""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe # Peter Prettenhofer # Brian Holt # Noel Dawe # Satrajit Gosh # Trevor Stephens # Li Li # Giuseppe Vettigli # License: BSD 3 clause from io import StringIO from numbers import Integral import numpy as np from ..utils.validation import check_is_fitted from ..utils.validation import _deprecate_positional_args from ..base import is_classifier from . import _criterion from . import _tree from ._reingold_tilford import buchheim, Tree from . import DecisionTreeClassifier import warnings def _color_brew(n): """Generate n colors with equally spaced hues. Parameters ---------- n : int The number of colors required. Returns ------- color_list : list, length n List of n tuples of form (R, G, B) being the components of each color. """ color_list = [] # Initialize saturation & value; calculate chroma & value shift s, v = 0.75, 0.9 c = s * v m = v - c for h in np.arange(25, 385, 360. / n).astype(int): # Calculate some intermediate values h_bar = h / 60. x = c * (1 - abs((h_bar % 2) - 1)) # Initialize RGB with same hue & chroma as our color rgb = [(c, x, 0), (x, c, 0), (0, c, x), (0, x, c), (x, 0, c), (c, 0, x), (c, x, 0)] r, g, b = rgb[int(h_bar)] # Shift the initial RGB values to match value and store rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))] color_list.append(rgb) return color_list class Sentinel: def __repr__(self): return '"tree.dot"' SENTINEL = Sentinel() @_deprecate_positional_args def plot_tree(decision_tree, *, max_depth=None, feature_names=None, class_names=None, label='all', filled=False, impurity=True, node_ids=False, proportion=False, rotate='deprecated', rounded=False, precision=3, ax=None, fontsize=None): """Plot a decision tree. The sample counts that are shown are weighted with any sample_weights that might be present. The visualization is fit automatically to the size of the axis. Use the ``figsize`` or ``dpi`` arguments of ``plt.figure`` to control the size of the rendering. Read more in the :ref:`User Guide `. .. versionadded:: 0.21 Parameters ---------- decision_tree : decision tree regressor or classifier The decision tree to be plotted. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. feature_names : list of strings, optional (default=None) Names of each of the features. class_names : list of strings, bool or None, optional (default=None) Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, optional (default='all') Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, optional (default=False) When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. impurity : bool, optional (default=True) When set to ``True``, show the impurity at each node. node_ids : bool, optional (default=False) When set to ``True``, show the ID number on each node. proportion : bool, optional (default=False) When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, optional (default=False) This parameter has no effect on the matplotlib tree visualisation and it is kept here for backward compatibility. .. deprecated:: 0.23 ``rotate`` is deprecated in 0.23 and will be removed in 0.25. rounded : bool, optional (default=False) When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. precision : int, optional (default=3) Number of digits of precision for floating point in the values of impurity, threshold and value attributes of each node. ax : matplotlib axis, optional (default=None) Axes to plot to. If None, use current axis. Any previous content is cleared. fontsize : int, optional (default=None) Size of text font. If None, determined automatically to fit figure. Returns ------- annotations : list of artists List containing the artists for the annotation boxes making up the tree. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.plot_tree(clf) # doctest: +SKIP [Text(251.5,345.217,'X[3] <= 0.8... """ check_is_fitted(decision_tree) if rotate != 'deprecated': warnings.warn(("'rotate' has no effect and is deprecated in 0.23. " "It will be removed in 0.25."), FutureWarning) exporter = _MPLTreeExporter( max_depth=max_depth, feature_names=feature_names, class_names=class_names, label=label, filled=filled, impurity=impurity, node_ids=node_ids, proportion=proportion, rotate=rotate, rounded=rounded, precision=precision, fontsize=fontsize) return exporter.export(decision_tree, ax=ax) class _BaseTreeExporter: def __init__(self, max_depth=None, feature_names=None, class_names=None, label='all', filled=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, precision=3, fontsize=None): self.max_depth = max_depth self.feature_names = feature_names self.class_names = class_names self.label = label self.filled = filled self.impurity = impurity self.node_ids = node_ids self.proportion = proportion self.rotate = rotate self.rounded = rounded self.precision = precision self.fontsize = fontsize def get_color(self, value): # Find the appropriate color & intensity for a node if self.colors['bounds'] is None: # Classification tree color = list(self.colors['rgb'][np.argmax(value)]) sorted_values = sorted(value, reverse=True) if len(sorted_values) == 1: alpha = 0 else: alpha = ((sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1])) else: # Regression tree or multi-output color = list(self.colors['rgb'][0]) alpha = ((value - self.colors['bounds'][0]) / (self.colors['bounds'][1] - self.colors['bounds'][0])) # unpack numpy scalars alpha = float(alpha) # compute the color as alpha against white color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color] # Return html color code in #RRGGBB format return '#%2x%2x%2x' % tuple(color) def get_fill_color(self, tree, node_id): # Fetch appropriate color for node if 'rgb' not in self.colors: # Initialize colors and bounds if required self.colors['rgb'] = _color_brew(tree.n_classes[0]) if tree.n_outputs != 1: # Find max and min impurities for multi-output self.colors['bounds'] = (np.min(-tree.impurity), np.max(-tree.impurity)) elif (tree.n_classes[0] == 1 and len(np.unique(tree.value)) != 1): # Find max and min values in leaf nodes for regression self.colors['bounds'] = (np.min(tree.value), np.max(tree.value)) if tree.n_outputs == 1: node_val = (tree.value[node_id][0, :] / tree.weighted_n_node_samples[node_id]) if tree.n_classes[0] == 1: # Regression node_val = tree.value[node_id][0, :] else: # If multi-output color node by impurity node_val = -tree.impurity[node_id] return self.get_color(node_val) def node_to_str(self, tree, node_id, criterion): # Generate the node content string if tree.n_outputs == 1: value = tree.value[node_id][0, :] else: value = tree.value[node_id] # Should labels be shown? labels = (self.label == 'root' and node_id == 0) or self.label == 'all' characters = self.characters node_string = characters[-1] # Write node ID if self.node_ids: if labels: node_string += 'node ' node_string += characters[0] + str(node_id) + characters[4] # Write decision criteria if tree.children_left[node_id] != _tree.TREE_LEAF: # Always write node decision criteria, except for leaves if self.feature_names is not None: feature = self.feature_names[tree.feature[node_id]] else: feature = "X%s%s%s" % (characters[1], tree.feature[node_id], characters[2]) node_string += '%s %s %s%s' % (feature, characters[3], round(tree.threshold[node_id], self.precision), characters[4]) # Write impurity if self.impurity: if isinstance(criterion, _criterion.FriedmanMSE): criterion = "friedman_mse" elif not isinstance(criterion, str): criterion = "impurity" if labels: node_string += '%s = ' % criterion node_string += (str(round(tree.impurity[node_id], self.precision)) + characters[4]) # Write node sample count if labels: node_string += 'samples = ' if self.proportion: percent = (100. * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])) node_string += (str(round(percent, 1)) + '%' + characters[4]) else: node_string += (str(tree.n_node_samples[node_id]) + characters[4]) # Write node class distribution / regression value if self.proportion and tree.n_classes[0] != 1: # For classification this will show the proportion of samples value = value / tree.weighted_n_node_samples[node_id] if labels: node_string += 'value = ' if tree.n_classes[0] == 1: # Regression value_text = np.around(value, self.precision) elif self.proportion: # Classification value_text = np.around(value, self.precision) elif np.all(np.equal(np.mod(value, 1), 0)): # Classification without floating-point weights value_text = value.astype(int) else: # Classification with floating-point weights value_text = np.around(value, self.precision) # Strip whitespace value_text = str(value_text.astype('S32')).replace("b'", "'") value_text = value_text.replace("' '", ", ").replace("'", "") if tree.n_classes[0] == 1 and tree.n_outputs == 1: value_text = value_text.replace("[", "").replace("]", "") value_text = value_text.replace("\n ", characters[4]) node_string += value_text + characters[4] # Write node majority class if (self.class_names is not None and tree.n_classes[0] != 1 and tree.n_outputs == 1): # Only done for single-output classification trees if labels: node_string += 'class = ' if self.class_names is not True: class_name = self.class_names[np.argmax(value)] else: class_name = "y%s%s%s" % (characters[1], np.argmax(value), characters[2]) node_string += class_name # Clean up any trailing newlines if node_string.endswith(characters[4]): node_string = node_string[:-len(characters[4])] return node_string + characters[5] class _DOTTreeExporter(_BaseTreeExporter): def __init__(self, out_file=SENTINEL, max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False, precision=3): super().__init__( max_depth=max_depth, feature_names=feature_names, class_names=class_names, label=label, filled=filled, impurity=impurity, node_ids=node_ids, proportion=proportion, rotate=rotate, rounded=rounded, precision=precision) self.leaves_parallel = leaves_parallel self.out_file = out_file self.special_characters = special_characters # PostScript compatibility for special characters if special_characters: self.characters = ['#', '', '', '≤', '
', '>', '<'] else: self.characters = ['#', '[', ']', '<=', '\\n', '"', '"'] # validate if isinstance(precision, Integral): if precision < 0: raise ValueError("'precision' should be greater or equal to 0." " Got {} instead.".format(precision)) else: raise ValueError("'precision' should be an integer. Got {}" " instead.".format(type(precision))) # The depth of each node for plotting with 'leaf' option self.ranks = {'leaves': []} # The colors to render each node with self.colors = {'bounds': None} def export(self, decision_tree): # Check length of feature_names before getting into the tree node # Raise error if length of feature_names does not match # n_features_ in the decision_tree if self.feature_names is not None: if len(self.feature_names) != decision_tree.n_features_: raise ValueError("Length of feature_names, %d " "does not match number of features, %d" % (len(self.feature_names), decision_tree.n_features_)) # each part writes to out_file self.head() # Now recurse the tree and add node & edge attributes if isinstance(decision_tree, _tree.Tree): self.recurse(decision_tree, 0, criterion="impurity") else: self.recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) self.tail() def tail(self): # If required, draw leaf nodes at same depth as each other if self.leaves_parallel: for rank in sorted(self.ranks): self.out_file.write( "{rank=same ; " + "; ".join(r for r in self.ranks[rank]) + "} ;\n") self.out_file.write("}") def head(self): self.out_file.write('digraph Tree {\n') # Specify node aesthetics self.out_file.write('node [shape=box') rounded_filled = [] if self.filled: rounded_filled.append('filled') if self.rounded: rounded_filled.append('rounded') if len(rounded_filled) > 0: self.out_file.write( ', style="%s", color="black"' % ", ".join(rounded_filled)) if self.rounded: self.out_file.write(', fontname=helvetica') self.out_file.write('] ;\n') # Specify graph & edge aesthetics if self.leaves_parallel: self.out_file.write( 'graph [ranksep=equally, splines=polyline] ;\n') if self.rounded: self.out_file.write('edge [fontname=helvetica] ;\n') if self.rotate: self.out_file.write('rankdir=LR ;\n') def recurse(self, tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if self.max_depth is None or depth <= self.max_depth: # Collect ranks for 'leaf' option in plot_options if left_child == _tree.TREE_LEAF: self.ranks['leaves'].append(str(node_id)) elif str(depth) not in self.ranks: self.ranks[str(depth)] = [str(node_id)] else: self.ranks[str(depth)].append(str(node_id)) self.out_file.write( '%d [label=%s' % (node_id, self.node_to_str(tree, node_id, criterion))) if self.filled: self.out_file.write(', fillcolor="%s"' % self.get_fill_color(tree, node_id)) self.out_file.write('] ;\n') if parent is not None: # Add edge to parent self.out_file.write('%d -> %d' % (parent, node_id)) if parent == 0: # Draw True/False labels if parent is root node angles = np.array([45, -45]) * ((self.rotate - .5) * -2) self.out_file.write(' [labeldistance=2.5, labelangle=') if node_id == 1: self.out_file.write('%d, headlabel="True"]' % angles[0]) else: self.out_file.write('%d, headlabel="False"]' % angles[1]) self.out_file.write(' ;\n') if left_child != _tree.TREE_LEAF: self.recurse(tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1) self.recurse(tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1) else: self.ranks['leaves'].append(str(node_id)) self.out_file.write('%d [label="(...)"' % node_id) if self.filled: # color cropped nodes grey self.out_file.write(', fillcolor="#C0C0C0"') self.out_file.write('] ;\n' % node_id) if parent is not None: # Add edge to parent self.out_file.write('%d -> %d ;\n' % (parent, node_id)) class _MPLTreeExporter(_BaseTreeExporter): def __init__(self, max_depth=None, feature_names=None, class_names=None, label='all', filled=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, precision=3, fontsize=None): super().__init__( max_depth=max_depth, feature_names=feature_names, class_names=class_names, label=label, filled=filled, impurity=impurity, node_ids=node_ids, proportion=proportion, rotate=rotate, rounded=rounded, precision=precision) self.fontsize = fontsize # validate if isinstance(precision, Integral): if precision < 0: raise ValueError("'precision' should be greater or equal to 0." " Got {} instead.".format(precision)) else: raise ValueError("'precision' should be an integer. Got {}" " instead.".format(type(precision))) # The depth of each node for plotting with 'leaf' option self.ranks = {'leaves': []} # The colors to render each node with self.colors = {'bounds': None} self.characters = ['#', '[', ']', '<=', '\n', '', ''] self.bbox_args = dict(fc='w') if self.rounded: self.bbox_args['boxstyle'] = "round" self.arrow_args = dict(arrowstyle="<-") def _make_tree(self, node_id, et, criterion, depth=0): # traverses _tree.Tree recursively, builds intermediate # "_reingold_tilford.Tree" object name = self.node_to_str(et, node_id, criterion=criterion) if (et.children_left[node_id] != _tree.TREE_LEAF and (self.max_depth is None or depth <= self.max_depth)): children = [self._make_tree(et.children_left[node_id], et, criterion, depth=depth + 1), self._make_tree(et.children_right[node_id], et, criterion, depth=depth + 1)] else: return Tree(name, node_id) return Tree(name, node_id, *children) def export(self, decision_tree, ax=None): import matplotlib.pyplot as plt from matplotlib.text import Annotation if ax is None: ax = plt.gca() ax.clear() ax.set_axis_off() my_tree = self._make_tree(0, decision_tree.tree_, decision_tree.criterion) draw_tree = buchheim(my_tree) # important to make sure we're still # inside the axis after drawing the box # this makes sense because the width of a box # is about the same as the distance between boxes max_x, max_y = draw_tree.max_extents() + 1 ax_width = ax.get_window_extent().width ax_height = ax.get_window_extent().height scale_x = ax_width / max_x scale_y = ax_height / max_y self.recurse(draw_tree, decision_tree.tree_, ax, scale_x, scale_y, ax_height) anns = [ann for ann in ax.get_children() if isinstance(ann, Annotation)] # update sizes of all bboxes renderer = ax.figure.canvas.get_renderer() for ann in anns: ann.update_bbox_position_size(renderer) if self.fontsize is None: # get figure to data transform # adjust fontsize to avoid overlap # get max box width and height extents = [ann.get_bbox_patch().get_window_extent() for ann in anns] max_width = max([extent.width for extent in extents]) max_height = max([extent.height for extent in extents]) # width should be around scale_x in axis coordinates size = anns[0].get_fontsize() * min(scale_x / max_width, scale_y / max_height) for ann in anns: ann.set_fontsize(size) return anns def recurse(self, node, tree, ax, scale_x, scale_y, height, depth=0): kwargs = dict(bbox=self.bbox_args, ha='center', va='center', zorder=100 - 10 * depth, xycoords='axes pixels') if self.fontsize is not None: kwargs['fontsize'] = self.fontsize # offset things by .5 to center them in plot xy = ((node.x + .5) * scale_x, height - (node.y + .5) * scale_y) if self.max_depth is None or depth <= self.max_depth: if self.filled: kwargs['bbox']['fc'] = self.get_fill_color(tree, node.tree.node_id) if node.parent is None: # root ax.annotate(node.tree.label, xy, **kwargs) else: xy_parent = ((node.parent.x + .5) * scale_x, height - (node.parent.y + .5) * scale_y) kwargs["arrowprops"] = self.arrow_args ax.annotate(node.tree.label, xy_parent, xy, **kwargs) for child in node.children: self.recurse(child, tree, ax, scale_x, scale_y, height, depth=depth + 1) else: xy_parent = ((node.parent.x + .5) * scale_x, height - (node.parent.y + .5) * scale_y) kwargs["arrowprops"] = self.arrow_args kwargs['bbox']['fc'] = 'grey' ax.annotate("\n (...) \n", xy_parent, xy, **kwargs) @_deprecate_positional_args def export_graphviz(decision_tree, out_file=None, *, max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False, precision=3): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Read more in the :ref:`User Guide `. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. out_file : file object or string, optional (default=None) Handle or name of the output file. If ``None``, the result is returned as a string. .. versionchanged:: 0.20 Default of out_file changed from "tree.dot" to None. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. feature_names : list of strings, optional (default=None) Names of each of the features. class_names : list of strings, bool or None, optional (default=None) Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, optional (default='all') Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, optional (default=False) When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. leaves_parallel : bool, optional (default=False) When set to ``True``, draw all leaf nodes at the bottom of the tree. impurity : bool, optional (default=True) When set to ``True``, show the impurity at each node. node_ids : bool, optional (default=False) When set to ``True``, show the ID number on each node. proportion : bool, optional (default=False) When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, optional (default=False) When set to ``True``, orient tree left to right rather than top-down. rounded : bool, optional (default=False) When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. special_characters : bool, optional (default=False) When set to ``False``, ignore special characters for PostScript compatibility. precision : int, optional (default=3) Number of digits of precision for floating point in the values of impurity, threshold and value attributes of each node. Returns ------- dot_data : string String representation of the input tree in GraphViz dot format. Only returned if ``out_file`` is None. .. versionadded:: 0.18 Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf) 'digraph Tree {... """ check_is_fitted(decision_tree) own_file = False return_string = False try: if isinstance(out_file, str): out_file = open(out_file, "w", encoding="utf-8") own_file = True if out_file is None: return_string = True out_file = StringIO() exporter = _DOTTreeExporter( out_file=out_file, max_depth=max_depth, feature_names=feature_names, class_names=class_names, label=label, filled=filled, leaves_parallel=leaves_parallel, impurity=impurity, node_ids=node_ids, proportion=proportion, rotate=rotate, rounded=rounded, special_characters=special_characters, precision=precision) exporter.export(decision_tree) if return_string: return exporter.out_file.getvalue() finally: if own_file: out_file.close() def _compute_depth(tree, node): """ Returns the depth of the subtree rooted in node. """ def compute_depth_(current_node, current_depth, children_left, children_right, depths): depths += [current_depth] left = children_left[current_node] right = children_right[current_node] if left != -1 and right != -1: compute_depth_(left, current_depth+1, children_left, children_right, depths) compute_depth_(right, current_depth+1, children_left, children_right, depths) depths = [] compute_depth_(node, 1, tree.children_left, tree.children_right, depths) return max(depths) @_deprecate_positional_args def export_text(decision_tree, *, feature_names=None, max_depth=10, spacing=3, decimals=2, show_weights=False): """Build a text report showing the rules of a decision tree. Note that backwards compatibility may not be supported. Parameters ---------- decision_tree : object The decision tree estimator to be exported. It can be an instance of DecisionTreeClassifier or DecisionTreeRegressor. feature_names : list, optional (default=None) A list of length n_features containing the feature names. If None generic names will be used ("feature_0", "feature_1", ...). max_depth : int, optional (default=10) Only the first max_depth levels of the tree are exported. Truncated branches will be marked with "...". spacing : int, optional (default=3) Number of spaces between edges. The higher it is, the wider the result. decimals : int, optional (default=2) Number of decimal digits to display. show_weights : bool, optional (default=False) If true the classification weights will be exported on each leaf. The classification weights are the number of samples each class. Returns ------- report : string Text summary of all the rules in the decision tree. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.tree import DecisionTreeClassifier >>> from sklearn.tree import export_text >>> iris = load_iris() >>> X = iris['data'] >>> y = iris['target'] >>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2) >>> decision_tree = decision_tree.fit(X, y) >>> r = export_text(decision_tree, feature_names=iris['feature_names']) >>> print(r) |--- petal width (cm) <= 0.80 | |--- class: 0 |--- petal width (cm) > 0.80 | |--- petal width (cm) <= 1.75 | | |--- class: 1 | |--- petal width (cm) > 1.75 | | |--- class: 2 """ check_is_fitted(decision_tree) tree_ = decision_tree.tree_ if is_classifier(decision_tree): class_names = decision_tree.classes_ right_child_fmt = "{} {} <= {}\n" left_child_fmt = "{} {} > {}\n" truncation_fmt = "{} {}\n" if max_depth < 0: raise ValueError("max_depth bust be >= 0, given %d" % max_depth) if (feature_names is not None and len(feature_names) != tree_.n_features): raise ValueError("feature_names must contain " "%d elements, got %d" % (tree_.n_features, len(feature_names))) if spacing <= 0: raise ValueError("spacing must be > 0, given %d" % spacing) if decimals < 0: raise ValueError("decimals must be >= 0, given %d" % decimals) if isinstance(decision_tree, DecisionTreeClassifier): value_fmt = "{}{} weights: {}\n" if not show_weights: value_fmt = "{}{}{}\n" else: value_fmt = "{}{} value: {}\n" if feature_names: feature_names_ = [feature_names[i] if i != _tree.TREE_UNDEFINED else None for i in tree_.feature] else: feature_names_ = ["feature_{}".format(i) for i in tree_.feature] export_text.report = "" def _add_leaf(value, class_name, indent): val = '' is_classification = isinstance(decision_tree, DecisionTreeClassifier) if show_weights or not is_classification: val = ["{1:.{0}f}, ".format(decimals, v) for v in value] val = '['+''.join(val)[:-2]+']' if is_classification: val += ' class: ' + str(class_name) export_text.report += value_fmt.format(indent, '', val) def print_tree_recurse(node, depth): indent = ("|" + (" " * spacing)) * depth indent = indent[:-spacing] + "-" * spacing value = None if tree_.n_outputs == 1: value = tree_.value[node][0] else: value = tree_.value[node].T[0] class_name = np.argmax(value) if (tree_.n_classes[0] != 1 and tree_.n_outputs == 1): class_name = class_names[class_name] if depth <= max_depth+1: info_fmt = "" info_fmt_left = info_fmt info_fmt_right = info_fmt if tree_.feature[node] != _tree.TREE_UNDEFINED: name = feature_names_[node] threshold = tree_.threshold[node] threshold = "{1:.{0}f}".format(decimals, threshold) export_text.report += right_child_fmt.format(indent, name, threshold) export_text.report += info_fmt_left print_tree_recurse(tree_.children_left[node], depth+1) export_text.report += left_child_fmt.format(indent, name, threshold) export_text.report += info_fmt_right print_tree_recurse(tree_.children_right[node], depth+1) else: # leaf _add_leaf(value, class_name, indent) else: subtree_depth = _compute_depth(tree_, node) if subtree_depth == 1: _add_leaf(value, class_name, indent) else: trunc_report = 'truncated branch of depth %d' % subtree_depth export_text.report += truncation_fmt.format(indent, trunc_report) print_tree_recurse(0, 1) return export_text.report