"""RCV1 dataset. The dataset page is available at http://jmlr.csail.mit.edu/papers/volume5/lewis04a/ """ # Author: Tom Dupre la Tour # License: BSD 3 clause import logging from os import remove, makedirs from os.path import dirname, exists, join from gzip import GzipFile import numpy as np import scipy.sparse as sp import joblib from . import get_data_home from ._base import _pkl_filepath from ._base import _fetch_remote from ._base import RemoteFileMetadata from ._svmlight_format_io import load_svmlight_files from ..utils import shuffle as shuffle_ from ..utils import Bunch from ..utils.validation import _deprecate_positional_args # The original vectorized data can be found at: # http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt0.dat.gz # http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt1.dat.gz # http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt2.dat.gz # http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt3.dat.gz # http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_train.dat.gz # while the original stemmed token files can be found # in the README, section B.12.i.: # http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm XY_METADATA = ( RemoteFileMetadata( url='https://ndownloader.figshare.com/files/5976069', checksum=('ed40f7e418d10484091b059703eeb95a' 'e3199fe042891dcec4be6696b9968374'), filename='lyrl2004_vectors_test_pt0.dat.gz'), RemoteFileMetadata( url='https://ndownloader.figshare.com/files/5976066', checksum=('87700668ae45d45d5ca1ef6ae9bd81ab' '0f5ec88cc95dcef9ae7838f727a13aa6'), filename='lyrl2004_vectors_test_pt1.dat.gz'), RemoteFileMetadata( url='https://ndownloader.figshare.com/files/5976063', checksum=('48143ac703cbe33299f7ae9f4995db4' '9a258690f60e5debbff8995c34841c7f5'), filename='lyrl2004_vectors_test_pt2.dat.gz'), RemoteFileMetadata( url='https://ndownloader.figshare.com/files/5976060', checksum=('dfcb0d658311481523c6e6ca0c3f5a3' 'e1d3d12cde5d7a8ce629a9006ec7dbb39'), filename='lyrl2004_vectors_test_pt3.dat.gz'), RemoteFileMetadata( url='https://ndownloader.figshare.com/files/5976057', checksum=('5468f656d0ba7a83afc7ad44841cf9a5' '3048a5c083eedc005dcdb5cc768924ae'), filename='lyrl2004_vectors_train.dat.gz') ) # The original data can be found at: # http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a08-topic-qrels/rcv1-v2.topics.qrels.gz TOPICS_METADATA = RemoteFileMetadata( url='https://ndownloader.figshare.com/files/5976048', checksum=('2a98e5e5d8b770bded93afc8930d882' '99474317fe14181aee1466cc754d0d1c1'), filename='rcv1v2.topics.qrels.gz') logger = logging.getLogger(__name__) @_deprecate_positional_args def fetch_rcv1(*, data_home=None, subset='all', download_if_missing=True, random_state=None, shuffle=False, return_X_y=False): """Load the RCV1 multilabel dataset (classification). Download it if necessary. Version: RCV1-v2, vectors, full sets, topics multilabels. ================= ===================== Classes 103 Samples total 804414 Dimensionality 47236 Features real, between 0 and 1 ================= ===================== Read more in the :ref:`User Guide `. .. versionadded:: 0.17 Parameters ---------- data_home : string, optional Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. subset : string, 'train', 'test', or 'all', default='all' Select the dataset to load: 'train' for the training set (23149 samples), 'test' for the test set (781265 samples), 'all' for both, with the training samples first if shuffle is False. This follows the official LYRL2004 chronological split. download_if_missing : boolean, default=True If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. random_state : int, RandomState instance, default=None Determines random number generation for dataset shuffling. Pass an int for reproducible output across multiple function calls. See :term:`Glossary `. shuffle : bool, default=False Whether to shuffle dataset. return_X_y : boolean, default=False. If True, returns ``(dataset.data, dataset.target)`` instead of a Bunch object. See below for more information about the `dataset.data` and `dataset.target` object. .. versionadded:: 0.20 Returns ------- dataset : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : scipy csr array, dtype np.float64, shape (804414, 47236) The array has 0.16% of non zero values. target : scipy csr array, dtype np.uint8, shape (804414, 103) Each sample has a value of 1 in its categories, and 0 in others. The array has 3.15% of non zero values. sample_id : numpy array, dtype np.uint32, shape (804414,) Identification number of each sample, as ordered in dataset.data. target_names : numpy array, dtype object, length (103) Names of each target (RCV1 topics), as ordered in dataset.target. DESCR : string Description of the RCV1 dataset. (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.20 """ N_SAMPLES = 804414 N_FEATURES = 47236 N_CATEGORIES = 103 N_TRAIN = 23149 data_home = get_data_home(data_home=data_home) rcv1_dir = join(data_home, "RCV1") if download_if_missing: if not exists(rcv1_dir): makedirs(rcv1_dir) samples_path = _pkl_filepath(rcv1_dir, "samples.pkl") sample_id_path = _pkl_filepath(rcv1_dir, "sample_id.pkl") sample_topics_path = _pkl_filepath(rcv1_dir, "sample_topics.pkl") topics_path = _pkl_filepath(rcv1_dir, "topics_names.pkl") # load data (X) and sample_id if download_if_missing and (not exists(samples_path) or not exists(sample_id_path)): files = [] for each in XY_METADATA: logger.info("Downloading %s" % each.url) file_path = _fetch_remote(each, dirname=rcv1_dir) files.append(GzipFile(filename=file_path)) Xy = load_svmlight_files(files, n_features=N_FEATURES) # Training data is before testing data X = sp.vstack([Xy[8], Xy[0], Xy[2], Xy[4], Xy[6]]).tocsr() sample_id = np.hstack((Xy[9], Xy[1], Xy[3], Xy[5], Xy[7])) sample_id = sample_id.astype(np.uint32, copy=False) joblib.dump(X, samples_path, compress=9) joblib.dump(sample_id, sample_id_path, compress=9) # delete archives for f in files: f.close() remove(f.name) else: X = joblib.load(samples_path) sample_id = joblib.load(sample_id_path) # load target (y), categories, and sample_id_bis if download_if_missing and (not exists(sample_topics_path) or not exists(topics_path)): logger.info("Downloading %s" % TOPICS_METADATA.url) topics_archive_path = _fetch_remote(TOPICS_METADATA, dirname=rcv1_dir) # parse the target file n_cat = -1 n_doc = -1 doc_previous = -1 y = np.zeros((N_SAMPLES, N_CATEGORIES), dtype=np.uint8) sample_id_bis = np.zeros(N_SAMPLES, dtype=np.int32) category_names = {} with GzipFile(filename=topics_archive_path, mode='rb') as f: for line in f: line_components = line.decode("ascii").split(" ") if len(line_components) == 3: cat, doc, _ = line_components if cat not in category_names: n_cat += 1 category_names[cat] = n_cat doc = int(doc) if doc != doc_previous: doc_previous = doc n_doc += 1 sample_id_bis[n_doc] = doc y[n_doc, category_names[cat]] = 1 # delete archive remove(topics_archive_path) # Samples in X are ordered with sample_id, # whereas in y, they are ordered with sample_id_bis. permutation = _find_permutation(sample_id_bis, sample_id) y = y[permutation, :] # save category names in a list, with same order than y categories = np.empty(N_CATEGORIES, dtype=object) for k in category_names.keys(): categories[category_names[k]] = k # reorder categories in lexicographic order order = np.argsort(categories) categories = categories[order] y = sp.csr_matrix(y[:, order]) joblib.dump(y, sample_topics_path, compress=9) joblib.dump(categories, topics_path, compress=9) else: y = joblib.load(sample_topics_path) categories = joblib.load(topics_path) if subset == 'all': pass elif subset == 'train': X = X[:N_TRAIN, :] y = y[:N_TRAIN, :] sample_id = sample_id[:N_TRAIN] elif subset == 'test': X = X[N_TRAIN:, :] y = y[N_TRAIN:, :] sample_id = sample_id[N_TRAIN:] else: raise ValueError("Unknown subset parameter. Got '%s' instead of one" " of ('all', 'train', test')" % subset) if shuffle: X, y, sample_id = shuffle_(X, y, sample_id, random_state=random_state) module_path = dirname(__file__) with open(join(module_path, 'descr', 'rcv1.rst')) as rst_file: fdescr = rst_file.read() if return_X_y: return X, y return Bunch(data=X, target=y, sample_id=sample_id, target_names=categories, DESCR=fdescr) def _inverse_permutation(p): """inverse permutation p""" n = p.size s = np.zeros(n, dtype=np.int32) i = np.arange(n, dtype=np.int32) np.put(s, p, i) # s[p] = i return s def _find_permutation(a, b): """find the permutation from a to b""" t = np.argsort(a) u = np.argsort(b) u_ = _inverse_permutation(u) return t[u_]