import numpy as np
from skimage._shared.testing import assert_equal
from skimage import data
from skimage import transform
from skimage.color import rgb2gray
from skimage.feature import (BRIEF, match_descriptors,
                             corner_peaks, corner_harris)
from skimage._shared import testing


def test_binary_descriptors_unequal_descriptor_sizes_error():
    """Sizes of descriptors of keypoints to be matched should be equal."""
    descs1 = np.array([[True, True, False, True],
                       [False, True, False, True]])
    descs2 = np.array([[True, False, False, True, False],
                       [False, True, True, True, False]])
    with testing.raises(ValueError):
        match_descriptors(descs1, descs2)


def test_binary_descriptors():
    descs1 = np.array([[True, True, False, True, True],
                       [False, True, False, True, True]])
    descs2 = np.array([[True, False, False, True, False],
                       [False, False, True, True, True]])
    matches = match_descriptors(descs1, descs2)
    assert_equal(matches, [[0, 0], [1, 1]])


def test_binary_descriptors_rotation_crosscheck_false():
    """Verify matched keypoints and their corresponding masks results between
    image and its rotated version with the expected keypoint pairs with
    cross_check disabled."""
    img = data.astronaut()
    img = rgb2gray(img)
    tform = transform.SimilarityTransform(scale=1, rotation=0.15, translation=(0, 0))
    rotated_img = transform.warp(img, tform, clip=False)

    extractor = BRIEF(descriptor_size=512)

    keypoints1 = corner_peaks(corner_harris(img), min_distance=5,
                              threshold_abs=0, threshold_rel=0.1)
    extractor.extract(img, keypoints1)
    descriptors1 = extractor.descriptors

    keypoints2 = corner_peaks(corner_harris(rotated_img), min_distance=5,
                              threshold_abs=0, threshold_rel=0.1)
    extractor.extract(rotated_img, keypoints2)
    descriptors2 = extractor.descriptors

    matches = match_descriptors(descriptors1, descriptors2, cross_check=False)

    exp_matches1 = np.arange(47)
    exp_matches2 = np.array([0, 2, 1, 3, 4, 5, 7, 8, 14, 9, 11, 13,
                             23, 15, 16, 22, 17, 19, 34, 18, 24, 27,
                             30, 25, 26, 32, 28, 35, 37, 42, 29, 38,
                             33, 40, 36, 3, 10, 32, 43, 15, 29, 41,
                             1, 18, 32, 24, 11])

    assert_equal(matches[:, 0], exp_matches1)
    assert_equal(matches[:, 1], exp_matches2)

    # minkowski takes a different code path, therefore we test it explicitly
    matches = match_descriptors(descriptors1, descriptors2,
                                metric='minkowski', cross_check=False)
    assert_equal(matches[:, 0], exp_matches1)
    assert_equal(matches[:, 1], exp_matches2)

    # it also has an extra parameter
    matches = match_descriptors(descriptors1, descriptors2,
                                metric='minkowski', p=4, cross_check=False)
    assert_equal(matches[:, 0], exp_matches1)
    assert_equal(matches[:, 1], exp_matches2)


def test_binary_descriptors_rotation_crosscheck_true():
    """Verify matched keypoints and their corresponding masks results between
    image and its rotated version with the expected keypoint pairs with
    cross_check enabled."""
    img = data.astronaut()
    img = rgb2gray(img)
    tform = transform.SimilarityTransform(scale=1, rotation=0.15, translation=(0, 0))
    rotated_img = transform.warp(img, tform, clip=False)

    extractor = BRIEF(descriptor_size=512)

    keypoints1 = corner_peaks(corner_harris(img), min_distance=5,
                              threshold_abs=0, threshold_rel=0.1)
    extractor.extract(img, keypoints1)
    descriptors1 = extractor.descriptors

    keypoints2 = corner_peaks(corner_harris(rotated_img), min_distance=5,
                              threshold_abs=0, threshold_rel=0.1)
    extractor.extract(rotated_img, keypoints2)
    descriptors2 = extractor.descriptors

    matches = match_descriptors(descriptors1, descriptors2, cross_check=True)

    exp_matches1 = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
                             13, 14, 15, 16, 17, 19, 20, 21, 22, 23,
                             24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
                             34, 38, 41])
    exp_matches2 = np.array([0, 2, 1, 3, 4, 5, 7, 8, 14, 9, 11, 13,
                             23, 15, 16, 22, 17, 19, 18, 24, 27, 30,
                             25, 26, 32, 28, 35, 37, 42, 29, 38, 33,
                             40, 36, 43, 41])
    assert_equal(matches[:, 0], exp_matches1)
    assert_equal(matches[:, 1], exp_matches2)


def test_max_distance():
    descs1 = np.zeros((10, 128))
    descs2 = np.zeros((15, 128))

    descs1[0, :] = 1

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_distance=0.1, cross_check=False)
    assert len(matches) == 9

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_distance=np.sqrt(128.1),
                                cross_check=False)
    assert len(matches) == 10

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_distance=0.1,
                                cross_check=True)
    assert_equal(matches, [[1, 0]])

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_distance=np.sqrt(128.1),
                                cross_check=True)
    assert_equal(matches, [[1, 0]])


def test_max_ratio():
    descs1 = 10 * np.arange(10)[:, None].astype(np.float32)
    descs2 = 10 * np.arange(15)[:, None].astype(np.float32)

    descs2[0] = 5.0

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_ratio=1.0, cross_check=False)
    assert_equal(len(matches), 10)

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_ratio=0.6, cross_check=False)
    assert_equal(len(matches), 10)

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_ratio=0.5, cross_check=False)
    assert_equal(len(matches), 9)

    descs1[0] = 7.5

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_ratio=0.5, cross_check=False)
    assert_equal(len(matches), 9)

    descs2 = 10 * np.arange(1)[:, None].astype(np.float32)

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_ratio=1.0, cross_check=False)
    assert_equal(len(matches), 10)

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_ratio=0.5, cross_check=False)
    assert_equal(len(matches), 10)

    descs1 = 10 * np.arange(1)[:, None].astype(np.float32)

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_ratio=1.0, cross_check=False)
    assert_equal(len(matches), 1)

    matches = match_descriptors(descs1, descs2, metric='euclidean',
                                max_ratio=0.5, cross_check=False)
    assert_equal(len(matches), 1)