: dx = dx / abs(dx) * abs(dy) return dx, dy p = self._pan_start dx = x - p.x dy = y - p.y if dx == dy == 0: return if button == 1: dx, dy = format_deltas(key, dx, dy) result = p.bbox.translated(-dx, -dy).transformed(p.trans_inverse) elif button == 3: try: dx = -dx / self.bbox.width dy = -dy / self.bbox.height dx, dy = format_deltas(key, dx, dy) if self.get_aspect() != 'auto': dx = dy = 0.5 * (dx + dy) alpha = np.power(10.0, (dx, dy)) start = np.array([p.x, p.y]) oldpoints = p.lim.transformed(p.trans) newpoints = start + alpha * (oldpoints - start) result = (mtransforms.Bbox(newpoints) .transformed(p.trans_inverse)) except OverflowError: cbook._warn_external('Overflow while panning') return else: return valid = np.isfinite(result.transformed(p.trans)) points = result.get_points().astype(object) # Just ignore invalid limits (typically, underflow in log-scale). points[~valid] = None self.set_xlim(points[:, 0]) self.set_ylim(points[:, 1]) def get_children(self): # docstring inherited. return [ *self.collections, *self.patches, *self.lines, *self.texts, *self.artists, *self.spines.values(), *self._get_axis_list(), self.title, self._left_title, self._right_title, *self.tables, *self.images, *self.child_axes, *([self.legend_] if self.legend_ is not None else []), self.patch, ] def contains(self, mouseevent): # docstring inherited. inside, info = self._default_contains(mouseevent) if inside is not None: return inside, info return self.patch.contains(mouseevent) def contains_point(self, point): """ Return whether *point* (pair of pixel coordinates) is inside the axes patch. """ return self.patch.contains_point(point, radius=1.0) def get_default_bbox_extra_artists(self): """ Return a default list of artists that are used for the bounding box calculation. Artists are excluded either by not being visible or ``artist.set_in_layout(False)``. """ artists = self.get_children() if not (self.axison and self._frameon): # don't do bbox on spines if frame not on. for spine in self.spines.values(): artists.remove(spine) if not self.axison: for _axis in self._get_axis_list(): artists.remove(_axis) artists.remove(self.title) artists.remove(self._left_title) artists.remove(self._right_title) return [artist for artist in artists if (artist.get_visible() and artist.get_in_layout())] def get_tightbbox(self, renderer, call_axes_locator=True, bbox_extra_artists=None, *, for_layout_only=False): """ Return the tight bounding box of the axes, including axis and their decorators (xlabel, title, etc). Artists that have ``artist.set_in_layout(False)`` are not included in the bbox. Parameters ---------- renderer : `.RendererBase` subclass renderer that will be used to draw the figures (i.e. ``fig.canvas.get_renderer()``) bbox_extra_artists : list of `.Artist` or ``None`` List of artists to include in the tight bounding box. If ``None`` (default), then all artist children of the axes are included in the tight bounding box. call_axes_locator : bool, default: True If *call_axes_locator* is ``False``, it does not call the ``_axes_locator`` attribute, which is necessary to get the correct bounding box. ``call_axes_locator=False`` can be used if the caller is only interested in the relative size of the tightbbox compared to the axes bbox. for_layout_only : default: False The bounding box will *not* include the x-extent of the title and the xlabel, or the y-extent of the ylabel. Returns ------- `.BboxBase` Bounding box in figure pixel coordinates. See Also -------- matplotlib.axes.Axes.get_window_extent matplotlib.axis.Axis.get_tightbbox matplotlib.spines.Spine.get_window_extent """ bb = [] if not self.get_visible(): return None locator = self.get_axes_locator() if locator and call_axes_locator: pos = locator(self, renderer) self.apply_aspect(pos) else: self.apply_aspect() if self.axison: if self.xaxis.get_visible(): try: bb_xaxis = self.xaxis.get_tightbbox( renderer, for_layout_only=for_layout_only) except TypeError: # in case downstream library has redefined axis: bb_xaxis = self.xaxis.get_tightbbox(renderer) if bb_xaxis: bb.append(bb_xaxis) if self.yaxis.get_visible(): try: bb_yaxis = self.yaxis.get_tightbbox( renderer, for_layout_only=for_layout_only) except TypeError: # in case downstream library has redefined axis: bb_yaxis = self.yaxis.get_tightbbox(renderer) if bb_yaxis: bb.append(bb_yaxis) self._update_title_position(renderer) axbbox = self.get_window_extent(renderer) bb.append(axbbox) for title in [self.title, self._left_title, self._right_title]: if title.get_visible(): bt = title.get_window_extent(renderer) if for_layout_only and bt.width > 0: # make the title bbox 1 pixel wide so its width # is not accounted for in bbox calculations in # tight/constrained_layout bt.x0 = (bt.x0 + bt.x1) / 2 - 0.5 bt.x1 = bt.x0 + 1.0 bb.append(bt) bbox_artists = bbox_extra_artists if bbox_artists is None: bbox_artists = self.get_default_bbox_extra_artists() for a in bbox_artists: # Extra check here to quickly see if clipping is on and # contained in the axes. If it is, don't get the tightbbox for # this artist because this can be expensive: clip_extent = a._get_clipping_extent_bbox() if clip_extent is not None: clip_extent = mtransforms.Bbox.intersection( clip_extent, axbbox) if np.all(clip_extent.extents == axbbox.extents): # clip extent is inside the axes bbox so don't check # this artist continue bbox = a.get_tightbbox(renderer) if (bbox is not None and 0 < bbox.width < np.inf and 0 < bbox.height < np.inf): bb.append(bbox) return mtransforms.Bbox.union( [b for b in bb if b.width != 0 or b.height != 0]) def _make_twin_axes(self, *args, **kwargs): """Make a twinx axes of self. This is used for twinx and twiny.""" # Typically, SubplotBase._make_twin_axes is called instead of this. if 'sharex' in kwargs and 'sharey' in kwargs: raise ValueError("Twinned Axes may share only one axis") ax2 = self.figure.add_axes(self.get_position(True), *args, **kwargs) self.set_adjustable('datalim') ax2.set_adjustable('datalim') self._twinned_axes.join(self, ax2) return ax2 def twinx(self): """ Create a twin Axes sharing the xaxis. Create a new Axes with an invisible x-axis and an independent y-axis positioned opposite to the original one (i.e. at right). The x-axis autoscale setting will be inherited from the original Axes. To ensure that the tick marks of both y-axes align, see `~matplotlib.ticker.LinearLocator`. Returns ------- Axes The newly created Axes instance Notes ----- For those who are 'picking' artists while using twinx, pick events are only called for the artists in the top-most axes. """ ax2 = self._make_twin_axes(sharex=self) ax2.yaxis.tick_right() ax2.yaxis.set_label_position('right') ax2.yaxis.set_offset_position('right') ax2.set_autoscalex_on(self.get_autoscalex_on()) self.yaxis.tick_left() ax2.xaxis.set_visible(False) ax2.patch.set_visible(False) return ax2 def twiny(self): """ Create a twin Axes sharing the yaxis. Create a new Axes with an invisible y-axis and an independent x-axis positioned opposite to the original one (i.e. at top). The y-axis autoscale setting will be inherited from the original Axes. To ensure that the tick marks of both x-axes align, see `~matplotlib.ticker.LinearLocator`. Returns ------- Axes The newly created Axes instance Notes ----- For those who are 'picking' artists while using twiny, pick events are only called for the artists in the top-most axes. """ ax2 = self._make_twin_axes(sharey=self) ax2.xaxis.tick_top() ax2.xaxis.set_label_position('top') ax2.set_autoscaley_on(self.get_autoscaley_on()) self.xaxis.tick_bottom() ax2.yaxis.set_visible(False) ax2.patch.set_visible(False) return ax2 def get_shared_x_axes(self): """Return a reference to the shared axes Grouper object for x axes.""" return self._shared_x_axes def get_shared_y_axes(self): """Return a reference to the shared axes Grouper object for y axes.""" return self._shared_y_axes