import numpy as np

import skimage.data
from skimage.measure import compare_nrmse, compare_psnr, compare_mse

from skimage._shared import testing
from skimage._shared.testing import assert_equal, assert_almost_equal
from skimage._shared._warnings import expected_warnings


np.random.seed(5)
cam = skimage.data.camera()
sigma = 20.0
cam_noisy = np.clip(cam + sigma * np.random.randn(*cam.shape), 0, 255)
cam_noisy = cam_noisy.astype(cam.dtype)


def test_PSNR_vs_IPOL():
    # Tests vs. imdiff result from the following IPOL article and code:
    # https://www.ipol.im/pub/art/2011/g_lmii/
    p_IPOL = 22.4497
    with expected_warnings(['DEPRECATED']):
        p = compare_psnr(cam, cam_noisy)
    assert_almost_equal(p, p_IPOL, decimal=4)


def test_PSNR_float():
    with expected_warnings(['DEPRECATED']):
        p_uint8 = compare_psnr(cam, cam_noisy)
        p_float64 = compare_psnr(cam / 255., cam_noisy / 255.,
                                 data_range=1)
    assert_almost_equal(p_uint8, p_float64, decimal=5)

    # mixed precision inputs
    with expected_warnings(['DEPRECATED']):
        p_mixed = compare_psnr(cam / 255., np.float32(cam_noisy / 255.),
                               data_range=1)
    assert_almost_equal(p_mixed, p_float64, decimal=5)

    # mismatched dtype results in a warning if data_range is unspecified
    with expected_warnings(['Inputs have mismatched dtype', 'DEPRECATED']):
        p_mixed = compare_psnr(cam / 255., np.float32(cam_noisy / 255.))
    assert_almost_equal(p_mixed, p_float64, decimal=5)


def test_PSNR_errors():
    with expected_warnings(['DEPRECATED']):
        # shape mismatch
        with testing.raises(ValueError):
            compare_psnr(cam, cam[:-1, :])


def test_NRMSE():
    x = np.ones(4)
    y = np.asarray([0., 2., 2., 2.])
    with expected_warnings(['DEPRECATED']):
        assert_equal(compare_nrmse(y, x, 'mean'), 1 / np.mean(y))
        assert_equal(compare_nrmse(y, x, 'Euclidean'), 1 / np.sqrt(3))
        assert_equal(compare_nrmse(y, x, 'min-max'), 1 / (y.max() - y.min()))

        # mixed precision inputs are allowed
        assert_almost_equal(compare_nrmse(y, np.float32(x), 'min-max'),
                            1 / (y.max() - y.min()))


def test_NRMSE_no_int_overflow():
    camf = cam.astype(np.float32)
    cam_noisyf = cam_noisy.astype(np.float32)
    with expected_warnings(['DEPRECATED']):
        assert_almost_equal(compare_mse(cam, cam_noisy),
                            compare_mse(camf, cam_noisyf))
        assert_almost_equal(compare_nrmse(cam, cam_noisy),
                            compare_nrmse(camf, cam_noisyf))


def test_NRMSE_errors():
    x = np.ones(4)
    with expected_warnings(['DEPRECATED']):
        # shape mismatch
        with testing.raises(ValueError):
            compare_nrmse(x[:-1], x)
        # invalid normalization name
        with testing.raises(ValueError):
            compare_nrmse(x, x, norm_type='foo')