"""Compatibility fixes for older version of python, numpy and scipy If you add content to this file, please give the version of the package at which the fixe is no longer needed. """ # Authors: Emmanuelle Gouillart # Gael Varoquaux # Fabian Pedregosa # Lars Buitinck # # License: BSD 3 clause from distutils.version import LooseVersion import numpy as np import scipy.sparse as sp import scipy import scipy.stats from scipy.sparse.linalg import lsqr as sparse_lsqr # noqa from numpy.ma import MaskedArray as _MaskedArray # TODO: remove in 0.25 from .deprecation import deprecated try: from pkg_resources import parse_version # type: ignore except ImportError: # setuptools not installed parse_version = LooseVersion # type: ignore np_version = parse_version(np.__version__) sp_version = parse_version(scipy.__version__) if sp_version >= parse_version('1.4'): from scipy.sparse.linalg import lobpcg else: # Backport of lobpcg functionality from scipy 1.4.0, can be removed # once support for sp_version < parse_version('1.4') is dropped # mypy error: Name 'lobpcg' already defined (possibly by an import) from ..externals._lobpcg import lobpcg # type: ignore # noqa def _object_dtype_isnan(X): return X != X # TODO: replace by copy=False, when only scipy > 1.1 is supported. def _astype_copy_false(X): """Returns the copy=False parameter for {ndarray, csr_matrix, csc_matrix}.astype when possible, otherwise don't specify """ if sp_version >= parse_version('1.1') or not sp.issparse(X): return {'copy': False} else: return {} def _joblib_parallel_args(**kwargs): """Set joblib.Parallel arguments in a compatible way for 0.11 and 0.12+ For joblib 0.11 this maps both ``prefer`` and ``require`` parameters to a specific ``backend``. Parameters ---------- prefer : str in {'processes', 'threads'} or None Soft hint to choose the default backend if no specific backend was selected with the parallel_backend context manager. require : 'sharedmem' or None Hard condstraint to select the backend. If set to 'sharedmem', the selected backend will be single-host and thread-based even if the user asked for a non-thread based backend with parallel_backend. See joblib.Parallel documentation for more details """ import joblib if parse_version(joblib.__version__) >= parse_version('0.12'): return kwargs extra_args = set(kwargs.keys()).difference({'prefer', 'require'}) if extra_args: raise NotImplementedError('unhandled arguments %s with joblib %s' % (list(extra_args), joblib.__version__)) args = {} if 'prefer' in kwargs: prefer = kwargs['prefer'] if prefer not in ['threads', 'processes', None]: raise ValueError('prefer=%s is not supported' % prefer) args['backend'] = {'threads': 'threading', 'processes': 'multiprocessing', None: None}[prefer] if 'require' in kwargs: require = kwargs['require'] if require not in [None, 'sharedmem']: raise ValueError('require=%s is not supported' % require) if require == 'sharedmem': args['backend'] = 'threading' return args class loguniform(scipy.stats.reciprocal): """A class supporting log-uniform random variables. Parameters ---------- low : float The minimum value high : float The maximum value Methods ------- rvs(self, size=None, random_state=None) Generate log-uniform random variables The most useful method for Scikit-learn usage is highlighted here. For a full list, see `scipy.stats.reciprocal `_. This list includes all functions of ``scipy.stats`` continuous distributions such as ``pdf``. Notes ----- This class generates values between ``low`` and ``high`` or low <= loguniform(low, high).rvs() <= high The logarithmic probability density function (PDF) is uniform. When ``x`` is a uniformly distributed random variable between 0 and 1, ``10**x`` are random variales that are equally likely to be returned. This class is an alias to ``scipy.stats.reciprocal``, which uses the reciprocal distribution: https://en.wikipedia.org/wiki/Reciprocal_distribution Examples -------- >>> from sklearn.utils.fixes import loguniform >>> rv = loguniform(1e-3, 1e1) >>> rvs = rv.rvs(random_state=42, size=1000) >>> rvs.min() # doctest: +SKIP 0.0010435856341129003 >>> rvs.max() # doctest: +SKIP 9.97403052786026 """ @deprecated( 'MaskedArray is deprecated in version 0.23 and will be removed in version ' '0.25. Use numpy.ma.MaskedArray instead.' ) class MaskedArray(_MaskedArray): pass # TODO: remove in 0.25