"""Testing for Spectral Clustering methods""" import numpy as np from scipy import sparse import pytest import pickle from sklearn.utils import check_random_state from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_warns_message from sklearn.cluster import SpectralClustering, spectral_clustering from sklearn.cluster._spectral import discretize from sklearn.feature_extraction import img_to_graph from sklearn.metrics import pairwise_distances from sklearn.metrics import adjusted_rand_score from sklearn.metrics.pairwise import kernel_metrics, rbf_kernel from sklearn.neighbors import NearestNeighbors from sklearn.datasets import make_blobs try: from pyamg import smoothed_aggregation_solver # noqa amg_loaded = True except ImportError: amg_loaded = False @pytest.mark.parametrize('eigen_solver', ('arpack', 'lobpcg')) @pytest.mark.parametrize('assign_labels', ('kmeans', 'discretize')) def test_spectral_clustering(eigen_solver, assign_labels): S = np.array([[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0]]) for mat in (S, sparse.csr_matrix(S)): model = SpectralClustering(random_state=0, n_clusters=2, affinity='precomputed', eigen_solver=eigen_solver, assign_labels=assign_labels ).fit(mat) labels = model.labels_ if labels[0] == 0: labels = 1 - labels assert adjusted_rand_score(labels, [1, 1, 1, 0, 0, 0, 0]) == 1 model_copy = pickle.loads(pickle.dumps(model)) assert model_copy.n_clusters == model.n_clusters assert model_copy.eigen_solver == model.eigen_solver assert_array_equal(model_copy.labels_, model.labels_) def test_spectral_unknown_mode(): # Test that SpectralClustering fails with an unknown mode set. centers = np.array([ [0., 0., 0.], [10., 10., 10.], [20., 20., 20.], ]) X, true_labels = make_blobs(n_samples=100, centers=centers, cluster_std=1., random_state=42) D = pairwise_distances(X) # Distance matrix S = np.max(D) - D # Similarity matrix S = sparse.coo_matrix(S) with pytest.raises(ValueError): spectral_clustering(S, n_clusters=2, random_state=0, eigen_solver="") def test_spectral_unknown_assign_labels(): # Test that SpectralClustering fails with an unknown assign_labels set. centers = np.array([ [0., 0., 0.], [10., 10., 10.], [20., 20., 20.], ]) X, true_labels = make_blobs(n_samples=100, centers=centers, cluster_std=1., random_state=42) D = pairwise_distances(X) # Distance matrix S = np.max(D) - D # Similarity matrix S = sparse.coo_matrix(S) with pytest.raises(ValueError): spectral_clustering(S, n_clusters=2, random_state=0, assign_labels="") def test_spectral_clustering_sparse(): X, y = make_blobs(n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01) S = rbf_kernel(X, gamma=1) S = np.maximum(S - 1e-4, 0) S = sparse.coo_matrix(S) labels = SpectralClustering(random_state=0, n_clusters=2, affinity='precomputed').fit(S).labels_ assert adjusted_rand_score(y, labels) == 1 def test_precomputed_nearest_neighbors_filtering(): # Test precomputed graph filtering when containing too many neighbors X, y = make_blobs(n_samples=200, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01) n_neighbors = 2 results = [] for additional_neighbors in [0, 10]: nn = NearestNeighbors( n_neighbors=n_neighbors + additional_neighbors).fit(X) graph = nn.kneighbors_graph(X, mode='connectivity') labels = SpectralClustering(random_state=0, n_clusters=2, affinity='precomputed_nearest_neighbors', n_neighbors=n_neighbors).fit(graph).labels_ results.append(labels) assert_array_equal(results[0], results[1]) def test_affinities(): # Note: in the following, random_state has been selected to have # a dataset that yields a stable eigen decomposition both when built # on OSX and Linux X, y = make_blobs(n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01) # nearest neighbors affinity sp = SpectralClustering(n_clusters=2, affinity='nearest_neighbors', random_state=0) assert_warns_message(UserWarning, 'not fully connected', sp.fit, X) assert adjusted_rand_score(y, sp.labels_) == 1 sp = SpectralClustering(n_clusters=2, gamma=2, random_state=0) labels = sp.fit(X).labels_ assert adjusted_rand_score(y, labels) == 1 X = check_random_state(10).rand(10, 5) * 10 kernels_available = kernel_metrics() for kern in kernels_available: # Additive chi^2 gives a negative similarity matrix which # doesn't make sense for spectral clustering if kern != 'additive_chi2': sp = SpectralClustering(n_clusters=2, affinity=kern, random_state=0) labels = sp.fit(X).labels_ assert (X.shape[0],) == labels.shape sp = SpectralClustering(n_clusters=2, affinity=lambda x, y: 1, random_state=0) labels = sp.fit(X).labels_ assert (X.shape[0],) == labels.shape def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert kwargs == {} # no kernel_params that we didn't ask for return np.minimum(x, y).sum() sp = SpectralClustering(n_clusters=2, affinity=histogram, random_state=0) labels = sp.fit(X).labels_ assert (X.shape[0],) == labels.shape # raise error on unknown affinity sp = SpectralClustering(n_clusters=2, affinity='') with pytest.raises(ValueError): sp.fit(X) @pytest.mark.parametrize('n_samples', [50, 100, 150, 500]) def test_discretize(n_samples): # Test the discretize using a noise assignment matrix random_state = np.random.RandomState(seed=8) for n_class in range(2, 10): # random class labels y_true = random_state.randint(0, n_class + 1, n_samples) y_true = np.array(y_true, np.float) # noise class assignment matrix y_indicator = sparse.coo_matrix((np.ones(n_samples), (np.arange(n_samples), y_true)), shape=(n_samples, n_class + 1)) y_true_noisy = (y_indicator.toarray() + 0.1 * random_state.randn(n_samples, n_class + 1)) y_pred = discretize(y_true_noisy, random_state=random_state) assert adjusted_rand_score(y_true, y_pred) > 0.8 # TODO: Remove when pyamg does replaces sp.rand call with np.random.rand # https://github.com/scikit-learn/scikit-learn/issues/15913 @pytest.mark.filterwarnings( "ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*") def test_spectral_clustering_with_arpack_amg_solvers(): # Test that spectral_clustering is the same for arpack and amg solver # Based on toy example from plot_segmentation_toy.py # a small two coin image x, y = np.indices((40, 40)) center1, center2 = (14, 12), (20, 25) radius1, radius2 = 8, 7 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circles = circle1 | circle2 mask = circles.copy() img = circles.astype(float) graph = img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels_arpack = spectral_clustering( graph, n_clusters=2, eigen_solver='arpack', random_state=0) assert len(np.unique(labels_arpack)) == 2 if amg_loaded: labels_amg = spectral_clustering( graph, n_clusters=2, eigen_solver='amg', random_state=0) assert adjusted_rand_score(labels_arpack, labels_amg) == 1 else: with pytest.raises(ValueError): spectral_clustering(graph, n_clusters=2, eigen_solver='amg', random_state=0) def test_n_components(): # Test that after adding n_components, result is different and # n_components = n_clusters by default X, y = make_blobs(n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01) sp = SpectralClustering(n_clusters=2, random_state=0) labels = sp.fit(X).labels_ # set n_components = n_cluster and test if result is the same labels_same_ncomp = SpectralClustering(n_clusters=2, n_components=2, random_state=0).fit(X).labels_ # test that n_components=n_clusters by default assert_array_equal(labels, labels_same_ncomp) # test that n_components affect result # n_clusters=8 by default, and set n_components=2 labels_diff_ncomp = SpectralClustering(n_components=2, random_state=0).fit(X).labels_ assert not np.array_equal(labels, labels_diff_ncomp)