import numpy as np from numpy.testing import assert_array_equal, assert_equal import pytest from scipy.sparse import csr_matrix, coo_matrix, diags from scipy.sparse.csgraph import maximum_bipartite_matching def test_raises_on_dense_input(): with pytest.raises(TypeError): graph = np.array([[0, 1], [0, 0]]) maximum_bipartite_matching(graph) def test_empty_graph(): graph = csr_matrix((0, 0)) x = maximum_bipartite_matching(graph, perm_type='row') y = maximum_bipartite_matching(graph, perm_type='column') expected_matching = np.array([]) assert_array_equal(expected_matching, x) assert_array_equal(expected_matching, y) def test_empty_left_partition(): graph = csr_matrix((2, 0)) x = maximum_bipartite_matching(graph, perm_type='row') y = maximum_bipartite_matching(graph, perm_type='column') assert_array_equal(np.array([]), x) assert_array_equal(np.array([-1, -1]), y) def test_empty_right_partition(): graph = csr_matrix((0, 3)) x = maximum_bipartite_matching(graph, perm_type='row') y = maximum_bipartite_matching(graph, perm_type='column') assert_array_equal(np.array([-1, -1, -1]), x) assert_array_equal(np.array([]), y) def test_graph_with_no_edges(): graph = csr_matrix((2, 2)) x = maximum_bipartite_matching(graph, perm_type='row') y = maximum_bipartite_matching(graph, perm_type='column') assert_array_equal(np.array([-1, -1]), x) assert_array_equal(np.array([-1, -1]), y) def test_graph_that_causes_augmentation(): # In this graph, column 1 is initially assigned to row 1, but it should be # reassigned to make room for row 2. graph = csr_matrix([[1, 1], [1, 0]]) x = maximum_bipartite_matching(graph, perm_type='column') y = maximum_bipartite_matching(graph, perm_type='row') expected_matching = np.array([1, 0]) assert_array_equal(expected_matching, x) assert_array_equal(expected_matching, y) def test_graph_with_more_rows_than_columns(): graph = csr_matrix([[1, 1], [1, 0], [0, 1]]) x = maximum_bipartite_matching(graph, perm_type='column') y = maximum_bipartite_matching(graph, perm_type='row') assert_array_equal(np.array([0, -1, 1]), x) assert_array_equal(np.array([0, 2]), y) def test_graph_with_more_columns_than_rows(): graph = csr_matrix([[1, 1, 0], [0, 0, 1]]) x = maximum_bipartite_matching(graph, perm_type='column') y = maximum_bipartite_matching(graph, perm_type='row') assert_array_equal(np.array([0, 2]), x) assert_array_equal(np.array([0, -1, 1]), y) def test_explicit_zeros_count_as_edges(): data = [0, 0] indices = [1, 0] indptr = [0, 1, 2] graph = csr_matrix((data, indices, indptr), shape=(2, 2)) x = maximum_bipartite_matching(graph, perm_type='row') y = maximum_bipartite_matching(graph, perm_type='column') expected_matching = np.array([1, 0]) assert_array_equal(expected_matching, x) assert_array_equal(expected_matching, y) def test_feasibility_of_result(): # This is a regression test for GitHub issue #11458 data = np.ones(50, dtype=int) indices = [11, 12, 19, 22, 23, 5, 22, 3, 8, 10, 5, 6, 11, 12, 13, 5, 13, 14, 20, 22, 3, 15, 3, 13, 14, 11, 12, 19, 22, 23, 5, 22, 3, 8, 10, 5, 6, 11, 12, 13, 5, 13, 14, 20, 22, 3, 15, 3, 13, 14] indptr = [0, 5, 7, 10, 10, 15, 20, 22, 22, 23, 25, 30, 32, 35, 35, 40, 45, 47, 47, 48, 50] graph = csr_matrix((data, indices, indptr), shape=(20, 25)) x = maximum_bipartite_matching(graph, perm_type='row') y = maximum_bipartite_matching(graph, perm_type='column') assert (x != -1).sum() == 13 assert (y != -1).sum() == 13 # Ensure that each element of the matching is in fact an edge in the graph. for u, v in zip(range(graph.shape[0]), y): if v != -1: assert graph[u, v] for u, v in zip(x, range(graph.shape[1])): if u != -1: assert graph[u, v] def test_large_random_graph_with_one_edge_incident_to_each_vertex(): np.random.seed(42) A = diags(np.ones(25), offsets=0, format='csr') rand_perm = np.random.permutation(25) rand_perm2 = np.random.permutation(25) Rrow = np.arange(25) Rcol = rand_perm Rdata = np.ones(25, dtype=int) Rmat = coo_matrix((Rdata, (Rrow, Rcol))).tocsr() Crow = rand_perm2 Ccol = np.arange(25) Cdata = np.ones(25, dtype=int) Cmat = coo_matrix((Cdata, (Crow, Ccol))).tocsr() # Randomly permute identity matrix B = Rmat * A * Cmat # Row permute perm = maximum_bipartite_matching(B, perm_type='row') Rrow = np.arange(25) Rcol = perm Rdata = np.ones(25, dtype=int) Rmat = coo_matrix((Rdata, (Rrow, Rcol))).tocsr() C1 = Rmat * B # Column permute perm2 = maximum_bipartite_matching(B, perm_type='column') Crow = perm2 Ccol = np.arange(25) Cdata = np.ones(25, dtype=int) Cmat = coo_matrix((Cdata, (Crow, Ccol))).tocsr() C2 = B * Cmat # Should get identity matrix back assert_equal(any(C1.diagonal() == 0), False) assert_equal(any(C2.diagonal() == 0), False)