import numpy as np from scipy import signal def approximate_polygon(coords, tolerance): """Approximate a polygonal chain with the specified tolerance. It is based on the Douglas-Peucker algorithm. Note that the approximated polygon is always within the convex hull of the original polygon. Parameters ---------- coords : (N, 2) array Coordinate array. tolerance : float Maximum distance from original points of polygon to approximated polygonal chain. If tolerance is 0, the original coordinate array is returned. Returns ------- coords : (M, 2) array Approximated polygonal chain where M <= N. References ---------- .. [1] https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm """ if tolerance <= 0: return coords chain = np.zeros(coords.shape[0], 'bool') # pre-allocate distance array for all points dists = np.zeros(coords.shape[0]) chain[0] = True chain[-1] = True pos_stack = [(0, chain.shape[0] - 1)] end_of_chain = False while not end_of_chain: start, end = pos_stack.pop() # determine properties of current line segment r0, c0 = coords[start, :] r1, c1 = coords[end, :] dr = r1 - r0 dc = c1 - c0 segment_angle = - np.arctan2(dr, dc) segment_dist = c0 * np.sin(segment_angle) + r0 * np.cos(segment_angle) # select points in-between line segment segment_coords = coords[start + 1:end, :] segment_dists = dists[start + 1:end] # check whether to take perpendicular or euclidean distance with # inner product of vectors # vectors from points -> start and end dr0 = segment_coords[:, 0] - r0 dc0 = segment_coords[:, 1] - c0 dr1 = segment_coords[:, 0] - r1 dc1 = segment_coords[:, 1] - c1 # vectors points -> start and end projected on start -> end vector projected_lengths0 = dr0 * dr + dc0 * dc projected_lengths1 = - dr1 * dr - dc1 * dc perp = np.logical_and(projected_lengths0 > 0, projected_lengths1 > 0) eucl = np.logical_not(perp) segment_dists[perp] = np.abs( segment_coords[perp, 0] * np.cos(segment_angle) + segment_coords[perp, 1] * np.sin(segment_angle) - segment_dist ) segment_dists[eucl] = np.minimum( # distance to start point np.sqrt(dc0[eucl] ** 2 + dr0[eucl] ** 2), # distance to end point np.sqrt(dc1[eucl] ** 2 + dr1[eucl] ** 2) ) if np.any(segment_dists > tolerance): # select point with maximum distance to line new_end = start + np.argmax(segment_dists) + 1 pos_stack.append((new_end, end)) pos_stack.append((start, new_end)) chain[new_end] = True if len(pos_stack) == 0: end_of_chain = True return coords[chain, :] # B-Spline subdivision _SUBDIVISION_MASKS = { # degree: (mask_even, mask_odd) # extracted from (degree + 2)th row of Pascal's triangle 1: ([1, 1], [1, 1]), 2: ([3, 1], [1, 3]), 3: ([1, 6, 1], [0, 4, 4]), 4: ([5, 10, 1], [1, 10, 5]), 5: ([1, 15, 15, 1], [0, 6, 20, 6]), 6: ([7, 35, 21, 1], [1, 21, 35, 7]), 7: ([1, 28, 70, 28, 1], [0, 8, 56, 56, 8]), } def subdivide_polygon(coords, degree=2, preserve_ends=False): """Subdivision of polygonal curves using B-Splines. Note that the resulting curve is always within the convex hull of the original polygon. Circular polygons stay closed after subdivision. Parameters ---------- coords : (N, 2) array Coordinate array. degree : {1, 2, 3, 4, 5, 6, 7}, optional Degree of B-Spline. Default is 2. preserve_ends : bool, optional Preserve first and last coordinate of non-circular polygon. Default is False. Returns ------- coords : (M, 2) array Subdivided coordinate array. References ---------- .. [1] http://mrl.nyu.edu/publications/subdiv-course2000/coursenotes00.pdf """ if degree not in _SUBDIVISION_MASKS: raise ValueError("Invalid B-Spline degree. Only degree 1 - 7 is " "supported.") circular = np.all(coords[0, :] == coords[-1, :]) method = 'valid' if circular: # remove last coordinate because of wrapping coords = coords[:-1, :] # circular convolution by wrapping boundaries method = 'same' mask_even, mask_odd = _SUBDIVISION_MASKS[degree] # divide by total weight mask_even = np.array(mask_even, np.float) / (2 ** degree) mask_odd = np.array(mask_odd, np.float) / (2 ** degree) even = signal.convolve2d(coords.T, np.atleast_2d(mask_even), mode=method, boundary='wrap') odd = signal.convolve2d(coords.T, np.atleast_2d(mask_odd), mode=method, boundary='wrap') out = np.zeros((even.shape[1] + odd.shape[1], 2)) out[1::2] = even.T out[::2] = odd.T if circular: # close polygon out = np.vstack([out, out[0, :]]) if preserve_ends and not circular: out = np.vstack([coords[0, :], out, coords[-1, :]]) return out