from collections import namedtuple import numpy as np import warnings from ._continuous_distns import chi2 from . import _wilcoxon_data Epps_Singleton_2sampResult = namedtuple('Epps_Singleton_2sampResult', ('statistic', 'pvalue')) def epps_singleton_2samp(x, y, t=(0.4, 0.8)): """ Compute the Epps-Singleton (ES) test statistic. Test the null hypothesis that two samples have the same underlying probability distribution. Parameters ---------- x, y : array-like The two samples of observations to be tested. Input must not have more than one dimension. Samples can have different lengths. t : array-like, optional The points (t1, ..., tn) where the empirical characteristic function is to be evaluated. It should be positive distinct numbers. The default value (0.4, 0.8) is proposed in [1]_. Input must not have more than one dimension. Returns ------- statistic : float The test statistic. pvalue : float The associated p-value based on the asymptotic chi2-distribution. See Also -------- ks_2samp, anderson_ksamp Notes ----- Testing whether two samples are generated by the same underlying distribution is a classical question in statistics. A widely used test is the Kolmogorov-Smirnov (KS) test which relies on the empirical distribution function. Epps and Singleton introduce a test based on the empirical characteristic function in [1]_. One advantage of the ES test compared to the KS test is that is does not assume a continuous distribution. In [1]_, the authors conclude that the test also has a higher power than the KS test in many examples. They recommend the use of the ES test for discrete samples as well as continuous samples with at least 25 observations each, whereas `anderson_ksamp` is recommended for smaller sample sizes in the continuous case. The p-value is computed from the asymptotic distribution of the test statistic which follows a `chi2` distribution. If the sample size of both `x` and `y` is below 25, the small sample correction proposed in [1]_ is applied to the test statistic. The default values of `t` are determined in [1]_ by considering various distributions and finding good values that lead to a high power of the test in general. Table III in [1]_ gives the optimal values for the distributions tested in that study. The values of `t` are scaled by the semi-interquartile range in the implementation, see [1]_. References ---------- .. [1] T. W. Epps and K. J. Singleton, "An omnibus test for the two-sample problem using the empirical characteristic function", Journal of Statistical Computation and Simulation 26, p. 177--203, 1986. .. [2] S. J. Goerg and J. Kaiser, "Nonparametric testing of distributions - the Epps-Singleton two-sample test using the empirical characteristic function", The Stata Journal 9(3), p. 454--465, 2009. """ x, y, t = np.asarray(x), np.asarray(y), np.asarray(t) # check if x and y are valid inputs if x.ndim > 1: raise ValueError('x must be 1d, but x.ndim equals {}.'.format(x.ndim)) if y.ndim > 1: raise ValueError('y must be 1d, but y.ndim equals {}.'.format(y.ndim)) nx, ny = len(x), len(y) if (nx < 5) or (ny < 5): raise ValueError('x and y should have at least 5 elements, but len(x) ' '= {} and len(y) = {}.'.format(nx, ny)) if not np.isfinite(x).all(): raise ValueError('x must not contain nonfinite values.') if not np.isfinite(y).all(): raise ValueError('y must not contain nonfinite values.') n = nx + ny # check if t is valid if t.ndim > 1: raise ValueError('t must be 1d, but t.ndim equals {}.'.format(t.ndim)) if np.less_equal(t, 0).any(): raise ValueError('t must contain positive elements only.') # rescale t with semi-iqr as proposed in [1]; import iqr here to avoid # circular import from scipy.stats import iqr sigma = iqr(np.hstack((x, y))) / 2 ts = np.reshape(t, (-1, 1)) / sigma # covariance estimation of ES test gx = np.vstack((np.cos(ts*x), np.sin(ts*x))).T # shape = (nx, 2*len(t)) gy = np.vstack((np.cos(ts*y), np.sin(ts*y))).T cov_x = np.cov(gx.T, bias=True) # the test uses biased cov-estimate cov_y = np.cov(gy.T, bias=True) est_cov = (n/nx)*cov_x + (n/ny)*cov_y est_cov_inv = np.linalg.pinv(est_cov) r = np.linalg.matrix_rank(est_cov_inv) if r < 2*len(t): warnings.warn('Estimated covariance matrix does not have full rank. ' 'This indicates a bad choice of the input t and the ' 'test might not be consistent.') # see p. 183 in [1]_ # compute test statistic w distributed asympt. as chisquare with df=r g_diff = np.mean(gx, axis=0) - np.mean(gy, axis=0) w = n*np.dot(g_diff.T, np.dot(est_cov_inv, g_diff)) # apply small-sample correction if (max(nx, ny) < 25): corr = 1.0/(1.0 + n**(-0.45) + 10.1*(nx**(-1.7) + ny**(-1.7))) w = corr * w p = chi2.sf(w, r) return Epps_Singleton_2sampResult(w, p) def _get_wilcoxon_distr(n): """ Distribution of counts of the Wilcoxon ranksum statistic r_plus (sum of ranks of positive differences). Returns an array with the counts/frequencies of all the possible ranks r = 0, ..., n*(n+1)/2 """ cnt = _wilcoxon_data.COUNTS.get(n) if cnt is None: raise ValueError("The exact distribution of the Wilcoxon test " "statistic is not implemented for n={}".format(n)) return np.array(cnt, dtype=int)