# =================================================================== # # Copyright (c) 2016, Legrandin # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # =================================================================== """RSA public-key cryptography algorithm (signature and encryption). RSA_ is the most widespread and used public key algorithm. Its security is based on the difficulty of factoring large integers. The algorithm has withstood attacks for 30 years, and it is therefore considered reasonably secure for new designs. The algorithm can be used for both confidentiality (encryption) and authentication (digital signature). It is worth noting that signing and decryption are significantly slower than verification and encryption. The cryptograhic strength is primarily linked to the length of the modulus *n*. In 2012, a sufficient length is deemed to be 2048 bits. For more information, see the most recent ECRYPT_ report. Both RSA ciphertext and RSA signature are as big as the modulus *n* (256 bytes if *n* is 2048 bit long). This module provides facilities for generating fresh, new RSA keys, constructing them from known components, exporting them, and importing them. >>> from Crypto.PublicKey import RSA >>> >>> key = RSA.generate(2048) >>> f = open('mykey.pem','w') >>> f.write(key.exportKey('PEM')) >>> f.close() ... >>> f = open('mykey.pem','r') >>> key = RSA.import_key(f.read()) Even though you may choose to directly use the methods of an RSA key object to perform the primitive cryptographic operations (e.g. `RsaKey._encrypt`), it is recommended to use one of the standardized schemes instead (like `Crypto.Cipher.PKCS1_v1_5` or `Crypto.Signature.PKCS1_v1_5`). .. _RSA: http://en.wikipedia.org/wiki/RSA_%28algorithm%29 .. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf :sort: generate,construct,import_key """ __all__ = ['generate', 'construct', 'import_key', 'RsaKey', 'oid'] import binascii import struct from Crypto import Random from Crypto.IO import PKCS8, PEM from Crypto.Util.py3compat import tobytes, bord, bchr, b, tostr from Crypto.Util.asn1 import DerSequence from Crypto.Math.Numbers import Integer from Crypto.Math.Primality import (test_probable_prime, generate_probable_prime, COMPOSITE) from Crypto.PublicKey import (_expand_subject_public_key_info, _create_subject_public_key_info, _extract_subject_public_key_info) class RsaKey(object): """Class defining an actual RSA key. :undocumented: __init__, __repr__, __getstate__, __eq__, __ne__, __str__, sign, verify, encrypt, decrypt, blind, unblind, size """ def __init__(self, **kwargs): """Build an RSA key. :Keywords: n : integer The modulus. e : integer The public exponent. d : integer The private exponent. Only required for private keys. p : integer The first factor of the modulus. Only required for private keys. q : integer The second factor of the modulus. Only required for private keys. u : integer The CRT coefficient (inverse of p modulo q). Only required for privta keys. """ input_set = set(kwargs.keys()) public_set = set(('n', 'e')) private_set = public_set | set(('p', 'q', 'd', 'u')) if input_set not in (private_set, public_set): raise ValueError("Some RSA components are missing") for component, value in list(kwargs.items()): setattr(self, "_" + component, value) @property def n(self): """Modulus""" return int(self._n) @property def e(self): """Public exponent""" return int(self._e) @property def d(self): """Private exponent""" if not self.has_private(): raise AttributeError("No private exponent available for public keys") return int(self._d) @property def p(self): """First factor of the modulus""" if not self.has_private(): raise AttributeError("No CRT component 'p' available for public keys") return int(self._p) @property def q(self): """Second factor of the modulus""" if not self.has_private(): raise AttributeError("No CRT component 'q' available for public keys") return int(self._q) @property def u(self): """Chinese remainder component (inverse of *p* modulo *q*)""" if not self.has_private(): raise AttributeError("No CRT component 'u' available for public keys") return int(self._u) def size_in_bits(self): """Size of the RSA modulus in bits""" return self._n.size_in_bits() def size_in_bytes(self): """The minimal amount of bytes that can hold the RSA modulus""" return (self._n.size_in_bits() - 1) // 8 + 1 def _encrypt(self, plaintext): if not 0 < plaintext < self._n: raise ValueError("Plaintext too large") return int(pow(Integer(plaintext), self._e, self._n)) def _decrypt(self, ciphertext): if not 0 < ciphertext < self._n: raise ValueError("Ciphertext too large") if not self.has_private(): raise TypeError("This is not a private key") # Blinded RSA decryption (to prevent timing attacks): # Step 1: Generate random secret blinding factor r, # such that 0 < r < n-1 r = Integer.random_range(min_inclusive=1, max_exclusive=self._n) # Step 2: Compute c' = c * r**e mod n cp = Integer(ciphertext) * pow(r, self._e, self._n) % self._n # Step 3: Compute m' = c'**d mod n (ordinary RSA decryption) m1 = pow(cp, self._d % (self._p - 1), self._p) m2 = pow(cp, self._d % (self._q - 1), self._q) h = m2 - m1 while h < 0: h += self._q h = (h * self._u) % self._q mp = h * self._p + m1 # Step 4: Compute m = m**(r-1) mod n result = (r.inverse(self._n) * mp) % self._n # Verify no faults occured if ciphertext != pow(result, self._e, self._n): raise ValueError("Fault detected in RSA decryption") return result def has_private(self): return hasattr(self, "_d") def can_encrypt(self): return True def can_sign(self): return True def publickey(self): return RsaKey(n=self._n, e=self._e) def __eq__(self, other): if self.has_private() != other.has_private(): return False if self.n != other.n or self.e != other.e: return False if not self.has_private(): return True return (self.d == other.d and self.q == other.q and self.p == other.p and self.u == other.u) def __ne__(self, other): return not (self == other) def __getstate__(self): # RSA key is not pickable from pickle import PicklingError raise PicklingError def __repr__(self): if self.has_private(): extra = ", d=%d, p=%d, q=%d, u=%d" % (int(self._d), int(self._p), int(self._q), int(self._u)) else: extra = "" return "RsaKey(n=%d, e=%d%s)" % (int(self._n), int(self._e), extra) def __str__(self): if self.has_private(): key_type = "Private" else: key_type = "Public" return "%s RSA key at 0x%X" % (key_type, id(self)) def exportKey(self, format='PEM', passphrase=None, pkcs=1, protection=None, randfunc=None): """Export this RSA key. :Parameters: format : string The format to use for wrapping the key: - *'DER'*. Binary encoding. - *'PEM'*. Textual encoding, done according to `RFC1421`_/`RFC1423`_. - *'OpenSSH'*. Textual encoding, done according to OpenSSH specification. Only suitable for public keys (not private keys). passphrase : string For private keys only. The pass phrase used for deriving the encryption key. pkcs : integer For *DER* and *PEM* format only. The PKCS standard to follow for assembling the components of the key. You have two choices: - **1** (default): the public key is embedded into an X.509 ``SubjectPublicKeyInfo`` DER SEQUENCE. The private key is embedded into a `PKCS#1`_ ``RSAPrivateKey`` DER SEQUENCE. - **8**: the private key is embedded into a `PKCS#8`_ ``PrivateKeyInfo`` DER SEQUENCE. This value cannot be used for public keys. protection : string The encryption scheme to use for protecting the private key. If ``None`` (default), the behavior depends on ``format``: - For *DER*, the *PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC* scheme is used. The following operations are performed: 1. A 16 byte Triple DES key is derived from the passphrase using `Crypto.Protocol.KDF.PBKDF2` with 8 bytes salt, and 1 000 iterations of `Crypto.Hash.HMAC`. 2. The private key is encrypted using CBC. 3. The encrypted key is encoded according to PKCS#8. - For *PEM*, the obsolete PEM encryption scheme is used. It is based on MD5 for key derivation, and Triple DES for encryption. Specifying a value for ``protection`` is only meaningful for PKCS#8 (that is, ``pkcs=8``) and only if a pass phrase is present too. The supported schemes for PKCS#8 are listed in the `Crypto.IO.PKCS8` module (see ``wrap_algo`` parameter). randfunc : callable A function that provides random bytes. Only used for PEM encoding. The default is `Crypto.Random.get_random_bytes`. :Return: A byte string with the encoded public or private half of the key. :Raise ValueError: When the format is unknown or when you try to encrypt a private key with *DER* format and PKCS#1. :attention: If you don't provide a pass phrase, the private key will be exported in the clear! .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt """ if passphrase is not None: passphrase = tobytes(passphrase) if randfunc is None: randfunc = Random.get_random_bytes if format == 'OpenSSH': e_bytes, n_bytes = [x.to_bytes() for x in (self._e, self._n)] if bord(e_bytes[0]) & 0x80: e_bytes = bchr(0) + e_bytes if bord(n_bytes[0]) & 0x80: n_bytes = bchr(0) + n_bytes keyparts = [b('ssh-rsa'), e_bytes, n_bytes] keystring = b('').join([struct.pack(">I", len(kp)) + kp for kp in keyparts]) return b('ssh-rsa ') + binascii.b2a_base64(keystring)[:-1] # DER format is always used, even in case of PEM, which simply # encodes it into BASE64. if self.has_private(): binary_key = DerSequence([0, self.n, self.e, self.d, self.p, self.q, self.d % (self.p-1), self.d % (self.q-1), Integer(self.q).inverse(self.p) ]).encode() if pkcs == 1: key_type = 'RSA PRIVATE KEY' if format == 'DER' and passphrase: raise ValueError("PKCS#1 private key cannot be encrypted") else: # PKCS#8 if format == 'PEM' and protection is None: key_type = 'PRIVATE KEY' binary_key = PKCS8.wrap(binary_key, oid, None) else: key_type = 'ENCRYPTED PRIVATE KEY' if not protection: protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC' binary_key = PKCS8.wrap(binary_key, oid, passphrase, protection) passphrase = None else: key_type = "RSA PUBLIC KEY" binary_key = _create_subject_public_key_info(oid, DerSequence([self.n, self.e]) ) if format == 'DER': return binary_key if format == 'PEM': pem_str = PEM.encode(binary_key, key_type, passphrase, randfunc) return tobytes(pem_str) raise ValueError("Unknown key format '%s'. Cannot export the RSA key." % format) # Methods defined in PyCrypto that we don't support anymore def sign(self, M, K): raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead") def verify(self, M, signature): raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead") def encrypt(self, plaintext, K): raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead") def decrypt(self, ciphertext): raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead") def blind(self, M, B): raise NotImplementedError def unblind(self, M, B): raise NotImplementedError def size(): raise NotImplementedError def generate(bits, randfunc=None, e=65537): """Create a new RSA key. The algorithm closely follows NIST `FIPS 186-4`_ in its sections B.3.1 and B.3.3. The modulus is the product of two non-strong probable primes. Each prime passes a suitable number of Miller-Rabin tests with random bases and a single Lucas test. :Parameters: bits : integer Key length, or size (in bits) of the RSA modulus. It must be at least 1024. The FIPS standard only defines 1024, 2048 and 3072. randfunc : callable Function that returns random bytes. The default is `Crypto.Random.get_random_bytes`. e : integer Public RSA exponent. It must be an odd positive integer. It is typically a small number with very few ones in its binary representation. The FIPS standard requires the public exponent to be at least 65537 (the default). :Return: An RSA key object (`RsaKey`). .. _FIPS 186-4: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf """ if bits < 1024: raise ValueError("RSA modulus length must be >= 1024") if e % 2 == 0 or e < 3: raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.") if randfunc is None: randfunc = Random.get_random_bytes d = n = Integer(1) e = Integer(e) while n.size_in_bits() != bits and d < (1 << (bits // 2)): # Generate the prime factors of n: p and q. # By construciton, their product is always # 2^{bits-1} < p*q < 2^bits. size_q = bits // 2 size_p = bits - size_q min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt() if size_q != size_p: min_p = (Integer(1) << (2 * size_p - 1)).sqrt() def filter_p(candidate): return candidate > min_p and (candidate - 1).gcd(e) == 1 p = generate_probable_prime(exact_bits=size_p, randfunc=randfunc, prime_filter=filter_p) min_distance = Integer(1) << (bits // 2 - 100) def filter_q(candidate): return (candidate > min_q and (candidate - 1).gcd(e) == 1 and abs(candidate - p) > min_distance) q = generate_probable_prime(exact_bits=size_q, randfunc=randfunc, prime_filter=filter_q) n = p * q lcm = (p - 1).lcm(q - 1) d = e.inverse(lcm) if p > q: p, q = q, p u = p.inverse(q) return RsaKey(n=n, e=e, d=d, p=p, q=q, u=u) def construct(rsa_components, consistency_check=True): """Construct an RSA key from a tuple of valid RSA components. The modulus **n** must be the product of two primes. The public exponent **e** must be odd and larger than 1. In case of a private key, the following equations must apply: - e != 1 - p*q = n - e*d = 1 mod lcm[(p-1)(q-1)] - p*u = 1 mod q :Parameters: rsa_components : tuple A tuple of long integers, with at least 2 and no more than 6 items. The items come in the following order: 1. RSA modulus (*n*). 2. Public exponent (*e*). 3. Private exponent (*d*). Only required if the key is private. 4. First factor of *n* (*p*). Optional, but factor q must also be present. 5. Second factor of *n* (*q*). Optional. 6. CRT coefficient, *(1/p) mod q* (*u*). Optional. consistency_check : boolean If *True*, the library will verify that the provided components fulfil the main RSA properties. :Raise ValueError: When the key being imported fails the most basic RSA validity checks. :Return: An RSA key object (`RsaKey`). """ class InputComps(object): pass input_comps = InputComps() for (comp, value) in zip(('n', 'e', 'd', 'p', 'q', 'u'), rsa_components): setattr(input_comps, comp, Integer(value)) n = input_comps.n e = input_comps.e if not hasattr(input_comps, 'd'): key = RsaKey(n=n, e=e) else: d = input_comps.d if hasattr(input_comps, 'q'): p = input_comps.p q = input_comps.q else: # Compute factors p and q from the private exponent d. # We assume that n has no more than two factors. # See 8.2.2(i) in Handbook of Applied Cryptography. ktot = d * e - 1 # The quantity d*e-1 is a multiple of phi(n), even, # and can be represented as t*2^s. t = ktot while t % 2 == 0: t //= 2 # Cycle through all multiplicative inverses in Zn. # The algorithm is non-deterministic, but there is a 50% chance # any candidate a leads to successful factoring. # See "Digitalized Signatures and Public Key Functions as Intractable # as Factorization", M. Rabin, 1979 spotted = False a = Integer(2) while not spotted and a < 100: k = Integer(t) # Cycle through all values a^{t*2^i}=a^k while k < ktot: cand = pow(a, k, n) # Check if a^k is a non-trivial root of unity (mod n) if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1: # We have found a number such that (cand-1)(cand+1)=0 (mod n). # Either of the terms divides n. p = Integer(n).gcd(cand + 1) spotted = True break k *= 2 # This value was not any good... let's try another! a += 2 if not spotted: raise ValueError("Unable to compute factors p and q from exponent d.") # Found ! assert ((n % p) == 0) q = n // p if hasattr(input_comps, 'u'): u = input_comps.u else: u = p.inverse(q) # Build key object key = RsaKey(n=n, e=e, d=d, p=p, q=q, u=u) # Very consistency of the key fmt_error = False if consistency_check: # Modulus and public exponent must be coprime fmt_error = e <= 1 or e >= n fmt_error |= Integer(n).gcd(e) != 1 # For RSA, modulus must be odd fmt_error |= not n & 1 if not fmt_error and key.has_private(): # Modulus and private exponent must be coprime fmt_error = d <= 1 or d >= n fmt_error |= Integer(n).gcd(d) != 1 # Modulus must be product of 2 primes fmt_error |= (p * q != n) fmt_error |= test_probable_prime(p) == COMPOSITE fmt_error |= test_probable_prime(q) == COMPOSITE # See Carmichael theorem phi = (p - 1) * (q - 1) lcm = phi // (p - 1).gcd(q - 1) fmt_error |= (e * d % int(lcm)) != 1 if hasattr(key, 'u'): # CRT coefficient fmt_error |= u <= 1 or u >= q fmt_error |= (p * u % q) != 1 else: fmt_error = True if fmt_error: raise ValueError("Invalid RSA key components") return key def _import_pkcs1_private(encoded, *kwargs): # RSAPrivateKey ::= SEQUENCE { # version Version, # modulus INTEGER, -- n # publicExponent INTEGER, -- e # privateExponent INTEGER, -- d # prime1 INTEGER, -- p # prime2 INTEGER, -- q # exponent1 INTEGER, -- d mod (p-1) # exponent2 INTEGER, -- d mod (q-1) # coefficient INTEGER -- (inverse of q) mod p # } # # Version ::= INTEGER der = DerSequence().decode(encoded, nr_elements=9, only_ints_expected=True) if der[0] != 0: raise ValueError("No PKCS#1 encoding of an RSA private key") return construct(der[1:6] + [Integer(der[4]).inverse(der[5])]) def _import_pkcs1_public(encoded, *kwargs): # RSAPublicKey ::= SEQUENCE { # modulus INTEGER, -- n # publicExponent INTEGER -- e # } der = DerSequence().decode(encoded, nr_elements=2, only_ints_expected=True) return construct(der) def _import_subjectPublicKeyInfo(encoded, *kwargs): algoid, encoded_key, params = _expand_subject_public_key_info(encoded) if algoid != oid or params is not None: raise ValueError("No RSA subjectPublicKeyInfo") return _import_pkcs1_public(encoded_key) def _import_x509_cert(encoded, *kwargs): sp_info = _extract_subject_public_key_info(encoded) return _import_subjectPublicKeyInfo(sp_info) def _import_pkcs8(encoded, passphrase): k = PKCS8.unwrap(encoded, passphrase) if k[0] != oid: raise ValueError("No PKCS#8 encoded RSA key") return _import_keyDER(k[1], passphrase) def _import_keyDER(extern_key, passphrase): """Import an RSA key (public or private half), encoded in DER form.""" decodings = (_import_pkcs1_private, _import_pkcs1_public, _import_subjectPublicKeyInfo, _import_x509_cert, _import_pkcs8) for decoding in decodings: try: return decoding(extern_key, passphrase) except ValueError: pass raise ValueError("RSA key format is not supported") def import_key(extern_key, passphrase=None): """Import an RSA key (public or private half), encoded in standard form. :Parameter extern_key: The RSA key to import, encoded as a byte string. An RSA public key can be in any of the following formats: - X.509 certificate (binary or PEM format) - X.509 ``subjectPublicKeyInfo`` DER SEQUENCE (binary or PEM encoding) - `PKCS#1`_ ``RSAPublicKey`` DER SEQUENCE (binary or PEM encoding) - OpenSSH (textual public key only) An RSA private key can be in any of the following formats: - PKCS#1 ``RSAPrivateKey`` DER SEQUENCE (binary or PEM encoding) - `PKCS#8`_ ``PrivateKeyInfo`` or ``EncryptedPrivateKeyInfo`` DER SEQUENCE (binary or PEM encoding) - OpenSSH (textual public key only) For details about the PEM encoding, see `RFC1421`_/`RFC1423`_. The private key may be encrypted by means of a certain pass phrase either at the PEM level or at the PKCS#8 level. :Type extern_key: string :Parameter passphrase: In case of an encrypted private key, this is the pass phrase from which the decryption key is derived. :Type passphrase: string :Return: An RSA key object (`RsaKey`). :Raise ValueError/IndexError/TypeError: When the given key cannot be parsed (possibly because the pass phrase is wrong). .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt """ extern_key = tobytes(extern_key) if passphrase is not None: passphrase = tobytes(passphrase) if extern_key.startswith(b('-----')): # This is probably a PEM encoded key. (der, marker, enc_flag) = PEM.decode(tostr(extern_key), passphrase) if enc_flag: passphrase = None return _import_keyDER(der, passphrase) if extern_key.startswith(b('ssh-rsa ')): # This is probably an OpenSSH key keystring = binascii.a2b_base64(extern_key.split(b(' '))[1]) keyparts = [] while len(keystring) > 4: l = struct.unpack(">I", keystring[:4])[0] keyparts.append(keystring[4:4 + l]) keystring = keystring[4 + l:] e = Integer.from_bytes(keyparts[1]) n = Integer.from_bytes(keyparts[2]) return construct([n, e]) if bord(extern_key[0]) == 0x30: # This is probably a DER encoded key return _import_keyDER(extern_key, passphrase) raise ValueError("RSA key format is not supported") # Backward compatibility importKey = import_key #: `Object ID`_ for the RSA encryption algorithm. This OID often indicates #: a generic RSA key, even when such key will be actually used for digital #: signatures. #: #: .. _`Object ID`: http://www.alvestrand.no/objectid/1.2.840.113549.1.1.1.html oid = "1.2.840.113549.1.1.1"