import numpy as np import collections from .._shared.utils import warn def integral_image(image): r"""Integral image / summed area table. The integral image contains the sum of all elements above and to the left of it, i.e.: .. math:: S[m, n] = \sum_{i \leq m} \sum_{j \leq n} X[i, j] Parameters ---------- image : ndarray Input image. Returns ------- S : ndarray Integral image/summed area table of same shape as input image. References ---------- .. [1] F.C. Crow, "Summed-area tables for texture mapping," ACM SIGGRAPH Computer Graphics, vol. 18, 1984, pp. 207-212. """ S = image for i in range(image.ndim): S = S.cumsum(axis=i) return S def integrate(ii, start, end): """Use an integral image to integrate over a given window. Parameters ---------- ii : ndarray Integral image. start : List of tuples, each tuple of length equal to dimension of `ii` Coordinates of top left corner of window(s). Each tuple in the list contains the starting row, col, ... index i.e `[(row_win1, col_win1, ...), (row_win2, col_win2,...), ...]`. end : List of tuples, each tuple of length equal to dimension of `ii` Coordinates of bottom right corner of window(s). Each tuple in the list containing the end row, col, ... index i.e `[(row_win1, col_win1, ...), (row_win2, col_win2, ...), ...]`. Returns ------- S : scalar or ndarray Integral (sum) over the given window(s). Examples -------- >>> arr = np.ones((5, 6), dtype=np.float) >>> ii = integral_image(arr) >>> integrate(ii, (1, 0), (1, 2)) # sum from (1, 0) to (1, 2) array([3.]) >>> integrate(ii, [(3, 3)], [(4, 5)]) # sum from (3, 3) to (4, 5) array([6.]) >>> # sum from (1, 0) to (1, 2) and from (3, 3) to (4, 5) >>> integrate(ii, [(1, 0), (3, 3)], [(1, 2), (4, 5)]) array([3., 6.]) """ start = np.atleast_2d(np.array(start)) end = np.atleast_2d(np.array(end)) rows = start.shape[0] total_shape = ii.shape total_shape = np.tile(total_shape, [rows, 1]) # convert negative indices into equivalent positive indices start_negatives = start < 0 end_negatives = end < 0 start = (start + total_shape) * start_negatives + \ start * ~(start_negatives) end = (end + total_shape) * end_negatives + \ end * ~(end_negatives) if np.any((end - start) < 0): raise IndexError('end coordinates must be greater or equal to start') # bit_perm is the total number of terms in the expression # of S. For example, in the case of a 4x4 2D image # sum of image from (1,1) to (2,2) is given by # S = + ii[2, 2] # - ii[0, 2] - ii[2, 0] # + ii[0, 0] # The total terms = 4 = 2 ** 2(dims) S = np.zeros(rows) bit_perm = 2 ** ii.ndim width = len(bin(bit_perm - 1)[2:]) # Sum of a (hyper)cube, from an integral image is computed using # values at the corners of the cube. The corners of cube are # selected using binary numbers as described in the following example. # In a 3D cube there are 8 corners. The corners are selected using # binary numbers 000 to 111. Each number is called a permutation, where # perm(000) means, select end corner where none of the coordinates # is replaced, i.e ii[end_row, end_col, end_depth]. Similarly, perm(001) # means replace last coordinate by start - 1, i.e # ii[end_row, end_col, start_depth - 1], and so on. # Sign of even permutations is positive, while those of odd is negative. # If 'start_coord - 1' is -ve it is labeled bad and not considered in # the final sum. for i in range(bit_perm): # for all permutations # boolean permutation array eg [True, False] for '10' binary = bin(i)[2:].zfill(width) bool_mask = [bit == '1' for bit in binary] sign = (-1)**sum(bool_mask) # determine sign of permutation bad = [np.any(((start[r] - 1) * bool_mask) < 0) for r in range(rows)] # find out bad start rows corner_points = (end * (np.invert(bool_mask))) + \ ((start - 1) * bool_mask) # find corner for each row S += [sign * ii[tuple(corner_points[r])] if(not bad[r]) else 0 for r in range(rows)] # add only good rows return S