"""
Code generator script to make the Cython BLAS and LAPACK wrappers
from the files "cython_blas_signatures.txt" and
"cython_lapack_signatures.txt" which contain the signatures for
all the BLAS/LAPACK routines that should be included in the wrappers.
"""

from collections import defaultdict
from operator import itemgetter
import os

BASE_DIR = os.path.abspath(os.path.dirname(__file__))

fortran_types = {'int': 'integer',
                 'c': 'complex',
                 'd': 'double precision',
                 's': 'real',
                 'z': 'complex*16',
                 'char': 'character',
                 'bint': 'logical'}

c_types = {'int': 'int',
           'c': 'npy_complex64',
           'd': 'double',
           's': 'float',
           'z': 'npy_complex128',
           'char': 'char',
           'bint': 'int',
           'cselect1': '_cselect1',
           'cselect2': '_cselect2',
           'dselect2': '_dselect2',
           'dselect3': '_dselect3',
           'sselect2': '_sselect2',
           'sselect3': '_sselect3',
           'zselect1': '_zselect1',
           'zselect2': '_zselect2'}


def arg_names_and_types(args):
    return zip(*[arg.split(' *') for arg in args.split(', ')])


pyx_func_template = """
cdef extern from "{header_name}":
    void _fortran_{name} "F_FUNC({name}wrp, {upname}WRP)"({ret_type} *out, {fort_args}) nogil
cdef {ret_type} {name}({args}) nogil:
    cdef {ret_type} out
    _fortran_{name}(&out, {argnames})
    return out
"""

npy_types = {'c': 'npy_complex64', 'z': 'npy_complex128',
             'cselect1': '_cselect1', 'cselect2': '_cselect2',
             'dselect2': '_dselect2', 'dselect3': '_dselect3',
             'sselect2': '_sselect2', 'sselect3': '_sselect3',
             'zselect1': '_zselect1', 'zselect2': '_zselect2'}


def arg_casts(arg):
    if arg in ['npy_complex64', 'npy_complex128', '_cselect1', '_cselect2',
               '_dselect2', '_dselect3', '_sselect2', '_sselect3',
               '_zselect1', '_zselect2']:
        return '<{0}*>'.format(arg)
    return ''


def pyx_decl_func(name, ret_type, args, header_name):
    argtypes, argnames = arg_names_and_types(args)
    # Fix the case where one of the arguments has the same name as the
    # abbreviation for the argument type.
    # Otherwise the variable passed as an argument is considered overwrites
    # the previous typedef and Cython compilation fails.
    if ret_type in argnames:
        argnames = [n if n != ret_type else ret_type + '_' for n in argnames]
        argnames = [n if n not in ['lambda', 'in'] else n + '_'
                    for n in argnames]
        args = ', '.join([' *'.join([n, t])
                          for n, t in zip(argtypes, argnames)])
    argtypes = [npy_types.get(t, t) for t in argtypes]
    fort_args = ', '.join([' *'.join([n, t])
                           for n, t in zip(argtypes, argnames)])
    argnames = [arg_casts(t) + n for n, t in zip(argnames, argtypes)]
    argnames = ', '.join(argnames)
    c_ret_type = c_types[ret_type]
    args = args.replace('lambda', 'lambda_')
    return pyx_func_template.format(name=name, upname=name.upper(), args=args,
                                    fort_args=fort_args, ret_type=ret_type,
                                    c_ret_type=c_ret_type, argnames=argnames,
                                    header_name=header_name)


pyx_sub_template = """cdef extern from "{header_name}":
    void _fortran_{name} "F_FUNC({name},{upname})"({fort_args}) nogil
cdef void {name}({args}) nogil:
    _fortran_{name}({argnames})
"""


def pyx_decl_sub(name, args, header_name):
    argtypes, argnames = arg_names_and_types(args)
    argtypes = [npy_types.get(t, t) for t in argtypes]
    argnames = [n if n not in ['lambda', 'in'] else n + '_' for n in argnames]
    fort_args = ', '.join([' *'.join([n, t])
                           for n, t in zip(argtypes, argnames)])
    argnames = [arg_casts(t) + n for n, t in zip(argnames, argtypes)]
    argnames = ', '.join(argnames)
    args = args.replace('*lambda,', '*lambda_,').replace('*in,', '*in_,')
    return pyx_sub_template.format(name=name, upname=name.upper(),
                                   args=args, fort_args=fort_args,
                                   argnames=argnames, header_name=header_name)


blas_pyx_preamble = '''# cython: boundscheck = False
# cython: wraparound = False
# cython: cdivision = True

"""
BLAS Functions for Cython
=========================

Usable from Cython via::

    cimport scipy.linalg.cython_blas

These wrappers do not check for alignment of arrays.
Alignment should be checked before these wrappers are used.

Raw function pointers (Fortran-style pointer arguments):

- {}


"""

# Within SciPy, these wrappers can be used via relative or absolute cimport.
# Examples:
# from ..linalg cimport cython_blas
# from scipy.linalg cimport cython_blas
# cimport scipy.linalg.cython_blas as cython_blas
# cimport ..linalg.cython_blas as cython_blas

# Within SciPy, if BLAS functions are needed in C/C++/Fortran,
# these wrappers should not be used.
# The original libraries should be linked directly.

cdef extern from "fortran_defs.h":
    pass

from numpy cimport npy_complex64, npy_complex128

'''


def make_blas_pyx_preamble(all_sigs):
    names = [sig[0] for sig in all_sigs]
    return blas_pyx_preamble.format("\n- ".join(names))


lapack_pyx_preamble = '''"""
LAPACK functions for Cython
===========================

Usable from Cython via::

    cimport scipy.linalg.cython_lapack

This module provides Cython-level wrappers for all primary routines included
in LAPACK 3.4.0 except for ``zcgesv`` since its interface is not consistent
from LAPACK 3.4.0 to 3.6.0. It also provides some of the
fixed-api auxiliary routines.

These wrappers do not check for alignment of arrays.
Alignment should be checked before these wrappers are used.

Raw function pointers (Fortran-style pointer arguments):

- {}


"""

# Within SciPy, these wrappers can be used via relative or absolute cimport.
# Examples:
# from ..linalg cimport cython_lapack
# from scipy.linalg cimport cython_lapack
# cimport scipy.linalg.cython_lapack as cython_lapack
# cimport ..linalg.cython_lapack as cython_lapack

# Within SciPy, if LAPACK functions are needed in C/C++/Fortran,
# these wrappers should not be used.
# The original libraries should be linked directly.

cdef extern from "fortran_defs.h":
    pass

from numpy cimport npy_complex64, npy_complex128

cdef extern from "_lapack_subroutines.h":
    # Function pointer type declarations for
    # gees and gges families of functions.
    ctypedef bint _cselect1(npy_complex64*)
    ctypedef bint _cselect2(npy_complex64*, npy_complex64*)
    ctypedef bint _dselect2(d*, d*)
    ctypedef bint _dselect3(d*, d*, d*)
    ctypedef bint _sselect2(s*, s*)
    ctypedef bint _sselect3(s*, s*, s*)
    ctypedef bint _zselect1(npy_complex128*)
    ctypedef bint _zselect2(npy_complex128*, npy_complex128*)

'''


def make_lapack_pyx_preamble(all_sigs):
    names = [sig[0] for sig in all_sigs]
    return lapack_pyx_preamble.format("\n- ".join(names))


blas_py_wrappers = """

# Python-accessible wrappers for testing:

cdef inline bint _is_contiguous(double[:,:] a, int axis) nogil:
    return (a.strides[axis] == sizeof(a[0,0]) or a.shape[axis] == 1)

cpdef float complex _test_cdotc(float complex[:] cx, float complex[:] cy) nogil:
    cdef:
        int n = cx.shape[0]
        int incx = cx.strides[0] // sizeof(cx[0])
        int incy = cy.strides[0] // sizeof(cy[0])
    return cdotc(&n, &cx[0], &incx, &cy[0], &incy)

cpdef float complex _test_cdotu(float complex[:] cx, float complex[:] cy) nogil:
    cdef:
        int n = cx.shape[0]
        int incx = cx.strides[0] // sizeof(cx[0])
        int incy = cy.strides[0] // sizeof(cy[0])
    return cdotu(&n, &cx[0], &incx, &cy[0], &incy)

cpdef double _test_dasum(double[:] dx) nogil:
    cdef:
        int n = dx.shape[0]
        int incx = dx.strides[0] // sizeof(dx[0])
    return dasum(&n, &dx[0], &incx)

cpdef double _test_ddot(double[:] dx, double[:] dy) nogil:
    cdef:
        int n = dx.shape[0]
        int incx = dx.strides[0] // sizeof(dx[0])
        int incy = dy.strides[0] // sizeof(dy[0])
    return ddot(&n, &dx[0], &incx, &dy[0], &incy)

cpdef int _test_dgemm(double alpha, double[:,:] a, double[:,:] b, double beta,
                double[:,:] c) nogil except -1:
    cdef:
        char *transa
        char *transb
        int m, n, k, lda, ldb, ldc
        double *a0=&a[0,0]
        double *b0=&b[0,0]
        double *c0=&c[0,0]
    # In the case that c is C contiguous, swap a and b and
    # swap whether or not each of them is transposed.
    # This can be done because a.dot(b) = b.T.dot(a.T).T.
    if _is_contiguous(c, 1):
        if _is_contiguous(a, 1):
            transb = 'n'
            ldb = (&a[1,0]) - a0 if a.shape[0] > 1 else 1
        elif _is_contiguous(a, 0):
            transb = 't'
            ldb = (&a[0,1]) - a0 if a.shape[1] > 1 else 1
        else:
            with gil:
                raise ValueError("Input 'a' is neither C nor Fortran contiguous.")
        if _is_contiguous(b, 1):
            transa = 'n'
            lda = (&b[1,0]) - b0 if b.shape[0] > 1 else 1
        elif _is_contiguous(b, 0):
            transa = 't'
            lda = (&b[0,1]) - b0 if b.shape[1] > 1 else 1
        else:
            with gil:
                raise ValueError("Input 'b' is neither C nor Fortran contiguous.")
        k = b.shape[0]
        if k != a.shape[1]:
            with gil:
                raise ValueError("Shape mismatch in input arrays.")
        m = b.shape[1]
        n = a.shape[0]
        if n != c.shape[0] or m != c.shape[1]:
            with gil:
                raise ValueError("Output array does not have the correct shape.")
        ldc = (&c[1,0]) - c0 if c.shape[0] > 1 else 1
        dgemm(transa, transb, &m, &n, &k, &alpha, b0, &lda, a0,
                   &ldb, &beta, c0, &ldc)
    elif _is_contiguous(c, 0):
        if _is_contiguous(a, 1):
            transa = 't'
            lda = (&a[1,0]) - a0 if a.shape[0] > 1 else 1
        elif _is_contiguous(a, 0):
            transa = 'n'
            lda = (&a[0,1]) - a0 if a.shape[1] > 1 else 1
        else:
            with gil:
                raise ValueError("Input 'a' is neither C nor Fortran contiguous.")
        if _is_contiguous(b, 1):
            transb = 't'
            ldb = (&b[1,0]) - b0 if b.shape[0] > 1 else 1
        elif _is_contiguous(b, 0):
            transb = 'n'
            ldb = (&b[0,1]) - b0 if b.shape[1] > 1 else 1
        else:
            with gil:
                raise ValueError("Input 'b' is neither C nor Fortran contiguous.")
        m = a.shape[0]
        k = a.shape[1]
        if k != b.shape[0]:
            with gil:
                raise ValueError("Shape mismatch in input arrays.")
        n = b.shape[1]
        if m != c.shape[0] or n != c.shape[1]:
            with gil:
                raise ValueError("Output array does not have the correct shape.")
        ldc = (&c[0,1]) - c0 if c.shape[1] > 1 else 1
        dgemm(transa, transb, &m, &n, &k, &alpha, a0, &lda, b0,
                   &ldb, &beta, c0, &ldc)
    else:
        with gil:
            raise ValueError("Input 'c' is neither C nor Fortran contiguous.")
    return 0

cpdef double _test_dnrm2(double[:] x) nogil:
    cdef:
        int n = x.shape[0]
        int incx = x.strides[0] // sizeof(x[0])
    return dnrm2(&n, &x[0], &incx)

cpdef double _test_dzasum(double complex[:] zx) nogil:
    cdef:
        int n = zx.shape[0]
        int incx = zx.strides[0] // sizeof(zx[0])
    return dzasum(&n, &zx[0], &incx)

cpdef double _test_dznrm2(double complex[:] x) nogil:
    cdef:
        int n = x.shape[0]
        int incx = x.strides[0] // sizeof(x[0])
    return dznrm2(&n, &x[0], &incx)

cpdef int _test_icamax(float complex[:] cx) nogil:
    cdef:
        int n = cx.shape[0]
        int incx = cx.strides[0] // sizeof(cx[0])
    return icamax(&n, &cx[0], &incx)

cpdef int _test_idamax(double[:] dx) nogil:
    cdef:
        int n = dx.shape[0]
        int incx = dx.strides[0] // sizeof(dx[0])
    return idamax(&n, &dx[0], &incx)

cpdef int _test_isamax(float[:] sx) nogil:
    cdef:
        int n = sx.shape[0]
        int incx = sx.strides[0] // sizeof(sx[0])
    return isamax(&n, &sx[0], &incx)

cpdef int _test_izamax(double complex[:] zx) nogil:
    cdef:
        int n = zx.shape[0]
        int incx = zx.strides[0] // sizeof(zx[0])
    return izamax(&n, &zx[0], &incx)

cpdef float _test_sasum(float[:] sx) nogil:
    cdef:
        int n = sx.shape[0]
        int incx = sx.shape[0] // sizeof(sx[0])
    return sasum(&n, &sx[0], &incx)

cpdef float _test_scasum(float complex[:] cx) nogil:
    cdef:
        int n = cx.shape[0]
        int incx = cx.strides[0] // sizeof(cx[0])
    return scasum(&n, &cx[0], &incx)

cpdef float _test_scnrm2(float complex[:] x) nogil:
    cdef:
        int n = x.shape[0]
        int incx = x.strides[0] // sizeof(x[0])
    return scnrm2(&n, &x[0], &incx)

cpdef float _test_sdot(float[:] sx, float[:] sy) nogil:
    cdef:
        int n = sx.shape[0]
        int incx = sx.strides[0] // sizeof(sx[0])
        int incy = sy.strides[0] // sizeof(sy[0])
    return sdot(&n, &sx[0], &incx, &sy[0], &incy)

cpdef float _test_snrm2(float[:] x) nogil:
    cdef:
        int n = x.shape[0]
        int incx = x.shape[0] // sizeof(x[0])
    return snrm2(&n, &x[0], &incx)

cpdef double complex _test_zdotc(double complex[:] zx, double complex[:] zy) nogil:
    cdef:
        int n = zx.shape[0]
        int incx = zx.strides[0] // sizeof(zx[0])
        int incy = zy.strides[0] // sizeof(zy[0])
    return zdotc(&n, &zx[0], &incx, &zy[0], &incy)

cpdef double complex _test_zdotu(double complex[:] zx, double complex[:] zy) nogil:
    cdef:
        int n = zx.shape[0]
        int incx = zx.strides[0] // sizeof(zx[0])
        int incy = zy.strides[0] // sizeof(zy[0])
    return zdotu(&n, &zx[0], &incx, &zy[0], &incy)
"""


def generate_blas_pyx(func_sigs, sub_sigs, all_sigs, header_name):
    funcs = "\n".join(pyx_decl_func(*(s+(header_name,))) for s in func_sigs)
    subs = "\n" + "\n".join(pyx_decl_sub(*(s[::2]+(header_name,)))
                            for s in sub_sigs)
    return make_blas_pyx_preamble(all_sigs) + funcs + subs + blas_py_wrappers


lapack_py_wrappers = """

# Python accessible wrappers for testing:

def _test_dlamch(cmach):
    # This conversion is necessary to handle Python 3 strings.
    cmach_bytes = bytes(cmach)
    # Now that it is a bytes representation, a non-temporary variable
    # must be passed as a part of the function call.
    cdef char* cmach_char = cmach_bytes
    return dlamch(cmach_char)

def _test_slamch(cmach):
    # This conversion is necessary to handle Python 3 strings.
    cmach_bytes = bytes(cmach)
    # Now that it is a bytes representation, a non-temporary variable
    # must be passed as a part of the function call.
    cdef char* cmach_char = cmach_bytes
    return slamch(cmach_char)
"""


def generate_lapack_pyx(func_sigs, sub_sigs, all_sigs, header_name):
    funcs = "\n".join(pyx_decl_func(*(s+(header_name,))) for s in func_sigs)
    subs = "\n" + "\n".join(pyx_decl_sub(*(s[::2]+(header_name,)))
                            for s in sub_sigs)
    preamble = make_lapack_pyx_preamble(all_sigs)
    return preamble + funcs + subs + lapack_py_wrappers


pxd_template = """ctypedef {ret_type} {name}_t({args}) nogil
cdef {name}_t *{name}_f
"""
pxd_template = """cdef {ret_type} {name}({args}) nogil
"""


def pxd_decl(name, ret_type, args):
    args = args.replace('lambda', 'lambda_').replace('*in,', '*in_,')
    return pxd_template.format(name=name, ret_type=ret_type, args=args)


blas_pxd_preamble = """# Within scipy, these wrappers can be used via relative or absolute cimport.
# Examples:
# from ..linalg cimport cython_blas
# from scipy.linalg cimport cython_blas
# cimport scipy.linalg.cython_blas as cython_blas
# cimport ..linalg.cython_blas as cython_blas

# Within SciPy, if BLAS functions are needed in C/C++/Fortran,
# these wrappers should not be used.
# The original libraries should be linked directly.

ctypedef float s
ctypedef double d
ctypedef float complex c
ctypedef double complex z

"""


def generate_blas_pxd(all_sigs):
    body = '\n'.join(pxd_decl(*sig) for sig in all_sigs)
    return blas_pxd_preamble + body


lapack_pxd_preamble = """# Within SciPy, these wrappers can be used via relative or absolute cimport.
# Examples:
# from ..linalg cimport cython_lapack
# from scipy.linalg cimport cython_lapack
# cimport scipy.linalg.cython_lapack as cython_lapack
# cimport ..linalg.cython_lapack as cython_lapack

# Within SciPy, if LAPACK functions are needed in C/C++/Fortran,
# these wrappers should not be used.
# The original libraries should be linked directly.

ctypedef float s
ctypedef double d
ctypedef float complex c
ctypedef double complex z

# Function pointer type declarations for
# gees and gges families of functions.
ctypedef bint cselect1(c*)
ctypedef bint cselect2(c*, c*)
ctypedef bint dselect2(d*, d*)
ctypedef bint dselect3(d*, d*, d*)
ctypedef bint sselect2(s*, s*)
ctypedef bint sselect3(s*, s*, s*)
ctypedef bint zselect1(z*)
ctypedef bint zselect2(z*, z*)

"""


def generate_lapack_pxd(all_sigs):
    return lapack_pxd_preamble + '\n'.join(pxd_decl(*sig) for sig in all_sigs)


fortran_template = """      subroutine {name}wrp(
     +    ret,
     +    {argnames}
     +    )
        external {wrapper}
        {ret_type} {wrapper}
        {ret_type} ret
        {argdecls}
        ret = {wrapper}(
     +    {argnames}
     +    )
      end
"""

dims = {'work': '(*)', 'ab': '(ldab,*)', 'a': '(lda,*)', 'dl': '(*)',
        'd': '(*)', 'du': '(*)', 'ap': '(*)', 'e': '(*)', 'lld': '(*)'}

xy_specialized_dims = {'x': '', 'y': ''}
a_specialized_dims = {'a': '(*)'}
special_cases = defaultdict(dict,
                            ladiv = xy_specialized_dims,
                            lanhf = a_specialized_dims,
                            lansf = a_specialized_dims,
                            lapy2 = xy_specialized_dims,
                            lapy3 = xy_specialized_dims)


def process_fortran_name(name, funcname):
    if 'inc' in name:
        return name
    special = special_cases[funcname[1:]]
    if 'x' in name or 'y' in name:
        suffix = special.get(name, '(n)')
    else:
        suffix = special.get(name, '')
    return name + suffix


def called_name(name):
    included = ['cdotc', 'cdotu', 'zdotc', 'zdotu', 'cladiv', 'zladiv']
    if name in included:
        return "w" + name
    return name


def fort_subroutine_wrapper(name, ret_type, args):
    wrapper = called_name(name)
    types, names = arg_names_and_types(args)
    argnames = ',\n     +    '.join(names)

    names = [process_fortran_name(n, name) for n in names]
    argdecls = '\n        '.join('{0} {1}'.format(fortran_types[t], n)
                                 for n, t in zip(names, types))
    return fortran_template.format(name=name, wrapper=wrapper,
                                   argnames=argnames, argdecls=argdecls,
                                   ret_type=fortran_types[ret_type])


def generate_fortran(func_sigs):
    return "\n".join(fort_subroutine_wrapper(*sig) for sig in func_sigs)


def make_c_args(args):
    types, names = arg_names_and_types(args)
    types = [c_types[arg] for arg in types]
    return ', '.join('{0} *{1}'.format(t, n) for t, n in zip(types, names))


c_func_template = ("void F_FUNC({name}wrp, {upname}WRP)"
                   "({return_type} *ret, {args});\n")


def c_func_decl(name, return_type, args):
    args = make_c_args(args)
    return_type = c_types[return_type]
    return c_func_template.format(name=name, upname=name.upper(),
                                  return_type=return_type, args=args)


c_sub_template = "void F_FUNC({name},{upname})({args});\n"


def c_sub_decl(name, return_type, args):
    args = make_c_args(args)
    return c_sub_template.format(name=name, upname=name.upper(), args=args)


c_preamble = """#ifndef SCIPY_LINALG_{lib}_FORTRAN_WRAPPERS_H
#define SCIPY_LINALG_{lib}_FORTRAN_WRAPPERS_H
#include "fortran_defs.h"
#include "numpy/arrayobject.h"
"""

lapack_decls = """
typedef int (*_cselect1)(npy_complex64*);
typedef int (*_cselect2)(npy_complex64*, npy_complex64*);
typedef int (*_dselect2)(double*, double*);
typedef int (*_dselect3)(double*, double*, double*);
typedef int (*_sselect2)(float*, float*);
typedef int (*_sselect3)(float*, float*, float*);
typedef int (*_zselect1)(npy_complex128*);
typedef int (*_zselect2)(npy_complex128*, npy_complex128*);
"""

cpp_guard = """
#ifdef __cplusplus
extern "C" {
#endif

"""

c_end = """
#ifdef __cplusplus
}
#endif
#endif
"""


def generate_c_header(func_sigs, sub_sigs, all_sigs, lib_name):
    funcs = "".join(c_func_decl(*sig) for sig in func_sigs)
    subs = "\n" + "".join(c_sub_decl(*sig) for sig in sub_sigs)
    if lib_name == 'LAPACK':
        preamble = (c_preamble.format(lib=lib_name) + lapack_decls)
    else:
        preamble = c_preamble.format(lib=lib_name)
    return "".join([preamble, cpp_guard, funcs, subs, c_end])


def split_signature(sig):
    name_and_type, args = sig[:-1].split('(')
    ret_type, name = name_and_type.split(' ')
    return name, ret_type, args


def filter_lines(lines):
    lines = [line for line in map(str.strip, lines)
                      if line and not line.startswith('#')]
    func_sigs = [split_signature(line) for line in lines
                                           if line.split(' ')[0] != 'void']
    sub_sigs = [split_signature(line) for line in lines
                                          if line.split(' ')[0] == 'void']
    all_sigs = list(sorted(func_sigs + sub_sigs, key=itemgetter(0)))
    return func_sigs, sub_sigs, all_sigs


def all_newer(src_files, dst_files):
    from distutils.dep_util import newer
    return all(os.path.exists(dst) and newer(dst, src)
               for dst in dst_files for src in src_files)


def make_all(blas_signature_file="cython_blas_signatures.txt",
             lapack_signature_file="cython_lapack_signatures.txt",
             blas_name="cython_blas",
             lapack_name="cython_lapack",
             blas_fortran_name="_blas_subroutine_wrappers.f",
             lapack_fortran_name="_lapack_subroutine_wrappers.f",
             blas_header_name="_blas_subroutines.h",
             lapack_header_name="_lapack_subroutines.h"):

    src_files = (os.path.abspath(__file__),
                 blas_signature_file,
                 lapack_signature_file)
    dst_files = (blas_name + '.pyx',
                 blas_name + '.pxd',
                 blas_fortran_name,
                 blas_header_name,
                 lapack_name + '.pyx',
                 lapack_name + '.pxd',
                 lapack_fortran_name,
                 lapack_header_name)

    os.chdir(BASE_DIR)

    if all_newer(src_files, dst_files):
        print("scipy/linalg/_generate_pyx.py: all files up-to-date")
        return

    comments = ["This file was generated by _generate_pyx.py.\n",
                "Do not edit this file directly.\n"]
    ccomment = ''.join(['/* ' + line.rstrip() + ' */\n'
                        for line in comments]) + '\n'
    pyxcomment = ''.join(['# ' + line for line in comments]) + '\n'
    fcomment = ''.join(['c     ' + line for line in comments]) + '\n'
    with open(blas_signature_file, 'r') as f:
        blas_sigs = f.readlines()
    blas_sigs = filter_lines(blas_sigs)
    blas_pyx = generate_blas_pyx(*(blas_sigs + (blas_header_name,)))
    with open(blas_name + '.pyx', 'w') as f:
        f.write(pyxcomment)
        f.write(blas_pyx)
    blas_pxd = generate_blas_pxd(blas_sigs[2])
    with open(blas_name + '.pxd', 'w') as f:
        f.write(pyxcomment)
        f.write(blas_pxd)
    blas_fortran = generate_fortran(blas_sigs[0])
    with open(blas_fortran_name, 'w') as f:
        f.write(fcomment)
        f.write(blas_fortran)
    blas_c_header = generate_c_header(*(blas_sigs + ('BLAS',)))
    with open(blas_header_name, 'w') as f:
        f.write(ccomment)
        f.write(blas_c_header)
    with open(lapack_signature_file, 'r') as f:
        lapack_sigs = f.readlines()
    lapack_sigs = filter_lines(lapack_sigs)
    lapack_pyx = generate_lapack_pyx(*(lapack_sigs + (lapack_header_name,)))
    with open(lapack_name + '.pyx', 'w') as f:
        f.write(pyxcomment)
        f.write(lapack_pyx)
    lapack_pxd = generate_lapack_pxd(lapack_sigs[2])
    with open(lapack_name + '.pxd', 'w') as f:
        f.write(pyxcomment)
        f.write(lapack_pxd)
    lapack_fortran = generate_fortran(lapack_sigs[0])
    with open(lapack_fortran_name, 'w') as f:
        f.write(fcomment)
        f.write(lapack_fortran)
    lapack_c_header = generate_c_header(*(lapack_sigs + ('LAPACK',)))
    with open(lapack_header_name, 'w') as f:
        f.write(ccomment)
        f.write(lapack_c_header)


if __name__ == '__main__':
    make_all()