# Authors: William Mill (bill@billmill.org) # License: BSD 3 clause import numpy as np class DrawTree: def __init__(self, tree, parent=None, depth=0, number=1): self.x = -1. self.y = depth self.tree = tree self.children = [DrawTree(c, self, depth + 1, i + 1) for i, c in enumerate(tree.children)] self.parent = parent self.thread = None self.mod = 0 self.ancestor = self self.change = self.shift = 0 self._lmost_sibling = None # this is the number of the node in its group of siblings 1..n self.number = number def left(self): return self.thread or len(self.children) and self.children[0] def right(self): return self.thread or len(self.children) and self.children[-1] def lbrother(self): n = None if self.parent: for node in self.parent.children: if node == self: return n else: n = node return n def get_lmost_sibling(self): if not self._lmost_sibling and self.parent and self != \ self.parent.children[0]: self._lmost_sibling = self.parent.children[0] return self._lmost_sibling lmost_sibling = property(get_lmost_sibling) def __str__(self): return "%s: x=%s mod=%s" % (self.tree, self.x, self.mod) def __repr__(self): return self.__str__() def max_extents(self): extents = [c.max_extents() for c in self. children] extents.append((self.x, self.y)) return np.max(extents, axis=0) def buchheim(tree): dt = first_walk(DrawTree(tree)) min = second_walk(dt) if min < 0: third_walk(dt, -min) return dt def third_walk(tree, n): tree.x += n for c in tree.children: third_walk(c, n) def first_walk(v, distance=1.): if len(v.children) == 0: if v.lmost_sibling: v.x = v.lbrother().x + distance else: v.x = 0. else: default_ancestor = v.children[0] for w in v.children: first_walk(w) default_ancestor = apportion(w, default_ancestor, distance) # print("finished v =", v.tree, "children") execute_shifts(v) midpoint = (v.children[0].x + v.children[-1].x) / 2 w = v.lbrother() if w: v.x = w.x + distance v.mod = v.x - midpoint else: v.x = midpoint return v def apportion(v, default_ancestor, distance): w = v.lbrother() if w is not None: # in buchheim notation: # i == inner; o == outer; r == right; l == left; r = +; l = - vir = vor = v vil = w vol = v.lmost_sibling sir = sor = v.mod sil = vil.mod sol = vol.mod while vil.right() and vir.left(): vil = vil.right() vir = vir.left() vol = vol.left() vor = vor.right() vor.ancestor = v shift = (vil.x + sil) - (vir.x + sir) + distance if shift > 0: move_subtree(ancestor(vil, v, default_ancestor), v, shift) sir = sir + shift sor = sor + shift sil += vil.mod sir += vir.mod sol += vol.mod sor += vor.mod if vil.right() and not vor.right(): vor.thread = vil.right() vor.mod += sil - sor else: if vir.left() and not vol.left(): vol.thread = vir.left() vol.mod += sir - sol default_ancestor = v return default_ancestor def move_subtree(wl, wr, shift): subtrees = wr.number - wl.number # print(wl.tree, "is conflicted with", wr.tree, 'moving', subtrees, # 'shift', shift) # print wl, wr, wr.number, wl.number, shift, subtrees, shift/subtrees wr.change -= shift / subtrees wr.shift += shift wl.change += shift / subtrees wr.x += shift wr.mod += shift def execute_shifts(v): shift = change = 0 for w in v.children[::-1]: # print("shift:", w, shift, w.change) w.x += shift w.mod += shift change += w.change shift += w.shift + change def ancestor(vil, v, default_ancestor): # the relevant text is at the bottom of page 7 of # "Improving Walker's Algorithm to Run in Linear Time" by Buchheim et al, # (2002) # http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.8757&rep=rep1&type=pdf if vil.ancestor in v.parent.children: return vil.ancestor else: return default_ancestor def second_walk(v, m=0, depth=0, min=None): v.x += m v.y = depth if min is None or v.x < min: min = v.x for w in v.children: min = second_walk(w, m + v.mod, depth + 1, min) return min class Tree: def __init__(self, label="", node_id=-1, *children): self.label = label self.node_id = node_id if children: self.children = children else: self.children = []