""" Find a few eigenvectors and eigenvalues of a matrix. Uses ARPACK: http://www.caam.rice.edu/software/ARPACK/ """ # Wrapper implementation notes # # ARPACK Entry Points # ------------------- # The entry points to ARPACK are # - (s,d)seupd : single and double precision symmetric matrix # - (s,d,c,z)neupd: single,double,complex,double complex general matrix # This wrapper puts the *neupd (general matrix) interfaces in eigs() # and the *seupd (symmetric matrix) in eigsh(). # There is no Hermitian complex/double complex interface. # To find eigenvalues of a Hermitian matrix you # must use eigs() and not eigsh() # It might be desirable to handle the Hermitian case differently # and, for example, return real eigenvalues. # Number of eigenvalues returned and complex eigenvalues # ------------------------------------------------------ # The ARPACK nonsymmetric real and double interface (s,d)naupd return # eigenvalues and eigenvectors in real (float,double) arrays. # Since the eigenvalues and eigenvectors are, in general, complex # ARPACK puts the real and imaginary parts in consecutive entries # in real-valued arrays. This wrapper puts the real entries # into complex data types and attempts to return the requested eigenvalues # and eigenvectors. # Solver modes # ------------ # ARPACK and handle shifted and shift-inverse computations # for eigenvalues by providing a shift (sigma) and a solver. __docformat__ = "restructuredtext en" __all__ = ['eigs', 'eigsh', 'svds', 'ArpackError', 'ArpackNoConvergence'] from . import _arpack arpack_int = _arpack.timing.nbx.dtype import numpy as np import warnings from scipy.sparse.linalg.interface import aslinearoperator, LinearOperator from scipy.sparse import eye, issparse, isspmatrix, isspmatrix_csr from scipy.linalg import eig, eigh, lu_factor, lu_solve from scipy.sparse.sputils import isdense, is_pydata_spmatrix from scipy.sparse.linalg import gmres, splu from scipy.sparse.linalg.eigen.lobpcg import lobpcg from scipy._lib._util import _aligned_zeros from scipy._lib._threadsafety import ReentrancyLock _type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z'} _ndigits = {'f': 5, 'd': 12, 'F': 5, 'D': 12} DNAUPD_ERRORS = { 0: "Normal exit.", 1: "Maximum number of iterations taken. " "All possible eigenvalues of OP has been found. IPARAM(5) " "returns the number of wanted converged Ritz values.", 2: "No longer an informational error. Deprecated starting " "with release 2 of ARPACK.", 3: "No shifts could be applied during a cycle of the " "Implicitly restarted Arnoldi iteration. One possibility " "is to increase the size of NCV relative to NEV. ", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 2 and less than or equal to N.", -4: "The maximum number of Arnoldi update iterations allowed " "must be greater than zero.", -5: " WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work array WORKL is not sufficient.", -8: "Error return from LAPACK eigenvalue calculation;", -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "IPARAM(1) must be equal to 0 or 1.", -13: "NEV and WHICH = 'BE' are incompatible.", -9999: "Could not build an Arnoldi factorization. " "IPARAM(5) returns the size of the current Arnoldi " "factorization. The user is advised to check that " "enough workspace and array storage has been allocated." } SNAUPD_ERRORS = DNAUPD_ERRORS ZNAUPD_ERRORS = DNAUPD_ERRORS.copy() ZNAUPD_ERRORS[-10] = "IPARAM(7) must be 1,2,3." CNAUPD_ERRORS = ZNAUPD_ERRORS DSAUPD_ERRORS = { 0: "Normal exit.", 1: "Maximum number of iterations taken. " "All possible eigenvalues of OP has been found.", 2: "No longer an informational error. Deprecated starting with " "release 2 of ARPACK.", 3: "No shifts could be applied during a cycle of the Implicitly " "restarted Arnoldi iteration. One possibility is to increase " "the size of NCV relative to NEV. ", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV must be greater than NEV and less than or equal to N.", -4: "The maximum number of Arnoldi update iterations allowed " "must be greater than zero.", -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work array WORKL is not sufficient.", -8: "Error return from trid. eigenvalue calculation; " "Informational error from LAPACK routine dsteqr .", -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4,5.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "IPARAM(1) must be equal to 0 or 1.", -13: "NEV and WHICH = 'BE' are incompatible. ", -9999: "Could not build an Arnoldi factorization. " "IPARAM(5) returns the size of the current Arnoldi " "factorization. The user is advised to check that " "enough workspace and array storage has been allocated.", } SSAUPD_ERRORS = DSAUPD_ERRORS DNEUPD_ERRORS = { 0: "Normal exit.", 1: "The Schur form computed by LAPACK routine dlahqr " "could not be reordered by LAPACK routine dtrsen. " "Re-enter subroutine dneupd with IPARAM(5)NCV and " "increase the size of the arrays DR and DI to have " "dimension at least dimension NCV and allocate at least NCV " "columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error" "occurs.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 2 and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: "Error return from calculation of a real Schur form. " "Informational error from LAPACK routine dlahqr .", -9: "Error return from calculation of eigenvectors. " "Informational error from LAPACK routine dtrevc.", -10: "IPARAM(7) must be 1,2,3,4.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "HOWMNY = 'S' not yet implemented", -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", -14: "DNAUPD did not find any eigenvalues to sufficient " "accuracy.", -15: "DNEUPD got a different count of the number of converged " "Ritz values than DNAUPD got. This indicates the user " "probably made an error in passing data from DNAUPD to " "DNEUPD or that the data was modified before entering " "DNEUPD", } SNEUPD_ERRORS = DNEUPD_ERRORS.copy() SNEUPD_ERRORS[1] = ("The Schur form computed by LAPACK routine slahqr " "could not be reordered by LAPACK routine strsen . " "Re-enter subroutine dneupd with IPARAM(5)=NCV and " "increase the size of the arrays DR and DI to have " "dimension at least dimension NCV and allocate at least " "NCV columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.") SNEUPD_ERRORS[-14] = ("SNAUPD did not find any eigenvalues to sufficient " "accuracy.") SNEUPD_ERRORS[-15] = ("SNEUPD got a different count of the number of " "converged Ritz values than SNAUPD got. This indicates " "the user probably made an error in passing data from " "SNAUPD to SNEUPD or that the data was modified before " "entering SNEUPD") ZNEUPD_ERRORS = {0: "Normal exit.", 1: "The Schur form computed by LAPACK routine csheqr " "could not be reordered by LAPACK routine ztrsen. " "Re-enter subroutine zneupd with IPARAM(5)=NCV and " "increase the size of the array D to have " "dimension at least dimension NCV and allocate at least " "NCV columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 1 and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: "Error return from LAPACK eigenvalue calculation. " "This should never happened.", -9: "Error return from calculation of eigenvectors. " "Informational error from LAPACK routine ztrevc.", -10: "IPARAM(7) must be 1,2,3", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "HOWMNY = 'S' not yet implemented", -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", -14: "ZNAUPD did not find any eigenvalues to sufficient " "accuracy.", -15: "ZNEUPD got a different count of the number of " "converged Ritz values than ZNAUPD got. This " "indicates the user probably made an error in passing " "data from ZNAUPD to ZNEUPD or that the data was " "modified before entering ZNEUPD" } CNEUPD_ERRORS = ZNEUPD_ERRORS.copy() CNEUPD_ERRORS[-14] = ("CNAUPD did not find any eigenvalues to sufficient " "accuracy.") CNEUPD_ERRORS[-15] = ("CNEUPD got a different count of the number of " "converged Ritz values than CNAUPD got. This indicates " "the user probably made an error in passing data from " "CNAUPD to CNEUPD or that the data was modified before " "entering CNEUPD") DSEUPD_ERRORS = { 0: "Normal exit.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV must be greater than NEV and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: ("Error return from trid. eigenvalue calculation; " "Information error from LAPACK routine dsteqr."), -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4,5.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "NEV and WHICH = 'BE' are incompatible.", -14: "DSAUPD did not find any eigenvalues to sufficient accuracy.", -15: "HOWMNY must be one of 'A' or 'S' if RVEC = .true.", -16: "HOWMNY = 'S' not yet implemented", -17: ("DSEUPD got a different count of the number of converged " "Ritz values than DSAUPD got. This indicates the user " "probably made an error in passing data from DSAUPD to " "DSEUPD or that the data was modified before entering " "DSEUPD.") } SSEUPD_ERRORS = DSEUPD_ERRORS.copy() SSEUPD_ERRORS[-14] = ("SSAUPD did not find any eigenvalues " "to sufficient accuracy.") SSEUPD_ERRORS[-17] = ("SSEUPD got a different count of the number of " "converged " "Ritz values than SSAUPD got. This indicates the user " "probably made an error in passing data from SSAUPD to " "SSEUPD or that the data was modified before entering " "SSEUPD.") _SAUPD_ERRORS = {'d': DSAUPD_ERRORS, 's': SSAUPD_ERRORS} _NAUPD_ERRORS = {'d': DNAUPD_ERRORS, 's': SNAUPD_ERRORS, 'z': ZNAUPD_ERRORS, 'c': CNAUPD_ERRORS} _SEUPD_ERRORS = {'d': DSEUPD_ERRORS, 's': SSEUPD_ERRORS} _NEUPD_ERRORS = {'d': DNEUPD_ERRORS, 's': SNEUPD_ERRORS, 'z': ZNEUPD_ERRORS, 'c': CNEUPD_ERRORS} # accepted values of parameter WHICH in _SEUPD _SEUPD_WHICH = ['LM', 'SM', 'LA', 'SA', 'BE'] # accepted values of parameter WHICH in _NAUPD _NEUPD_WHICH = ['LM', 'SM', 'LR', 'SR', 'LI', 'SI'] class ArpackError(RuntimeError): """ ARPACK error """ def __init__(self, info, infodict=_NAUPD_ERRORS): msg = infodict.get(info, "Unknown error") RuntimeError.__init__(self, "ARPACK error %d: %s" % (info, msg)) class ArpackNoConvergence(ArpackError): """ ARPACK iteration did not converge Attributes ---------- eigenvalues : ndarray Partial result. Converged eigenvalues. eigenvectors : ndarray Partial result. Converged eigenvectors. """ def __init__(self, msg, eigenvalues, eigenvectors): ArpackError.__init__(self, -1, {-1: msg}) self.eigenvalues = eigenvalues self.eigenvectors = eigenvectors def choose_ncv(k): """ Choose number of lanczos vectors based on target number of singular/eigen values and vectors to compute, k. """ return max(2 * k + 1, 20) class _ArpackParams(object): def __init__(self, n, k, tp, mode=1, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): if k <= 0: raise ValueError("k must be positive, k=%d" % k) if maxiter is None: maxiter = n * 10 if maxiter <= 0: raise ValueError("maxiter must be positive, maxiter=%d" % maxiter) if tp not in 'fdFD': raise ValueError("matrix type must be 'f', 'd', 'F', or 'D'") if v0 is not None: # ARPACK overwrites its initial resid, make a copy self.resid = np.array(v0, copy=True) info = 1 else: # ARPACK will use a random initial vector. self.resid = np.zeros(n, tp) info = 0 if sigma is None: #sigma not used self.sigma = 0 else: self.sigma = sigma if ncv is None: ncv = choose_ncv(k) ncv = min(ncv, n) self.v = np.zeros((n, ncv), tp) # holds Ritz vectors self.iparam = np.zeros(11, arpack_int) # set solver mode and parameters ishfts = 1 self.mode = mode self.iparam[0] = ishfts self.iparam[2] = maxiter self.iparam[3] = 1 self.iparam[6] = mode self.n = n self.tol = tol self.k = k self.maxiter = maxiter self.ncv = ncv self.which = which self.tp = tp self.info = info self.converged = False self.ido = 0 def _raise_no_convergence(self): msg = "No convergence (%d iterations, %d/%d eigenvectors converged)" k_ok = self.iparam[4] num_iter = self.iparam[2] try: ev, vec = self.extract(True) except ArpackError as err: msg = "%s [%s]" % (msg, err) ev = np.zeros((0,)) vec = np.zeros((self.n, 0)) k_ok = 0 raise ArpackNoConvergence(msg % (num_iter, k_ok, self.k), ev, vec) class _SymmetricArpackParams(_ArpackParams): def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None, Minv_matvec=None, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): # The following modes are supported: # mode = 1: # Solve the standard eigenvalue problem: # A*x = lambda*x : # A - symmetric # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = None [not used] # # mode = 2: # Solve the general eigenvalue problem: # A*x = lambda*M*x # A - symmetric # M - symmetric positive definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # Minv_matvec = left multiplication by M^-1 # # mode = 3: # Solve the general eigenvalue problem in shift-invert mode: # A*x = lambda*M*x # A - symmetric # M - symmetric positive semi-definite # Arguments should be # matvec = None [not used] # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 # # mode = 4: # Solve the general eigenvalue problem in Buckling mode: # A*x = lambda*AG*x # A - symmetric positive semi-definite # AG - symmetric indefinite # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = left multiplication by [A-sigma*AG]^-1 # # mode = 5: # Solve the general eigenvalue problem in Cayley-transformed mode: # A*x = lambda*M*x # A - symmetric # M - symmetric positive semi-definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 if mode == 1: if matvec is None: raise ValueError("matvec must be specified for mode=1") if M_matvec is not None: raise ValueError("M_matvec cannot be specified for mode=1") if Minv_matvec is not None: raise ValueError("Minv_matvec cannot be specified for mode=1") self.OP = matvec self.B = lambda x: x self.bmat = 'I' elif mode == 2: if matvec is None: raise ValueError("matvec must be specified for mode=2") if M_matvec is None: raise ValueError("M_matvec must be specified for mode=2") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=2") self.OP = lambda x: Minv_matvec(matvec(x)) self.OPa = Minv_matvec self.OPb = matvec self.B = M_matvec self.bmat = 'G' elif mode == 3: if matvec is not None: raise ValueError("matvec must not be specified for mode=3") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=3") if M_matvec is None: self.OP = Minv_matvec self.OPa = Minv_matvec self.B = lambda x: x self.bmat = 'I' else: self.OP = lambda x: Minv_matvec(M_matvec(x)) self.OPa = Minv_matvec self.B = M_matvec self.bmat = 'G' elif mode == 4: if matvec is None: raise ValueError("matvec must be specified for mode=4") if M_matvec is not None: raise ValueError("M_matvec must not be specified for mode=4") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=4") self.OPa = Minv_matvec self.OP = lambda x: self.OPa(matvec(x)) self.B = matvec self.bmat = 'G' elif mode == 5: if matvec is None: raise ValueError("matvec must be specified for mode=5") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=5") self.OPa = Minv_matvec self.A_matvec = matvec if M_matvec is None: self.OP = lambda x: Minv_matvec(matvec(x) + sigma * x) self.B = lambda x: x self.bmat = 'I' else: self.OP = lambda x: Minv_matvec(matvec(x) + sigma * M_matvec(x)) self.B = M_matvec self.bmat = 'G' else: raise ValueError("mode=%i not implemented" % mode) if which not in _SEUPD_WHICH: raise ValueError("which must be one of %s" % ' '.join(_SEUPD_WHICH)) if k >= n: raise ValueError("k must be less than ndim(A), k=%d" % k) _ArpackParams.__init__(self, n, k, tp, mode, sigma, ncv, v0, maxiter, which, tol) if self.ncv > n or self.ncv <= k: raise ValueError("ncv must be k= n - 1: raise ValueError("k must be less than ndim(A)-1, k=%d" % k) _ArpackParams.__init__(self, n, k, tp, mode, sigma, ncv, v0, maxiter, which, tol) if self.ncv > n or self.ncv <= k + 1: raise ValueError("ncv must be k+1 k, so we'll # throw out this case. nreturned -= 1 i += 1 else: # real matrix, mode 3 or 4, imag(sigma) is nonzero: # see remark 3 in neupd.f # Build complex eigenvalues from real and imaginary parts i = 0 while i <= k: if abs(d[i].imag) == 0: d[i] = np.dot(zr[:, i], self.matvec(zr[:, i])) else: if i < k: z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1] z[:, i + 1] = z[:, i].conjugate() d[i] = ((np.dot(zr[:, i], self.matvec(zr[:, i])) + np.dot(zr[:, i + 1], self.matvec(zr[:, i + 1]))) + 1j * (np.dot(zr[:, i], self.matvec(zr[:, i + 1])) - np.dot(zr[:, i + 1], self.matvec(zr[:, i])))) d[i + 1] = d[i].conj() i += 1 else: #last eigenvalue is complex: the imaginary part of # the eigenvector has not been returned #this can only happen if nreturned > k, so we'll # throw out this case. nreturned -= 1 i += 1 # Now we have k+1 possible eigenvalues and eigenvectors # Return the ones specified by the keyword "which" if nreturned <= k: # we got less or equal as many eigenvalues we wanted d = d[:nreturned] z = z[:, :nreturned] else: # we got one extra eigenvalue (likely a cc pair, but which?) if self.mode in (1, 2): rd = d elif self.mode in (3, 4): rd = 1 / (d - self.sigma) if self.which in ['LR', 'SR']: ind = np.argsort(rd.real) elif self.which in ['LI', 'SI']: # for LI,SI ARPACK returns largest,smallest # abs(imaginary) (complex pairs come together) ind = np.argsort(abs(rd.imag)) else: ind = np.argsort(abs(rd)) if self.which in ['LR', 'LM', 'LI']: ind = ind[-k:][::-1] elif self.which in ['SR', 'SM', 'SI']: ind = ind[:k] d = d[ind] z = z[:, ind] else: # complex is so much simpler... d, z, ierr =\ self._arpack_extract(return_eigenvectors, howmny, sselect, self.sigma, workev, self.bmat, self.which, k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.rwork, ierr) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) k_ok = self.iparam[4] d = d[:k_ok] z = z[:, :k_ok] if return_eigenvectors: return d, z else: return d def _aslinearoperator_with_dtype(m): m = aslinearoperator(m) if not hasattr(m, 'dtype'): x = np.zeros(m.shape[1]) m.dtype = (m * x).dtype return m class SpLuInv(LinearOperator): """ SpLuInv: helper class to repeatedly solve M*x=b using a sparse LU-decomposition of M """ def __init__(self, M): self.M_lu = splu(M) self.shape = M.shape self.dtype = M.dtype self.isreal = not np.issubdtype(self.dtype, np.complexfloating) def _matvec(self, x): # careful here: splu.solve will throw away imaginary # part of x if M is real x = np.asarray(x) if self.isreal and np.issubdtype(x.dtype, np.complexfloating): return (self.M_lu.solve(np.real(x).astype(self.dtype)) + 1j * self.M_lu.solve(np.imag(x).astype(self.dtype))) else: return self.M_lu.solve(x.astype(self.dtype)) class LuInv(LinearOperator): """ LuInv: helper class to repeatedly solve M*x=b using an LU-decomposition of M """ def __init__(self, M): self.M_lu = lu_factor(M) self.shape = M.shape self.dtype = M.dtype def _matvec(self, x): return lu_solve(self.M_lu, x) def gmres_loose(A, b, tol): """ gmres with looser termination condition. """ b = np.asarray(b) min_tol = 1000 * np.sqrt(b.size) * np.finfo(b.dtype).eps return gmres(A, b, tol=max(tol, min_tol), atol=0) class IterInv(LinearOperator): """ IterInv: helper class to repeatedly solve M*x=b using an iterative method. """ def __init__(self, M, ifunc=gmres_loose, tol=0): self.M = M if hasattr(M, 'dtype'): self.dtype = M.dtype else: x = np.zeros(M.shape[1]) self.dtype = (M * x).dtype self.shape = M.shape if tol <= 0: # when tol=0, ARPACK uses machine tolerance as calculated # by LAPACK's _LAMCH function. We should match this tol = 2 * np.finfo(self.dtype).eps self.ifunc = ifunc self.tol = tol def _matvec(self, x): b, info = self.ifunc(self.M, x, tol=self.tol) if info != 0: raise ValueError("Error in inverting M: function " "%s did not converge (info = %i)." % (self.ifunc.__name__, info)) return b class IterOpInv(LinearOperator): """ IterOpInv: helper class to repeatedly solve [A-sigma*M]*x = b using an iterative method """ def __init__(self, A, M, sigma, ifunc=gmres_loose, tol=0): self.A = A self.M = M self.sigma = sigma def mult_func(x): return A.matvec(x) - sigma * M.matvec(x) def mult_func_M_None(x): return A.matvec(x) - sigma * x x = np.zeros(A.shape[1]) if M is None: dtype = mult_func_M_None(x).dtype self.OP = LinearOperator(self.A.shape, mult_func_M_None, dtype=dtype) else: dtype = mult_func(x).dtype self.OP = LinearOperator(self.A.shape, mult_func, dtype=dtype) self.shape = A.shape if tol <= 0: # when tol=0, ARPACK uses machine tolerance as calculated # by LAPACK's _LAMCH function. We should match this tol = 2 * np.finfo(self.OP.dtype).eps self.ifunc = ifunc self.tol = tol def _matvec(self, x): b, info = self.ifunc(self.OP, x, tol=self.tol) if info != 0: raise ValueError("Error in inverting [A-sigma*M]: function " "%s did not converge (info = %i)." % (self.ifunc.__name__, info)) return b @property def dtype(self): return self.OP.dtype def _fast_spmatrix_to_csc(A, hermitian=False): """Convert sparse matrix to CSC (by transposing, if possible)""" if (isspmatrix_csr(A) and hermitian and not np.issubdtype(A.dtype, np.complexfloating)): return A.T elif is_pydata_spmatrix(A): # No need to convert return A else: return A.tocsc() def get_inv_matvec(M, hermitian=False, tol=0): if isdense(M): return LuInv(M).matvec elif isspmatrix(M) or is_pydata_spmatrix(M): M = _fast_spmatrix_to_csc(M, hermitian=hermitian) return SpLuInv(M).matvec else: return IterInv(M, tol=tol).matvec def get_OPinv_matvec(A, M, sigma, hermitian=False, tol=0): if sigma == 0: return get_inv_matvec(A, hermitian=hermitian, tol=tol) if M is None: #M is the identity matrix if isdense(A): if (np.issubdtype(A.dtype, np.complexfloating) or np.imag(sigma) == 0): A = np.copy(A) else: A = A + 0j A.flat[::A.shape[1] + 1] -= sigma return LuInv(A).matvec elif isspmatrix(A) or is_pydata_spmatrix(A): A = A - sigma * eye(A.shape[0]) A = _fast_spmatrix_to_csc(A, hermitian=hermitian) return SpLuInv(A).matvec else: return IterOpInv(_aslinearoperator_with_dtype(A), M, sigma, tol=tol).matvec else: if ((not isdense(A) and not isspmatrix(A) and not is_pydata_spmatrix(A)) or (not isdense(M) and not isspmatrix(M) and not is_pydata_spmatrix(A))): return IterOpInv(_aslinearoperator_with_dtype(A), _aslinearoperator_with_dtype(M), sigma, tol=tol).matvec elif isdense(A) or isdense(M): return LuInv(A - sigma * M).matvec else: OP = A - sigma * M OP = _fast_spmatrix_to_csc(OP, hermitian=hermitian) return SpLuInv(OP).matvec # ARPACK is not threadsafe or reentrant (SAVE variables), so we need a # lock and a re-entering check. _ARPACK_LOCK = ReentrancyLock("Nested calls to eigs/eighs not allowed: " "ARPACK is not re-entrant") def eigs(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, OPpart=None): """ Find k eigenvalues and eigenvectors of the square matrix A. Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i]. If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the generalized eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i] Parameters ---------- A : ndarray, sparse matrix or LinearOperator An array, sparse matrix, or LinearOperator representing the operation ``A * x``, where A is a real or complex square matrix. k : int, optional The number of eigenvalues and eigenvectors desired. `k` must be smaller than N-1. It is not possible to compute all eigenvectors of a matrix. M : ndarray, sparse matrix or LinearOperator, optional An array, sparse matrix, or LinearOperator representing the operation M*x for the generalized eigenvalue problem A * x = w * M * x. M must represent a real, symmetric matrix if A is real, and must represent a complex, hermitian matrix if A is complex. For best results, the data type of M should be the same as that of A. Additionally: If `sigma` is None, M is positive definite If sigma is specified, M is positive semi-definite If sigma is None, eigs requires an operator to compute the solution of the linear equation ``M * x = b``. This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which gives ``x = Minv * b = M^-1 * b``. sigma : real or complex, optional Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system ``[A - sigma * M] * x = b``, where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which gives ``x = OPinv * b = [A - sigma * M]^-1 * b``. For a real matrix A, shift-invert can either be done in imaginary mode or real mode, specified by the parameter OPpart ('r' or 'i'). Note that when sigma is specified, the keyword 'which' (below) refers to the shifted eigenvalues ``w'[i]`` where: If A is real and OPpart == 'r' (default), ``w'[i] = 1/2 * [1/(w[i]-sigma) + 1/(w[i]-conj(sigma))]``. If A is real and OPpart == 'i', ``w'[i] = 1/2i * [1/(w[i]-sigma) - 1/(w[i]-conj(sigma))]``. If A is complex, ``w'[i] = 1/(w[i]-sigma)``. v0 : ndarray, optional Starting vector for iteration. Default: random ncv : int, optional The number of Lanczos vectors generated `ncv` must be greater than `k`; it is recommended that ``ncv > 2*k``. Default: ``min(n, max(2*k + 1, 20))`` which : str, ['LM' | 'SM' | 'LR' | 'SR' | 'LI' | 'SI'], optional Which `k` eigenvectors and eigenvalues to find: 'LM' : largest magnitude 'SM' : smallest magnitude 'LR' : largest real part 'SR' : smallest real part 'LI' : largest imaginary part 'SI' : smallest imaginary part When sigma != None, 'which' refers to the shifted eigenvalues w'[i] (see discussion in 'sigma', above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance. maxiter : int, optional Maximum number of Arnoldi update iterations allowed Default: ``n*10`` tol : float, optional Relative accuracy for eigenvalues (stopping criterion) The default value of 0 implies machine precision. return_eigenvectors : bool, optional Return eigenvectors (True) in addition to eigenvalues Minv : ndarray, sparse matrix or LinearOperator, optional See notes in M, above. OPinv : ndarray, sparse matrix or LinearOperator, optional See notes in sigma, above. OPpart : {'r' or 'i'}, optional See notes in sigma, above Returns ------- w : ndarray Array of k eigenvalues. v : ndarray An array of `k` eigenvectors. ``v[:, i]`` is the eigenvector corresponding to the eigenvalue w[i]. Raises ------ ArpackNoConvergence When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as ``eigenvalues`` and ``eigenvectors`` attributes of the exception object. See Also -------- eigsh : eigenvalues and eigenvectors for symmetric matrix A svds : singular value decomposition for a matrix A Notes ----- This function is a wrapper to the ARPACK [1]_ SNEUPD, DNEUPD, CNEUPD, ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to find the eigenvalues and eigenvectors [2]_. References ---------- .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/ .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. Examples -------- Find 6 eigenvectors of the identity matrix: >>> from scipy.sparse.linalg import eigs >>> id = np.eye(13) >>> vals, vecs = eigs(id, k=6) >>> vals array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]) >>> vecs.shape (13, 6) """ if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape=%s)' % (A.shape,)) if M is not None: if M.shape != A.shape: raise ValueError('wrong M dimensions %s, should be %s' % (M.shape, A.shape)) if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): warnings.warn('M does not have the same type precision as A. ' 'This may adversely affect ARPACK convergence') n = A.shape[0] if k <= 0: raise ValueError("k=%d must be greater than 0." % k) if k >= n - 1: warnings.warn("k >= N - 1 for N * N square matrix. " "Attempting to use scipy.linalg.eig instead.", RuntimeWarning) if issparse(A): raise TypeError("Cannot use scipy.linalg.eig for sparse A with " "k >= N - 1. Use scipy.linalg.eig(A.toarray()) or" " reduce k.") if isinstance(A, LinearOperator): raise TypeError("Cannot use scipy.linalg.eig for LinearOperator " "A with k >= N - 1.") if isinstance(M, LinearOperator): raise TypeError("Cannot use scipy.linalg.eig for LinearOperator " "M with k >= N - 1.") return eig(A, b=M, right=return_eigenvectors) if sigma is None: matvec = _aslinearoperator_with_dtype(A).matvec if OPinv is not None: raise ValueError("OPinv should not be specified " "with sigma = None.") if OPpart is not None: raise ValueError("OPpart should not be specified with " "sigma = None or complex A") if M is None: #standard eigenvalue problem mode = 1 M_matvec = None Minv_matvec = None if Minv is not None: raise ValueError("Minv should not be " "specified with M = None.") else: #general eigenvalue problem mode = 2 if Minv is None: Minv_matvec = get_inv_matvec(M, hermitian=True, tol=tol) else: Minv = _aslinearoperator_with_dtype(Minv) Minv_matvec = Minv.matvec M_matvec = _aslinearoperator_with_dtype(M).matvec else: #sigma is not None: shift-invert mode if np.issubdtype(A.dtype, np.complexfloating): if OPpart is not None: raise ValueError("OPpart should not be specified " "with sigma=None or complex A") mode = 3 elif OPpart is None or OPpart.lower() == 'r': mode = 3 elif OPpart.lower() == 'i': if np.imag(sigma) == 0: raise ValueError("OPpart cannot be 'i' if sigma is real") mode = 4 else: raise ValueError("OPpart must be one of ('r','i')") matvec = _aslinearoperator_with_dtype(A).matvec if Minv is not None: raise ValueError("Minv should not be specified when sigma is") if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, hermitian=False, tol=tol) else: OPinv = _aslinearoperator_with_dtype(OPinv) Minv_matvec = OPinv.matvec if M is None: M_matvec = None else: M_matvec = _aslinearoperator_with_dtype(M).matvec params = _UnsymmetricArpackParams(n, k, A.dtype.char, matvec, mode, M_matvec, Minv_matvec, sigma, ncv, v0, maxiter, which, tol) with _ARPACK_LOCK: while not params.converged: params.iterate() return params.extract(return_eigenvectors) def eigsh(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, mode='normal'): """ Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A. Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i]. If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the generalized eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i]. Parameters ---------- A : ndarray, sparse matrix or LinearOperator A square operator representing the operation ``A * x``, where ``A`` is real symmetric or complex hermitian. For buckling mode (see below) ``A`` must additionally be positive-definite. k : int, optional The number of eigenvalues and eigenvectors desired. `k` must be smaller than N. It is not possible to compute all eigenvectors of a matrix. Returns ------- w : array Array of k eigenvalues. v : array An array representing the `k` eigenvectors. The column ``v[:, i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Other Parameters ---------------- M : An N x N matrix, array, sparse matrix, or linear operator representing the operation ``M @ x`` for the generalized eigenvalue problem A @ x = w * M @ x. M must represent a real, symmetric matrix if A is real, and must represent a complex, hermitian matrix if A is complex. For best results, the data type of M should be the same as that of A. Additionally: If sigma is None, M is symmetric positive definite. If sigma is specified, M is symmetric positive semi-definite. In buckling mode, M is symmetric indefinite. If sigma is None, eigsh requires an operator to compute the solution of the linear equation ``M @ x = b``. This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which gives ``x = Minv @ b = M^-1 @ b``. sigma : real Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system ``[A - sigma * M] x = b``, where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which gives ``x = OPinv @ b = [A - sigma * M]^-1 @ b``. Note that when sigma is specified, the keyword 'which' refers to the shifted eigenvalues ``w'[i]`` where: if mode == 'normal', ``w'[i] = 1 / (w[i] - sigma)``. if mode == 'cayley', ``w'[i] = (w[i] + sigma) / (w[i] - sigma)``. if mode == 'buckling', ``w'[i] = w[i] / (w[i] - sigma)``. (see further discussion in 'mode' below) v0 : ndarray, optional Starting vector for iteration. Default: random ncv : int, optional The number of Lanczos vectors generated ncv must be greater than k and smaller than n; it is recommended that ``ncv > 2*k``. Default: ``min(n, max(2*k + 1, 20))`` which : str ['LM' | 'SM' | 'LA' | 'SA' | 'BE'] If A is a complex hermitian matrix, 'BE' is invalid. Which `k` eigenvectors and eigenvalues to find: 'LM' : Largest (in magnitude) eigenvalues. 'SM' : Smallest (in magnitude) eigenvalues. 'LA' : Largest (algebraic) eigenvalues. 'SA' : Smallest (algebraic) eigenvalues. 'BE' : Half (k/2) from each end of the spectrum. When k is odd, return one more (k/2+1) from the high end. When sigma != None, 'which' refers to the shifted eigenvalues ``w'[i]`` (see discussion in 'sigma', above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance. maxiter : int, optional Maximum number of Arnoldi update iterations allowed. Default: ``n*10`` tol : float Relative accuracy for eigenvalues (stopping criterion). The default value of 0 implies machine precision. Minv : N x N matrix, array, sparse matrix, or LinearOperator See notes in M, above. OPinv : N x N matrix, array, sparse matrix, or LinearOperator See notes in sigma, above. return_eigenvectors : bool Return eigenvectors (True) in addition to eigenvalues. This value determines the order in which eigenvalues are sorted. The sort order is also dependent on the `which` variable. For which = 'LM' or 'SA': If `return_eigenvectors` is True, eigenvalues are sorted by algebraic value. If `return_eigenvectors` is False, eigenvalues are sorted by absolute value. For which = 'BE' or 'LA': eigenvalues are always sorted by algebraic value. For which = 'SM': If `return_eigenvectors` is True, eigenvalues are sorted by algebraic value. If `return_eigenvectors` is False, eigenvalues are sorted by decreasing absolute value. mode : string ['normal' | 'buckling' | 'cayley'] Specify strategy to use for shift-invert mode. This argument applies only for real-valued A and sigma != None. For shift-invert mode, ARPACK internally solves the eigenvalue problem ``OP * x'[i] = w'[i] * B * x'[i]`` and transforms the resulting Ritz vectors x'[i] and Ritz values w'[i] into the desired eigenvectors and eigenvalues of the problem ``A * x[i] = w[i] * M * x[i]``. The modes are as follows: 'normal' : OP = [A - sigma * M]^-1 @ M, B = M, w'[i] = 1 / (w[i] - sigma) 'buckling' : OP = [A - sigma * M]^-1 @ A, B = A, w'[i] = w[i] / (w[i] - sigma) 'cayley' : OP = [A - sigma * M]^-1 @ [A + sigma * M], B = M, w'[i] = (w[i] + sigma) / (w[i] - sigma) The choice of mode will affect which eigenvalues are selected by the keyword 'which', and can also impact the stability of convergence (see [2] for a discussion). Raises ------ ArpackNoConvergence When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as ``eigenvalues`` and ``eigenvectors`` attributes of the exception object. See Also -------- eigs : eigenvalues and eigenvectors for a general (nonsymmetric) matrix A svds : singular value decomposition for a matrix A Notes ----- This function is a wrapper to the ARPACK [1]_ SSEUPD and DSEUPD functions which use the Implicitly Restarted Lanczos Method to find the eigenvalues and eigenvectors [2]_. References ---------- .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/ .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. Examples -------- >>> from scipy.sparse.linalg import eigsh >>> identity = np.eye(13) >>> eigenvalues, eigenvectors = eigsh(identity, k=6) >>> eigenvalues array([1., 1., 1., 1., 1., 1.]) >>> eigenvectors.shape (13, 6) """ # complex hermitian matrices should be solved with eigs if np.issubdtype(A.dtype, np.complexfloating): if mode != 'normal': raise ValueError("mode=%s cannot be used with " "complex matrix A" % mode) if which == 'BE': raise ValueError("which='BE' cannot be used with complex matrix A") elif which == 'LA': which = 'LR' elif which == 'SA': which = 'SR' ret = eigs(A, k, M=M, sigma=sigma, which=which, v0=v0, ncv=ncv, maxiter=maxiter, tol=tol, return_eigenvectors=return_eigenvectors, Minv=Minv, OPinv=OPinv) if return_eigenvectors: return ret[0].real, ret[1] else: return ret.real if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape=%s)' % (A.shape,)) if M is not None: if M.shape != A.shape: raise ValueError('wrong M dimensions %s, should be %s' % (M.shape, A.shape)) if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): warnings.warn('M does not have the same type precision as A. ' 'This may adversely affect ARPACK convergence') n = A.shape[0] if k <= 0: raise ValueError("k must be greater than 0.") if k >= n: warnings.warn("k >= N for N * N square matrix. " "Attempting to use scipy.linalg.eigh instead.", RuntimeWarning) if issparse(A): raise TypeError("Cannot use scipy.linalg.eigh for sparse A with " "k >= N. Use scipy.linalg.eigh(A.toarray()) or" " reduce k.") if isinstance(A, LinearOperator): raise TypeError("Cannot use scipy.linalg.eigh for LinearOperator " "A with k >= N.") if isinstance(M, LinearOperator): raise TypeError("Cannot use scipy.linalg.eigh for LinearOperator " "M with k >= N.") return eigh(A, b=M, eigvals_only=not return_eigenvectors) if sigma is None: A = _aslinearoperator_with_dtype(A) matvec = A.matvec if OPinv is not None: raise ValueError("OPinv should not be specified " "with sigma = None.") if M is None: #standard eigenvalue problem mode = 1 M_matvec = None Minv_matvec = None if Minv is not None: raise ValueError("Minv should not be " "specified with M = None.") else: #general eigenvalue problem mode = 2 if Minv is None: Minv_matvec = get_inv_matvec(M, hermitian=True, tol=tol) else: Minv = _aslinearoperator_with_dtype(Minv) Minv_matvec = Minv.matvec M_matvec = _aslinearoperator_with_dtype(M).matvec else: # sigma is not None: shift-invert mode if Minv is not None: raise ValueError("Minv should not be specified when sigma is") # normal mode if mode == 'normal': mode = 3 matvec = None if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, hermitian=True, tol=tol) else: OPinv = _aslinearoperator_with_dtype(OPinv) Minv_matvec = OPinv.matvec if M is None: M_matvec = None else: M = _aslinearoperator_with_dtype(M) M_matvec = M.matvec # buckling mode elif mode == 'buckling': mode = 4 if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, hermitian=True, tol=tol) else: Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec matvec = _aslinearoperator_with_dtype(A).matvec M_matvec = None # cayley-transform mode elif mode == 'cayley': mode = 5 matvec = _aslinearoperator_with_dtype(A).matvec if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, hermitian=True, tol=tol) else: Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec if M is None: M_matvec = None else: M_matvec = _aslinearoperator_with_dtype(M).matvec # unrecognized mode else: raise ValueError("unrecognized mode '%s'" % mode) params = _SymmetricArpackParams(n, k, A.dtype.char, matvec, mode, M_matvec, Minv_matvec, sigma, ncv, v0, maxiter, which, tol) with _ARPACK_LOCK: while not params.converged: params.iterate() return params.extract(return_eigenvectors) def _augmented_orthonormal_cols(x, k): # extract the shape of the x array n, m = x.shape # create the expanded array and copy x into it y = np.empty((n, m+k), dtype=x.dtype) y[:, :m] = x # do some modified gram schmidt to add k random orthonormal vectors for i in range(k): # sample a random initial vector v = np.random.randn(n) if np.iscomplexobj(x): v = v + 1j*np.random.randn(n) # subtract projections onto the existing unit length vectors for j in range(m+i): u = y[:, j] v -= (np.dot(v, u.conj()) / np.dot(u, u.conj())) * u # normalize v v /= np.sqrt(np.dot(v, v.conj())) # add v into the output array y[:, m+i] = v # return the expanded array return y def _augmented_orthonormal_rows(x, k): return _augmented_orthonormal_cols(x.T, k).T def _herm(x): return x.T.conj() def svds(A, k=6, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): """Compute the largest or smallest k singular values/vectors for a sparse matrix. The order of the singular values is not guaranteed. Parameters ---------- A : {sparse matrix, LinearOperator} Array to compute the SVD on, of shape (M, N) k : int, optional Number of singular values and vectors to compute. Must be 1 <= k < min(A.shape). ncv : int, optional The number of Lanczos vectors generated ncv must be greater than k+1 and smaller than n; it is recommended that ncv > 2*k Default: ``min(n, max(2*k + 1, 20))`` tol : float, optional Tolerance for singular values. Zero (default) means machine precision. which : str, ['LM' | 'SM'], optional Which `k` singular values to find: - 'LM' : largest singular values - 'SM' : smallest singular values .. versionadded:: 0.12.0 v0 : ndarray, optional Starting vector for iteration, of length min(A.shape). Should be an (approximate) left singular vector if N > M and a right singular vector otherwise. Default: random .. versionadded:: 0.12.0 maxiter : int, optional Maximum number of iterations. .. versionadded:: 0.12.0 return_singular_vectors : bool or str, optional - True: return singular vectors (True) in addition to singular values. .. versionadded:: 0.12.0 - "u": only return the u matrix, without computing vh (if N > M). - "vh": only return the vh matrix, without computing u (if N <= M). .. versionadded:: 0.16.0 solver : str, optional Eigenvalue solver to use. Should be 'arpack' or 'lobpcg'. Default: 'arpack' Returns ------- u : ndarray, shape=(M, k) Unitary matrix having left singular vectors as columns. If `return_singular_vectors` is "vh", this variable is not computed, and None is returned instead. s : ndarray, shape=(k,) The singular values. vt : ndarray, shape=(k, N) Unitary matrix having right singular vectors as rows. If `return_singular_vectors` is "u", this variable is not computed, and None is returned instead. Notes ----- This is a naive implementation using ARPACK or LOBPCG as an eigensolver on A.H * A or A * A.H, depending on which one is more efficient. Examples -------- >>> from scipy.sparse import csc_matrix >>> from scipy.sparse.linalg import svds, eigs >>> A = csc_matrix([[1, 0, 0], [5, 0, 2], [0, -1, 0], [0, 0, 3]], dtype=float) >>> u, s, vt = svds(A, k=2) >>> s array([ 2.75193379, 5.6059665 ]) >>> np.sqrt(eigs(A.dot(A.T), k=2)[0]).real array([ 5.6059665 , 2.75193379]) """ if which == 'LM': largest = True elif which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if k <= 0 or k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) # Get a low rank approximation of the implicitly defined gramian matrix. # This is not a stable way to approach the problem. if solver == 'lobpcg': if k == 1 and v0 is not None: X = np.reshape(v0, (-1, 1)) else: X = np.random.RandomState(52).randn(min(A.shape), k) eigvals, eigvec = lobpcg(XH_X, X, tol=tol ** 2, maxiter=maxiter, largest=largest) elif solver == 'arpack' or solver is None: eigvals, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter, ncv=ncv, which=which, v0=v0) else: raise ValueError("solver must be either 'arpack', or 'lobpcg'.") # Gramian matrices have real non-negative eigenvalues. eigvals = np.maximum(eigvals.real, 0) # Use the sophisticated detection of small eigenvalues from pinvh. t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) # Get a mask indicating which eigenpairs are not degenerately tiny, # and create the re-ordered array of thresholded singular values. above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh