# tifffile.py # Copyright (c) 2008-2020, Christoph Gohlke # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Read and write TIFF(r) files. Tifffile is a Python library to (1) store numpy arrays in TIFF (Tagged Image File Format) files, and (2) read image and metadata from TIFF-like files used in bioimaging. Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, SGI, NIHImage, ImageJ, MicroManager, FluoView, ScanImage, SEQ, GEL, SVS, SCN, SIS, ZIF (Zoomable Image File Format), QPTIFF (QPI), NDPI, and GeoTIFF files. Numpy arrays can be written to TIFF, BigTIFF, OME-TIFF, and ImageJ hyperstack compatible files in multi-page, memory-mappable, tiled, predicted, or compressed form. A subset of the TIFF specification is supported, mainly uncompressed and losslessly compressed 8, 16, 32 and 64-bit integer, 16, 32 and 64-bit float, grayscale and multi-sample images. Specifically, reading slices of image data, CCITT and OJPEG compression, chroma subsampling without JPEG compression, color space transformations, samples with differing types, or IPTC and XMP metadata are not implemented. TIFF(r), the Tagged Image File Format, is a trademark and under control of Adobe Systems Incorporated. BigTIFF allows for files larger than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL, QPTIFF, NDPI, and OME-TIFF, are custom extensions defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics, Molecular Dynamics, PerkinElmer, Hamamatsu, and the Open Microscopy Environment consortium, respectively. For command line usage run ``python -m tifffile --help`` :Author: `Christoph Gohlke `_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :License: BSD 3-Clause :Version: 2020.9.3 Requirements ------------ This release has been tested with the following requirements and dependencies (other versions may work): * `CPython 3.7.9, 3.8.5, 3.9.0rc1 64-bit `_ * `Numpy 1.18.5 `_ * `Imagecodecs 2020.5.30 `_ (required only for encoding or decoding LZW, JPEG, etc.) * `Matplotlib 3.2.2 `_ (required only for plotting) * `Lxml 4.5.2 `_ (required only for validating and printing XML) Revisions --------- 2020.9.3 Pass 4338 tests. Do not write contiguous series by default (breaking). Allow to write to SubIFDs (WIP). Fix writing F-contiguous numpy arrays (#24). 2020.8.25 Do not convert EPICS timeStamp to datetime object. Read incompletely written Micro-Manager image file stack header (#23). Remove tag 51123 values from TiffFile.micromanager_metadata (breaking). 2020.8.13 Use tifffile metadata over OME and ImageJ for TiffFile.series (breaking). Fix writing iterable of pages with compression (#20). Expand error checking of TiffWriter data, dtype, shape, and tile arguments. 2020.7.24 Parse nested OmeXml metadata argument (WIP). Do not lazy load TiffFrame JPEGTables. Fix conditionally skipping some tests. 2020.7.22 Do not auto-enable OME-TIFF if description is passed to TiffWriter.save. Raise error writing empty bilevel or tiled images. Allow to write tiled bilevel images. Allow to write multi-page TIFF from iterable of single page images (WIP). Add function to validate OME-XML. Correct Philips slide width and length. 2020.7.17 Initial support for writing OME-TIFF (WIP). Return samples as separate dimension in OME series (breaking). Fix modulo dimensions for multiple OME series. Fix some test errors on big endian systems (#18). Fix BytesWarning. Allow to pass TIFF.PREDICTOR values to TiffWriter.save. 2020.7.4 Deprecate support for Python 3.6 (NEP 29). Move pyramidal subresolution series to TiffPageSeries.levels (breaking). Add parser for SVS, SCN, NDPI, and QPI pyramidal series. Read single-file OME-TIFF pyramids. Read NDPI files > 4 GB (#15). Include SubIFDs in generic series. Preliminary support for writing packed integer arrays (#11, WIP). Read more LSM info subrecords. Fix missing ReferenceBlackWhite tag for YCbCr photometrics. Fix reading lossless JPEG compressed DNG files. 2020.6.3 Support os.PathLike file names (#9). 2020.5.30 Re-add pure Python PackBits decoder. 2020.5.25 Make imagecodecs an optional dependency again. Disable multi-threaded decoding of small LZW compressed segments. Fix caching of TiffPage.decode function. Fix xml.etree.cElementTree ImportError on Python 3.9. Fix tostring DeprecationWarning. 2020.5.11 Fix reading ImageJ grayscale mode RGB images (#6). Remove napari reader plugin. 2020.5.7 Add napari reader plugin (tentative). Fix writing single tiles larger than image data (#3). Always store ExtraSamples values in tuple (breaking). 2020.5.5 Allow to write tiled TIFF from iterable of tiles (WIP). Add function to iterate over decoded segments of TiffPage (WIP). Pass chunks of segments to ThreadPoolExecutor.map to reduce memory usage. Fix reading invalid files with too many strips. Fix writing over-aligned image data. Detect OME-XML without declaration (#2). Support LERC compression (WIP). Delay load imagecodecs functions. Remove maxsize parameter from asarray (breaking). Deprecate ijmetadata parameter from TiffWriter.save (use metadata). 2020.2.16 Add function to decode individual strips or tiles. Read strips and tiles in order of their offsets. Enable multi-threading when decompressing multiple strips. Replace TiffPage.tags dictionary with TiffTags (breaking). Replace TIFF.TAGS dictionary with TiffTagRegistry. Remove TIFF.TAG_NAMES (breaking). Improve handling of TiffSequence parameters in imread. Match last uncommon parts of file paths to FileSequence pattern (breaking). Allow letters in FileSequence pattern for indexing well plate rows. Allow to reorder axes in FileSequence. Allow to write > 4 GB arrays to plain TIFF when using compression. Allow to write zero size numpy arrays to nonconformant TIFF (tentative). Fix xml2dict. Require imagecodecs >= 2020.1.31. Remove support for imagecodecs-lite (breaking). Remove verify parameter to asarray function (breaking). Remove deprecated lzw_decode functions (breaking). Remove support for Python 2.7 and 3.5 (breaking). 2019.7.26 Fix infinite loop reading more than two tags of same code in IFD. Delay import of logging module. 2019.7.20 Fix OME-XML detection for files created by Imaris. Remove or replace assert statements. 2019.7.2 Do not write SampleFormat tag for unsigned data types. Write ByteCount tag values as SHORT or LONG if possible. Allow to specify axes in FileSequence pattern via group names. Add option to concurrently read FileSequence using threads. Derive TiffSequence from FileSequence. Use str(datetime.timedelta) to format Timer duration. Use perf_counter for Timer if possible. 2019.6.18 Fix reading planar RGB ImageJ files created by Bio-Formats. Fix reading single-file, multi-image OME-TIFF without UUID. Presume LSM stores uncompressed images contiguously per page. Reformat some complex expressions. 2019.5.30 Ignore invalid frames in OME-TIFF. Set default subsampling to (2, 2) for RGB JPEG compression. Fix reading and writing planar RGB JPEG compression. Replace buffered_read with FileHandle.read_segments. Include page or frame numbers in exceptions and warnings. Add Timer class. 2019.5.22 Add optional chroma subsampling for JPEG compression. Enable writing PNG, JPEG, JPEGXR, and JPEG2K compression (WIP). Fix writing tiled images with WebP compression. Improve handling GeoTIFF sparse files. 2019.3.18 Fix regression decoding JPEG with RGB photometrics. Fix reading OME-TIFF files with corrupted but unused pages. Allow to load TiffFrame without specifying keyframe. Calculate virtual TiffFrames for non-BigTIFF ScanImage files > 2GB. Rename property is_chroma_subsampled to is_subsampled (breaking). Make more attributes and methods private (WIP). 2019.3.8 Fix MemoryError when RowsPerStrip > ImageLength. Fix SyntaxWarning on Python 3.8. Fail to decode JPEG to planar RGB (tentative). Separate public from private test files (WIP). Allow testing without data files or imagecodecs. 2019.2.22 Use imagecodecs-lite as a fallback for imagecodecs. Simplify reading numpy arrays from file. Use TiffFrames when reading arrays from page sequences. Support slices and iterators in TiffPageSeries sequence interface. Auto-detect uniform series. Use page hash to determine generic series. Turn off TiffPages cache (tentative). Pass through more parameters in imread. Discontinue movie parameter in imread and TiffFile (breaking). Discontinue bigsize parameter in imwrite (breaking). Raise TiffFileError in case of issues with TIFF structure. Return TiffFile.ome_metadata as XML (breaking). Ignore OME series when last dimensions are not stored in TIFF pages. 2019.2.10 Assemble IFDs in memory to speed-up writing on some slow media. Handle discontinued arguments fastij, multifile_close, and pages. 2019.1.30 Use black background in imshow. Do not write datetime tag by default (breaking). Fix OME-TIFF with SamplesPerPixel > 1. Allow 64-bit IFD offsets for NDPI (files > 4GB still not supported). 2019.1.4 Fix decoding deflate without imagecodecs. 2019.1.1 Update copyright year. Require imagecodecs >= 2018.12.16. Do not use JPEG tables from keyframe. Enable decoding large JPEG in NDPI. Decode some old-style JPEG. Reorder OME channel axis to match PlanarConfiguration storage. Return tiled images as contiguous arrays. Add decode_lzw proxy function for compatibility with old czifile module. Use dedicated logger. 2018.11.28 Make SubIFDs accessible as TiffPage.pages. Make parsing of TiffSequence axes pattern optional (breaking). Limit parsing of TiffSequence axes pattern to file names, not path names. Do not interpolate in imshow if image dimensions <= 512, else use bilinear. Use logging.warning instead of warnings.warn in many cases. Fix numpy FutureWarning for out == 'memmap'. Adjust ZSTD and WebP compression to libtiff-4.0.10 (WIP). Decode old-style LZW with imagecodecs >= 2018.11.8. Remove TiffFile.qptiff_metadata (QPI metadata are per page). Do not use keyword arguments before variable positional arguments. Make either all or none return statements in a function return expression. Use pytest parametrize to generate tests. Replace test classes with functions. 2018.11.6 Rename imsave function to imwrite. Readd Python implementations of packints, delta, and bitorder codecs. Fix TiffFrame.compression AttributeError. 2018.10.18 ... Refer to the CHANGES file for older revisions. Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Python 32-bit versions are deprecated. Python <= 3.6 are no longer supported. Tifffile relies on the `imagecodecs `_ package for encoding and decoding LZW, JPEG, and other compressed image segments. Several TIFF-like formats do not strictly adhere to the TIFF6 specification, some of which allow file or data sizes to exceed the 4 GB limit: * *BigTIFF* is identified by version number 43 and uses different file header, IFD, and tag structures with 64-bit offsets. It adds more data types. Tifffile can read and write BigTIFF files. * *ImageJ* hyperstacks store all image data, which may exceed 4 GB, contiguously after the first IFD. Files > 4 GB contain one IFD only. The size (shape and dtype) of the up to 6-dimensional image data can be determined from the ImageDescription tag of the first IFD, which is Latin-1 encoded. Tifffile can read and write ImageJ hyperstacks. * *OME-TIFF* stores up to 8-dimensional data in one or multiple TIFF of BigTIFF files. The 8-bit UTF-8 encoded OME-XML metadata found in the ImageDescription tag of the first IFD defines the position of TIFF IFDs in the high dimensional data. Tifffile can read OME-TIFF files, except when the OME-XML metadata are stored in a separate file. Tifffile can write numpy arrays to single-file, non-pyramidal OME-TIFF. * *LSM* stores all IFDs below 4 GB but wraps around 32-bit StripOffsets. The StripOffsets of each series and position require separate unwrapping. The StripByteCounts tag contains the number of bytes for the uncompressed data. Tifffile can read large LSM files. * *NDPI* uses some 64-bit offsets in the file header, IFD, and tag structures. Tag values/offsets can be corrected using high bits stored after IFD structures. JPEG compressed segments with dimensions >65536 or missing restart markers are not readable with libjpeg. Tifffile can read NDPI files > 4 GB. JPEG segments with restart markers and dimensions >65536 can be decoded with the imagecodecs library on Windows. * *ScanImage* optionally allows corrupt non-BigTIFF files > 2 GB. The values of StripOffsets and StripByteCounts can be recovered using the constant differences of the offsets of IFD and tag values throughout the file. Tifffile can read such files if the image data are stored contiguously in each page. * *GeoTIFF* sparse files allow strip or tile offsets and byte counts to be 0. Such segments are implicitly set to 0 or the NODATA value on reading. Tifffile can read GeoTIFF sparse files. Other libraries for reading scientific TIFF files from Python: * `Python-bioformats `_ * `Imread `_ * `GDAL `_ * `OpenSlide-python `_ * `PyLibTiff `_ * `SimpleITK `_ * `PyLSM `_ * `PyMca.TiffIO.py `_ (same as fabio.TiffIO) * `BioImageXD.Readers `_ * `CellCognition `_ * `pymimage `_ * `pytiff `_ * `ScanImageTiffReaderPython `_ * `bigtiff `_ Some libraries are using tifffile to write OME-TIFF files: * `Zeiss Apeer OME-TIFF library `_ * `Allen Institute for Cell Science imageio `_ * `xtiff `_ References ---------- * TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. https://www.adobe.io/open/standards/TIFF.html * TIFF File Format FAQ. https://www.awaresystems.be/imaging/tiff/faq.html * The BigTIFF File Format. https://www.awaresystems.be/imaging/tiff/bigtiff.html * MetaMorph Stack (STK) Image File Format. http://mdc.custhelp.com/app/answers/detail/a_id/18862 * Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010). Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011 * The OME-TIFF format. https://docs.openmicroscopy.org/ome-model/latest/ * UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf * Micro-Manager File Formats. https://micro-manager.org/wiki/Micro-Manager_File_Formats * ScanImage BigTiff Specification - ScanImage 2016. http://scanimage.vidriotechnologies.com/display/SI2016/ ScanImage+BigTiff+Specification * ZIF, the Zoomable Image File format. http://zif.photo/ * GeoTIFF File Format https://gdal.org/drivers/raster/gtiff.html * Cloud optimized GeoTIFF. https://github.com/cogeotiff/cog-spec/blob/master/spec.md * Tags for TIFF and Related Specifications. Digital Preservation. https://www.loc.gov/preservation/digital/formats/content/tiff_tags.shtml * CIPA DC-008-2016: Exchangeable image file format for digital still cameras: Exif Version 2.31. http://www.cipa.jp/std/documents/e/DC-008-Translation-2016-E.pdf Examples -------- Save a 3D numpy array to a multi-page, 16-bit grayscale TIFF file: >>> data = numpy.random.randint(0, 2**12, (4, 301, 219), 'uint16') >>> imwrite('temp.tif', data, photometric='minisblack') Read the whole image stack from the TIFF file as numpy array: >>> image_stack = imread('temp.tif') >>> image_stack.shape (4, 301, 219) >>> image_stack.dtype dtype('uint16') Read the image from the first page in the TIFF file as numpy array: >>> image = imread('temp.tif', key=0) >>> image.shape (301, 219) Read images from a sequence of TIFF files as numpy array: >>> image_sequence = imread(['temp.tif', 'temp.tif']) >>> image_sequence.shape (2, 4, 301, 219) Save a numpy array to a single-page RGB TIFF file: >>> data = numpy.random.randint(0, 255, (256, 256, 3), 'uint8') >>> imwrite('temp.tif', data, photometric='rgb') Save a floating-point array and metadata, using zlib compression: >>> data = numpy.random.rand(2, 5, 3, 301, 219).astype('float32') >>> imwrite('temp.tif', data, compress=6, metadata={'axes': 'TZCYX'}) Save a volume with xyz voxel size 2.6755x2.6755x3.9474 micron^3 to an ImageJ formatted TIFF file: >>> volume = numpy.random.randn(57*256*256).astype('float32') >>> volume.shape = 1, 57, 1, 256, 256, 1 # dimensions in TZCYXS order >>> imwrite('temp.tif', volume, imagej=True, resolution=(1./2.6755, 1./2.6755), ... metadata={'spacing': 3.947368, 'unit': 'um'}) Get the shape and dtype of the volume stored in the TIFF file: >>> tif = TiffFile('temp.tif') >>> len(tif.pages) # number of pages in the file 57 >>> page = tif.pages[0] # get shape and dtype of the image in the first page >>> page.shape (256, 256) >>> page.dtype dtype('float32') >>> page.axes 'YX' >>> series = tif.series[0] # get shape and dtype of the first image series >>> series.shape (57, 256, 256) >>> series.dtype dtype('float32') >>> series.axes 'ZYX' >>> tif.close() Read hyperstack and metadata from the ImageJ file: >>> with TiffFile('temp.tif') as tif: ... imagej_hyperstack = tif.asarray() ... imagej_metadata = tif.imagej_metadata >>> imagej_hyperstack.shape (57, 256, 256) >>> imagej_metadata['slices'] 57 Read the "XResolution" tag from the first page in the TIFF file: >>> with TiffFile('temp.tif') as tif: ... tag = tif.pages[0].tags['XResolution'] >>> tag.value (2000, 5351) >>> tag.name 'XResolution' >>> tag.code 282 >>> tag.count 1 >>> tag.dtype '2I' Read images from a selected range of pages: >>> image = imread('temp.tif', key=range(4, 40, 2)) >>> image.shape (18, 256, 256) Create an empty TIFF file and write to the memory-mapped numpy array: >>> memmap_image = memmap('temp.tif', shape=(256, 256), dtype='float32') >>> memmap_image[255, 255] = 1.0 >>> memmap_image.flush() >>> del memmap_image Memory-map image data of the first page in the TIFF file: >>> memmap_image = memmap('temp.tif', page=0) >>> memmap_image[255, 255] 1.0 >>> del memmap_image Successively append image series to a BigTIFF file, which can exceed 4 GB: >>> data = numpy.random.randint(0, 255, (5, 2, 3, 301, 219), 'uint8') >>> with TiffWriter('temp.tif', bigtiff=True) as tif: ... for i in range(data.shape[0]): ... tif.save(data[i], compress=6, photometric='minisblack') Append an image to the existing TIFF file: >>> data = numpy.random.randint(0, 255, (301, 219, 3), 'uint8') >>> imwrite('temp.tif', data, append=True) Iterate over pages and tags in the TIFF file and successively read images: >>> with TiffFile('temp.tif') as tif: ... for page in tif.pages: ... for tag in page.tags: ... tag_name, tag_value = tag.name, tag.value ... image = page.asarray() Write two numpy arrays to a multi-series OME-TIFF file: >>> data0 = numpy.random.randint(0, 255, (32, 32, 3), 'uint8') >>> data1 = numpy.random.randint(0, 1023, (4, 256, 256), 'uint16') >>> with TiffWriter('temp.ome.tif') as tif: ... tif.save(data0, compress=6, photometric='rgb') ... tif.save(data1, photometric='minisblack', ... metadata={'axes': 'ZYX', 'SignificantBits': 10, ... 'Plane': {'PositionZ': [0.0, 1.0, 2.0, 3.0]}}) Read the second image series from the OME-TIFF file: >>> series1 = imread('temp.ome.tif', series=1) >>> series1.shape (4, 256, 256) Read an image stack from a series of TIFF files with a file name pattern: >>> imwrite('temp_C001T001.tif', numpy.random.rand(64, 64)) >>> imwrite('temp_C001T002.tif', numpy.random.rand(64, 64)) >>> image_sequence = TiffSequence('temp_C001*.tif', pattern='axes') >>> image_sequence.shape (1, 2) >>> image_sequence.axes 'CT' >>> data = image_sequence.asarray() >>> data.shape (1, 2, 64, 64) Create a TIFF file from a generator of tiles: >>> def tiles(): ... data = numpy.arange(3*4*16*16, dtype='uint16').reshape((3*4, 16, 16)) ... for i in range(data.shape[0]): yield data[i] >>> imwrite('temp.tif', tiles(), dtype='uint16', shape=(48, 64), tile=(16, 16)) Write a tiled, multi-resolution, pyramidal OME-TIFF file using JPEG compression. Sub-resolution images are written to SubIFDs: >>> data = numpy.arange(1024*1024*3, dtype='uint8').reshape((1024, 1024, 3)) >>> with TiffWriter('temp.ome.tif') as tif: ... options = dict(tile=(256, 256), compress='jpeg') ... tif.save(data, subifds=2, **options) ... # save pyramid levels. In production use resampling to generate levels! ... tif.save(data[::2, ::2], subfiletype=1, **options) ... tif.save(data[::4, ::4], subfiletype=1, **options) Access the image levels in the pyramidal OME-TIFF file: >>> baseimage = imread('temp.ome.tif') >>> second_level = imread('temp.ome.tif', series=0, level=1) >>> with TiffFile('temp.ome.tif') as tif: ... baseimage = tif.series[0].asarray() ... second_level = tif.series[0].levels[1].asarray() Iterate over and decode single JPEG compressed tiles in the TIFF file: >>> with TiffFile('temp.ome.tif') as tif: ... fh = tif.filehandle ... for page in tif.pages: ... for index, (offset, bytecount) in enumerate( ... zip(page.dataoffsets, page.databytecounts) ... ): ... fh.seek(offset) ... data = fh.read(bytecount) ... tile, indices, shape = page.decode(data, index, ... page.jpegtables) """ __version__ = '2020.9.3' __all__ = ( 'imwrite', 'imread', 'imshow', 'memmap', 'lsm2bin', 'TiffFile', 'TiffFileError', 'TiffSequence', 'TiffWriter', 'TiffPage', 'TiffPageSeries', 'TiffFrame', 'TiffTag', 'TIFF', 'OmeXmlError', 'OmeXml', 'read_micromanager_metadata', # utility classes and functions used by oiffile, czifile, etc 'FileHandle', 'FileSequence', 'Timer', 'lazyattr', 'natural_sorted', 'stripnull', 'transpose_axes', 'squeeze_axes', 'create_output', 'repeat_nd', 'format_size', 'astype', 'product', 'xml2dict', 'pformat', 'nullfunc', 'update_kwargs', 'parse_kwargs', 'askopenfilename', '_app_show', # deprecated 'imsave', ) import sys import os import io import re import glob import math import time import json import enum import struct import warnings import binascii import datetime import threading import collections from collections.abc import Iterable from concurrent.futures import ThreadPoolExecutor import numpy try: import imagecodecs except Exception: imagecodecs = None # delay import of mmap, pprint, fractions, xml, lxml, matplotlib, tkinter, # logging, subprocess, multiprocessing, tempfile, zipfile, fnmatch def imread(files, **kwargs): """Return image data from TIFF file(s) as numpy array. Refer to the TiffFile and TiffSequence classes and their asarray functions for documentation. Parameters ---------- files : str, path-like, binary stream, or sequence File name, seekable binary stream, glob pattern, or sequence of file names. kwargs : dict Parameters 'name', 'offset', 'size', 'multifile', and 'is_ome' are passed to TiffFile(). The 'pattern', 'sort', 'container', and 'axesorder' parameters are passed to TiffSequence(). Other parameters are passed to the asarray functions. The first image series in the file is returned if no arguments are provided. """ kwargs_file = parse_kwargs( kwargs, 'is_ome', 'multifile', '_useframes', 'name', 'offset', 'size', # legacy 'multifile_close', 'fastij', 'movie', ) kwargs_seq = parse_kwargs(kwargs, 'pattern', 'sort', 'container', 'imread', 'axesorder') if kwargs.get('pages', None) is not None: if kwargs.get('key', None) is not None: raise TypeError( "the 'pages' and 'key' arguments cannot be used together" ) warnings.warn( "imread: the 'pages' argument is deprecated", DeprecationWarning ) kwargs['key'] = kwargs.pop('pages') if not kwargs_seq: if isinstance(files, str) and any(i in files for i in '?*'): files = glob.glob(files) if not files: raise ValueError('no files found') if ( not hasattr(files, 'seek') and not isinstance(files, (str, os.PathLike)) and len(files) == 1 ): files = files[0] if isinstance(files, (str, os.PathLike)) or hasattr(files, 'seek'): with TiffFile(files, **kwargs_file) as tif: return tif.asarray(**kwargs) with TiffSequence(files, **kwargs_seq) as imseq: return imseq.asarray(**kwargs) def imwrite(file, data=None, shape=None, dtype=None, **kwargs): """Write numpy array to TIFF file. Refer to the TiffWriter class and its save function for documentation. A BigTIFF file is created if the data size in bytes is larger than 4 GB minus 32 MB (for metadata), and 'bigtiff' is not specified, and 'imagej' or 'truncate' are not enabled. Parameters ---------- file : str, path-like, or binary stream File name or writable binary stream, such as an open file or BytesIO. data : array-like Input image. The last dimensions are assumed to be image depth, height, width, and samples. If None, an empty array of the specified shape and dtype is saved to file. Unless 'byteorder' is specified in 'kwargs', the TIFF file byte order is determined from the data's dtype or the dtype argument. shape : tuple If 'data' is None, shape of an empty array to save to the file. dtype : numpy.dtype If 'data' is None, datatype of an empty array to save to the file. kwargs : dict Parameters 'append', 'byteorder', 'bigtiff', 'imagej', and 'ome', are passed to TiffWriter(). Other parameters are passed to TiffWriter.save(). Returns ------- offset, bytecount : tuple or None If the image data are written contiguously, return offset and bytecount of image data in the file. """ tifargs = parse_kwargs( kwargs, 'append', 'bigtiff', 'byteorder', 'imagej', 'ome' ) if data is None: dtype = numpy.dtype(dtype) size = product(shape) * dtype.itemsize byteorder = dtype.byteorder else: try: size = data.nbytes byteorder = data.dtype.byteorder except Exception: size = 0 byteorder = None bigsize = kwargs.pop('bigsize', 2**32 - 2**25) if ( 'bigtiff' not in tifargs and size > bigsize and not tifargs.get('imagej', False) and not tifargs.get('truncate', False) and not kwargs.get('compress', False) ): tifargs['bigtiff'] = True if 'byteorder' not in tifargs: tifargs['byteorder'] = byteorder with TiffWriter(file, **tifargs) as tif: return tif.save(data, shape, dtype, **kwargs) def memmap(filename, shape=None, dtype=None, page=None, series=0, level=0, mode='r+', **kwargs): """Return memory-mapped numpy array stored in TIFF file. Memory-mapping requires data stored in native byte order, without tiling, compression, predictors, etc. If 'shape' and 'dtype' are provided, existing files will be overwritten or appended to depending on the 'append' parameter. Otherwise the image data of a specified page or series in an existing file will be memory-mapped. By default, the image data of the first page series is memory-mapped. Call flush() to write any changes in the array to the file. Raise ValueError if the image data in the file is not memory-mappable. Parameters ---------- filename : str or path-like Name of the TIFF file which stores the array. shape : tuple Shape of the empty array. dtype : numpy.dtype Datatype of the empty array. page : int Index of the page which image data to memory-map. series, level : int Index of the page series and pyramid level which image data to memory-map. mode : {'r+', 'r', 'c'} The file open mode. Default is to open existing file for reading and writing ('r+'). kwargs : dict Additional parameters passed to imwrite() or TiffFile(). """ if shape is not None and dtype is not None: # create a new, empty array kwargs.update( data=None, shape=shape, dtype=dtype, returnoffset=True, align=TIFF.ALLOCATIONGRANULARITY ) result = imwrite(filename, **kwargs) if result is None: # TODO: fail before creating file or writing data raise ValueError('image data are not memory-mappable') offset = result[0] else: # use existing file with TiffFile(filename, **kwargs) as tif: if page is not None: page = tif.pages[page] if not page.is_memmappable: raise ValueError('image data are not memory-mappable') offset, _ = page.is_contiguous shape = page.shape dtype = page.dtype else: series = tif.series[series] if series.offset is None: raise ValueError('image data are not memory-mappable') shape = series.shape dtype = series.dtype offset = series.offset dtype = tif.byteorder + dtype.char return numpy.memmap(filename, dtype, mode, offset, shape, 'C') class lazyattr: """Attribute whose value is computed on first access.""" # TODO: help() doesn't work __slots__ = ('func',) def __init__(self, func): self.func = func # self.__name__ = func.__name__ # self.__doc__ = func.__doc__ # self.lock = threading.RLock() def __get__(self, instance, owner): # with self.lock: if instance is None: return self try: value = self.func(instance) except AttributeError as exc: raise RuntimeError(exc) if value is NotImplemented: return getattr(super(owner, instance), self.func.__name__) setattr(instance, self.func.__name__, value) return value class TiffFileError(Exception): """Exception to indicate invalid TIFF structure.""" class TiffWriter: """Write numpy arrays to TIFF file. TiffWriter instances must be closed using the 'close' method, which is automatically called when using the 'with' context manager. TiffWriter instances are not thread-safe. TiffWriter's main purpose is saving nD numpy array's as TIFF, not to create any possible TIFF format. Specifically, ExifIFD and GPSIFD tags are not supported. """ def __init__(self, file, bigtiff=False, byteorder=None, append=False, imagej=False, ome=None): """Open a TIFF file for writing. An empty TIFF file is created if the file does not exist, else the file is overwritten with an empty TIFF file unless 'append' is true. Use 'bigtiff=True' when creating files larger than 4 GB. Parameters ---------- file : str, path-like, binary stream, or FileHandle File name or writable binary stream, such as an open file or BytesIO. bigtiff : bool If True, the BigTIFF format is used. byteorder : {'<', '>', '=', '|'} The endianness of the data in the file. By default, this is the system's native byte order. append : bool If True and 'file' is an existing standard TIFF file, image data and tags are appended to the file. Appending data may corrupt specifically formatted TIFF files such as LSM, STK, ImageJ, or FluoView. imagej : bool If True and not 'ome', write an ImageJ hyperstack compatible file. This format can handle data types uint8, uint16, or float32 and data shapes up to 6 dimensions in TZCYXS order. RGB images (S=3 or S=4) must be uint8. ImageJ's default byte order is big-endian but this implementation uses the system's native byte order by default. ImageJ hyperstacks do not support BigTIFF or compression. The ImageJ file format is undocumented. When using compression, use ImageJ's Bio-Formats import function. ome : bool If True, write an OME-TIFF compatible file. If None (default), the value is determined from the file name extension, the value of the 'description' parameter in the first call of the save function, and the value of 'imagej'. Refer to the OME model for restrictions of this format. """ if append: # determine if file is an existing TIFF file that can be extended try: with FileHandle(file, mode='rb', size=0) as fh: pos = fh.tell() try: with TiffFile(fh) as tif: if append != 'force' and not tif.is_appendable: raise TiffFileError( 'cannot append to file containing metadata' ) byteorder = tif.byteorder bigtiff = tif.is_bigtiff self._ifdoffset = tif.pages.next_page_offset finally: fh.seek(pos) except (OSError, FileNotFoundError): append = False if byteorder in (None, '=', '|'): byteorder = '<' if sys.byteorder == 'little' else '>' elif byteorder not in ('<', '>'): raise ValueError(f'invalid byteorder {byteorder}') if imagej and bigtiff: warnings.warn( 'TiffWriter: writing nonconformant BigTIFF ImageJ', UserWarning ) self._byteorder = byteorder self._truncate = False self._metadata = None self._colormap = None self._descriptionoffset = 0 self._descriptionlen = 0 self._descriptionlenoffset = 0 self._tags = None self._datashape = None # shape of data in consecutive pages self._datadtype = None # data type self._dataoffset = None # offset to data self._databytecounts = None # byte counts per plane self._tagoffsets = None # strip or tile offset tag code self._subifds = 0 # number of subifds self._subifdslevel = -1 # index of current subifd level self._subifdsoffsets = [] # offsets to offsets to subifds self._nextifdoffsets = [] # offsets to offset to next ifd self._ifdindex = 0 # index of current ifd # normalized shape of data in consecutive pages # (pages, separate_samples, depth, height, width, contig_samples) self._storedshape = None if bigtiff: self._bigtiff = True self._offsetsize = 8 self._tagsize = 20 self._tagnoformat = 'Q' self._offsetformat = 'Q' self._valueformat = '8s' else: self._bigtiff = False self._offsetsize = 4 self._tagsize = 12 self._tagnoformat = 'H' self._offsetformat = 'I' self._valueformat = '4s' if append: self._fh = FileHandle(file, mode='r+b', size=0) self._fh.seek(0, 2) else: self._fh = FileHandle(file, mode='wb', size=0) self._fh.write({'<': b'II', '>': b'MM'}[byteorder]) if bigtiff: self._fh.write(struct.pack(byteorder + 'HHH', 43, 8, 0)) else: self._fh.write(struct.pack(byteorder + 'H', 42)) # first IFD self._ifdoffset = self._fh.tell() self._fh.write(struct.pack(byteorder + self._offsetformat, 0)) self._ome = None if ome is None else bool(ome) self._imagej = False if self._ome else bool(imagej) if self._imagej: self._ome = False def save(self, data=None, shape=None, dtype=None, photometric=None, planarconfig=None, extrasamples=None, tile=None, contiguous=False, subifds=None, truncate=False, align=None, rowsperstrip=None, bitspersample=None, compress=None, predictor=None, subsampling=None, colormap=None, description=None, datetime=None, resolution=None, subfiletype=0, software=None, metadata={}, ijmetadata=None, extratags=(), returnoffset=False): """Write numpy array to TIFF file. The data shape's last dimensions are assumed to be image depth, height (length), width, and samples. If a colormap is provided, the data's dtype must be uint8 or uint16 and the data values are indices into the last dimension of the colormap. If 'shape' and 'dtype' are specified instead of 'data', an empty array is saved. This option cannot be used with compression, predictors, packed integers, bilevel images, or multiple tiles. If 'shape', 'dtype', and 'tile' are specified, 'data' must be a iterable of all tiles in the image. If 'shape' and 'dtype' are specified but not 'tile', 'data' must be a iterable of all single planes in the image. Image data are written uncompressed in one strip per plane by default. Dimensions larger than 2 to 4 (depending on photometric mode, planar configuration, and SGI mode) are flattened and saved as separate pages. If the data size is zero, a single page with shape (0, 0) is saved. The SampleFormat tag is derived from the data type or dtype. Parameters ---------- data : numpy.ndarray, iterable of numpy.ndarray, or None Input image or iterable of tiles or images. A copy of the image data is made if it is not a C-contiguous numpy array with the same byteorder as the TIFF file. Iterable tiles must match 'dtype' and the shape specified in 'tile'. Iterable images must match 'dtype' and 'shape[1:]'. Iterables must contain C-contiguous numpy array of TIFF byteorder. shape : tuple or None Shape of the empty or iterable data to save. Use only if 'data' is None or a iterable of tiles or images. dtype : numpy.dtype or None Datatype of the empty or iterable data to save. Use only if 'data' is None or a iterable of tiles or images. photometric : {'MINISBLACK', 'MINISWHITE', 'RGB', 'PALETTE', 'CFA'} The color space of the image data according to TIFF.PHOTOMETRIC. By default, this setting is inferred from the data shape and the value of colormap. For CFA images, the CFARepeatPatternDim, CFAPattern, and other DNG or TIFF/EP tags must be specified in 'extratags' to produce a valid file. planarconfig : {'CONTIG', 'SEPARATE'} Specifies if samples are stored interleaved or in separate planes. By default, this setting is inferred from the data shape. If this parameter is set, extra samples are used to store grayscale images. 'CONTIG': last dimension contains samples. 'SEPARATE': third (or fourth) last dimension contains samples. extrasamples : tuple of {'UNSPECIFIED', 'ASSOCALPHA', 'UNASSALPHA'} Defines the interpretation of extra components in pixels. 'UNSPECIFIED': no transparency information (default). 'ASSOCALPHA': single, true transparency with pre-multiplied color. 'UNASSALPHA': independent transparency masks. tile : tuple of int The shape ([depth,] length, width) of image tiles to write. If None (default), image data are written in strips. The tile length and width must be a multiple of 16. If a tile depth is provided, the SGI ImageDepth and TileDepth tags are used to save volume data. Tiles cannot be used to write contiguous series, except if tile matches the data shape. Few software can read the SGI format, e.g. MeVisLab. contiguous : bool If False (default), save data to a new series. If True and the data and parameters are compatible with previous saved ones, the image data are stored contiguously after the previous one. In that case, 'photometric', 'planarconfig', and 'rowsperstrip' are ignored. Metadata such as 'description', 'metadata', 'datetime', and 'extratags' are written to the first page of a contiguous series only. subifds : int Number of child IFDs. If greater than 0, the following 'subifds' number of series will be written as child IFDs of the current series. The number of IFDs written for each SubIFD level must match the number of IFDs written for the current series. All pages written to a certain SubIFD level of the current series must have the same hash. SubIFDs cannot be used with truncated or ImageJ files. SubIFDs in OME-TIFF files must be sub-resolutions of the main IFDs. truncate : bool If True, only write the first page of a contiguous series if possible (uncompressed, contiguous, not tiled). Other TIFF readers will only be able to read part of the data. align : int Byte boundary on which to align the image data in the file. Default 16. Use mmap.ALLOCATIONGRANULARITY for memory-mapped data. Following contiguous writes are not aligned. rowsperstrip : int The number of rows per strip. By default, strips will be ~64 KB if compression is enabled, else rowsperstrip is set to the image length. bitspersample : int Number of bits per sample. By default, this is the number of bits of the data dtype. Different values for different samples are not supported. Unsigned integer data are packed into bytes as tightly as possible. Valid values are 1-8 for uint8, 9-16 for uint16 and 17-32 for uint32. Cannot be used with compression, contiguous series, or empty files. compress : int, str, or (str, int) If 0 or None (default), data are written uncompressed. If 0-9, the level of ADOBE_DEFLATE compression. If a str, one of TIFF.COMPESSORS, e.g. 'LZMA' or 'ZSTD'. If a tuple, the first item is one of TIFF.COMPESSORS and the second item is the compression level. Compression cannot be used to write contiguous series. Compressors may require certain data shapes, types or value ranges. For example, JPEG requires grayscale or RGB(A), uint8 or 12-bit uint16. JPEG compression is experimental. JPEG markers and TIFF tags may not match. predictor : bool or TIFF.PREDICTOR If True, apply horizontal differencing or floating-point predictor before compression. Predictors are disabled for 64-bit integers. subsampling : {(1, 1), (2, 1), (2, 2), (4, 1)} The horizontal and vertical subsampling factors used for the chrominance components of images. The default is (2, 2). Currently applies to JPEG compression of RGB images only. Images will be stored in YCbCr color space. Segment widths must be a multiple of 8 times the horizontal factor. Segment lengths and rowsperstrip must be a multiple of 8 times the vertical factor. colormap : numpy.ndarray RGB color values for the corresponding data value. Must be of shape (3, 2**(data.itemsize*8)) and dtype uint16. description : str or encoded bytes The subject of the image. Must be 7-bit ASCII. Cannot be used with the ImageJ or OME formats. Saved with the first page of a contiguous series only. datetime : datetime, str, or bool Date and time of image creation in '%Y:%m:%d %H:%M:%S' format or datetime object. Else if True, the current date and time is used. Saved with the first page of a contiguous series only. resolution : (float, float[, str]) or ((int, int), (int, int)[, str]) X and Y resolutions in pixels per resolution unit as float or rational numbers. A third, optional parameter specifies the resolution unit, which must be None (default for ImageJ), 'INCH' (default), or 'CENTIMETER'. subfiletype : int Bitfield to indicate the kind of data. Set bit 0 if the image is a reduced-resolution version of another image. Set bit 1 if the image is part of a multi-page image. Set bit 2 if the image is transparency mask for another image (photometric must be MASK, SamplesPerPixel and BitsPerSample must be 1). software : str or bool Name of the software used to create the file. If None (default), 'tifffile.py'. Must be 7-bit ASCII. Saved with the first page of a contiguous series only. metadata : dict Additional metadata describing the image data. Will be saved along with shape information in JSON, OME-XML, or ImageJ formats in ImageDescription or IJMetadata tags. If None, do not write an ImageDescription tag with shape in JSON format. If ImageJ format, values for keys 'Info', 'Labels', 'Ranges', 'LUTs', 'Plot', 'ROI', and 'Overlays' are saved in IJMetadata and IJMetadataByteCounts tags. Refer to the imagej_metadata_tag function for valid values. Refer to the OmeXml class for supported keys when writing OME-TIFF. Strings must be 7-bit ASCII. Saved with the first page of a contiguous series only. extratags : sequence of tuples Additional tags as [(code, dtype, count, value, writeonce)]. code : int The TIFF tag Id. dtype : str Data type of items in 'value' in Python struct format. One of B, s, H, I, 2I, b, h, i, 2i, f, d, Q, or q. count : int Number of data values. Not used for string or bytes values. value : sequence 'Count' values compatible with 'dtype'. Bytes must contain count values of dtype packed as binary data. writeonce : bool If True, the tag is written to the first page of a contiguous series only. returnoffset : bool If True and the image data in the file is memory-mappable, return the offset and number of bytes of the image data in the file. """ # TODO: refactor this function fh = self._fh byteorder = self._byteorder if data is None: # empty dataiter = None datashape = tuple(shape) datadtype = numpy.dtype(dtype).newbyteorder(byteorder) datadtypechar = datadtype.char elif ( shape is not None and dtype is not None and hasattr(data, '__iter__') ): # iterable pages or tiles if hasattr(data, '__next__'): dataiter = data else: dataiter = iter(data) datashape = tuple(shape) datadtype = numpy.dtype(dtype).newbyteorder(byteorder) datadtypechar = datadtype.char elif hasattr(data, '__next__'): # generator raise TypeError('generators require `shape` and `dtype`') else: # whole image data # must be C-contiguous numpy array of TIFF byteorder if hasattr(data, 'dtype'): data = numpy.asarray(data, byteorder + data.dtype.char, 'C') else: datadtype = numpy.dtype(dtype).newbyteorder(byteorder) data = numpy.asarray(data, datadtype, 'C') if dtype is not None and dtype != data.dtype: warnings.warn( 'TiffWriter: ignoring `dtype` argument', UserWarning ) if shape is not None and shape != data.shape: warnings.warn( 'TiffWriter: ignoring `shape` argument', UserWarning ) dataiter = None datashape = data.shape datadtype = data.dtype datadtypechar = data.dtype.char returnoffset = returnoffset and datadtype.isnative bilevel = datadtypechar == '?' if bilevel: index = -1 if datashape[-1] > 1 else -2 datasize = product(datashape[:index]) if datashape[index] % 8: datasize *= datashape[index] // 8 + 1 else: datasize *= datashape[index] // 8 else: datasize = product(datashape) * datadtype.itemsize if datasize == 0: data = None compress = False bitspersample = None if metadata is not None: truncate = True inputshape = datashape if compress in (0, None, 'NONE', 'none'): compress = False packints = ( bitspersample is not None and bitspersample != datadtype.itemsize * 8 ) # just append contiguous data if possible if self._datashape is not None: if ( not contiguous or self._datashape[1:] != datashape or self._datadtype != datadtype or not numpy.array_equal(colormap, self._colormap) ): # incompatible shape, dtype, or colormap self._write_remaining_pages() if self._imagej: raise ValueError( 'ImageJ does not support non-contiguous series' ) elif self._ome: if self._subifdslevel < 0: # add image to OME-XML self._ome.addimage( self._datadtype, self._datashape[ 0 if self._datashape[0] != 1 else 1: ], self._storedshape, **self._metadata ) else: self._write_image_description() self._descriptionoffset = 0 self._descriptionlenoffset = 0 if self._subifds: if self._truncate or truncate: raise ValueError( 'SubIFDs cannot be used with truncated series' ) self._subifdslevel += 1 if self._subifdslevel == self._subifds: # done with writing SubIFDs self._nextifdoffsets = [] self._subifdsoffsets = [] self._subifdslevel = -1 self._subifds = 0 self._ifdindex = 0 elif subifds: raise ValueError( 'SubIFDs in SubIFDs are not supported' ) self._datashape = None self._colormap = None elif compress or packints or tile: raise ValueError( 'contiguous cannot be used with compression, tiles, etc.' ) else: # consecutive mode # write contiguous data, write IFDs/tags later self._datashape = (self._datashape[0] + 1,) + datashape offset = fh.tell() if data is None: fh.write_empty(datasize) else: fh.write_array(data) if returnoffset: return offset, datasize return None if self._ome is None: if not description: self._ome = '.ome.tif' in fh.name else: self._ome = False self._truncate = False if self._ome else bool(truncate) if datasize == 0: # write single placeholder TiffPage for arrays with size=0 datashape = (0, 0) warnings.warn( 'TiffWriter: writing zero size array to nonconformant TIFF', UserWarning ) # TODO: reconsider this # raise ValueError('cannot save zero size array') tagnoformat = self._tagnoformat valueformat = self._valueformat offsetformat = self._offsetformat offsetsize = self._offsetsize tagsize = self._tagsize MINISBLACK = TIFF.PHOTOMETRIC.MINISBLACK MINISWHITE = TIFF.PHOTOMETRIC.MINISWHITE RGB = TIFF.PHOTOMETRIC.RGB CFA = TIFF.PHOTOMETRIC.CFA PALETTE = TIFF.PHOTOMETRIC.PALETTE CONTIG = TIFF.PLANARCONFIG.CONTIG SEPARATE = TIFF.PLANARCONFIG.SEPARATE # parse input if photometric is not None: photometric = enumarg(TIFF.PHOTOMETRIC, photometric) if planarconfig: planarconfig = enumarg(TIFF.PLANARCONFIG, planarconfig) if predictor: if not isinstance(predictor, bool): predictor = bool(enumarg(TIFF.PREDICTOR, predictor)) if extrasamples is None: extrasamples_ = None else: extrasamples_ = tuple( enumarg(TIFF.EXTRASAMPLE, es) for es in sequence(extrasamples) ) if not compress: compress = False compresstag = 1 # TODO: support predictors without compression? predictor = False predictortag = 1 else: if isinstance(compress, (tuple, list)): compress, compresslevel = compress elif isinstance(compress, int): compress, compresslevel = 'ADOBE_DEFLATE', int(compress) if not 0 <= compresslevel <= 9: raise ValueError(f'invalid compression level {compress}') else: compresslevel = None compress = compress.upper() compresstag = enumarg(TIFF.COMPRESSION, compress) if predictor: if compresstag == 7: predictor = False # disable predictor for lossy compression elif datadtype.kind in 'iu': if datadtype.itemsize > 4: predictor = False # disable predictor for 64 bit else: predictortag = 2 predictor = TIFF.PREDICTORS[2] elif datadtype.kind == 'f': predictortag = 3 predictor = TIFF.PREDICTORS[3] else: raise ValueError(f'cannot apply predictor to {datadtype}') if self._ome: if description: warnings.warn( 'TiffWriter: not writing description to OME-TIFF', UserWarning ) description = None if not isinstance(self._ome, OmeXml): self._ome = OmeXml(**metadata) volume = False elif self._imagej: # if predictor or compress: # warnings.warn( # 'ImageJ cannot handle predictors or compression') if description: warnings.warn( 'TiffWriter: not writing description to ImageJ file', UserWarning ) description = None volume = False if datadtypechar not in 'BHhf': raise ValueError( f'ImageJ does not support data type {datadtypechar!r}') ijrgb = photometric == RGB if photometric else None if datadtypechar not in 'B': ijrgb = False ijshape = imagej_shape(datashape, ijrgb) if ijshape[-1] in (3, 4): photometric = RGB if datadtypechar not in 'B': raise ValueError( 'ImageJ does not support ' f'data type {datadtypechar!r} for RGB') elif photometric is None: photometric = MINISBLACK planarconfig = None if planarconfig == SEPARATE: raise ValueError('ImageJ does not support planar images') planarconfig = CONTIG if ijrgb else None # verify colormap and indices if colormap is not None: if datadtypechar not in 'BH': raise ValueError('invalid data dtype for palette mode') colormap = numpy.asarray(colormap, dtype=byteorder + 'H') if colormap.shape != (3, 2**(datadtype.itemsize * 8)): raise ValueError('invalid color map shape') self._colormap = colormap # verify tile shape if tile: tile = tuple(int(i) for i in tile[:3]) volume = len(tile) == 3 if ( len(tile) < 2 or tile[-1] % 16 or tile[-2] % 16 or any(i < 1 for i in tile) ): raise ValueError('invalid tile shape') else: tile = () volume = False # normalize data shape to 5D or 6D, depending on volume: # (pages, separate_samples, [depth,] height, width, contig_samples) storedshape = reshape_nd(datashape, 3 if photometric == RGB else 2) del datashape shape = storedshape ndim = len(storedshape) samplesperpixel = 1 extrasamples = 0 if volume and ndim < 3: volume = False if colormap is not None: photometric = PALETTE planarconfig = None if photometric is None: photometric = MINISBLACK if bilevel: photometric = MINISWHITE elif planarconfig == CONTIG: if ndim > 2 and shape[-1] in (3, 4): photometric = RGB elif planarconfig == SEPARATE: if volume and ndim > 3 and shape[-4] in (3, 4): photometric = RGB elif ndim > 2 and shape[-3] in (3, 4): photometric = RGB elif ndim > 2 and shape[-1] in (3, 4): photometric = RGB elif self._imagej or self._ome: photometric = MINISBLACK elif volume and ndim > 3 and shape[-4] in (3, 4): photometric = RGB # TODO: change this? elif ndim > 2 and shape[-3] in (3, 4): photometric = RGB # TODO: change this? if planarconfig and len(shape) <= (3 if volume else 2): planarconfig = None if photometric not in (0, 1, 3, 4): photometric = MINISBLACK if photometric == RGB: if len(shape) < 3: raise ValueError('not a RGB(A) image') if len(shape) < 4: volume = False if planarconfig is None: if shape[-1] in (3, 4): planarconfig = CONTIG elif shape[-4 if volume else -3] in (3, 4): planarconfig = SEPARATE elif shape[-1] > shape[-4 if volume else -3]: planarconfig = SEPARATE else: planarconfig = CONTIG if planarconfig == CONTIG: storedshape = (-1, 1) + shape[(-4 if volume else -3):] samplesperpixel = storedshape[-1] else: storedshape = (-1,) + shape[(-4 if volume else -3):] + (1,) samplesperpixel = storedshape[1] if samplesperpixel > 3: extrasamples = samplesperpixel - 3 elif photometric == CFA: if len(shape) != 2: raise ValueError('invalid CFA image') volume = False planarconfig = None storedshape = (-1, 1) + shape[-2:] + (1,) # if 50706 not in (et[0] for et in extratags): # raise ValueError('must specify DNG tags for CFA image') elif planarconfig and len(shape) > (3 if volume else 2): if planarconfig == CONTIG: storedshape = (-1, 1) + shape[(-4 if volume else -3):] samplesperpixel = storedshape[-1] else: storedshape = (-1,) + shape[(-4 if volume else -3):] + (1,) samplesperpixel = storedshape[1] extrasamples = samplesperpixel - 1 else: planarconfig = None while len(shape) > 2 and shape[-1] == 1: shape = shape[:-1] # remove trailing 1s if len(shape) < 3: volume = False if extrasamples_ is None: storedshape = (-1, 1) + shape[(-3 if volume else -2):] + (1,) else: storedshape = (-1, 1) + shape[(-4 if volume else -3):] samplesperpixel = storedshape[-1] extrasamples = samplesperpixel - 1 if subfiletype & 0b100: # FILETYPE_MASK if not ( bilevel and samplesperpixel == 1 and photometric in (0, 1, 4) ): raise ValueError('invalid SubfileType MASK') photometric = TIFF.PHOTOMETRIC.MASK packints = False if bilevel: if bitspersample is not None and bitspersample != 1: raise ValueError('bitspersample must be 1 for bilevel') bitspersample = 1 elif compresstag == 7 and datadtype == 'uint16': if bitspersample is not None and bitspersample != 12: raise ValueError( 'bitspersample must be 12 for JPEG compressed uint16' ) bitspersample = 12 # use 12-bit JPEG compression elif bitspersample is None: bitspersample = datadtype.itemsize * 8 elif ( (datadtype.kind != 'u' or datadtype.itemsize > 4) and bitspersample != datadtype.itemsize * 8 ): raise ValueError('bitspersample does not match dtype') elif not ( bitspersample > {1: 0, 2: 8, 4: 16}[datadtype.itemsize] and bitspersample <= datadtype.itemsize * 8 ): raise ValueError('bitspersample out of range of dtype') elif compress: if bitspersample != datadtype.itemsize * 8: raise ValueError( 'bitspersample cannot be used with compression' ) elif bitspersample != datadtype.itemsize * 8: packints = True # normalize storedshape to 6D if len(storedshape) not in (5, 6): raise RuntimeError('len(storedshape) not in (5, 6)') if len(storedshape) == 5: storedshape = storedshape[:2] + (1,) + storedshape[2:] if storedshape[0] == -1: s0 = product(storedshape[1:]) s0 = 1 if s0 == 0 else product(inputshape) // s0 storedshape = (s0,) + storedshape[1:] try: data = data.reshape(storedshape) except AttributeError: pass # data is None or iterator if photometric == PALETTE: if ( samplesperpixel != 1 or extrasamples or storedshape[1] != 1 or storedshape[-1] != 1 ): raise ValueError('invalid data shape for palette mode') if photometric == RGB and samplesperpixel == 2: raise ValueError('not a RGB image (samplesperpixel=2)') tags = [] # list of (code, ifdentry, ifdvalue, writeonce) if tile: tagbytecounts = 325 # TileByteCounts tagoffsets = 324 # TileOffsets else: tagbytecounts = 279 # StripByteCounts tagoffsets = 273 # StripOffsets self._tagoffsets = tagoffsets def pack(fmt, *val): return struct.pack(byteorder + fmt, *val) def addtag(code, dtype, count, value, writeonce=False): # compute ifdentry & ifdvalue bytes from code, dtype, count, value # append (code, ifdentry, ifdvalue, writeonce) to tags list if not isinstance(code, int): code = TIFF.TAGS[code] try: tifftype = TIFF.DATA_DTYPES[dtype] except KeyError as exc: try: tifftype = dtype dtype = TIFF.DATA_FORMATS[tifftype] except KeyError: raise ValueError(f'unknown dtype {dtype}') from exc rawcount = count if dtype == 's': # strings; enforce 7-bit ASCII on unicode strings value = bytestr(value, 'ascii') + b'\0' count = rawcount = len(value) rawcount = value.find(b'\0\0') if rawcount < 0: rawcount = count else: rawcount += 1 # length of string without buffer value = (value,) elif isinstance(value, bytes): # packed binary data dtsize = struct.calcsize(dtype) if len(value) % dtsize: raise ValueError('invalid packed binary data') count = len(value) // dtsize if len(dtype) > 1: count *= int(dtype[:-1]) dtype = dtype[-1] ifdentry = [pack('HH', code, tifftype), pack(offsetformat, rawcount)] ifdvalue = None if struct.calcsize(dtype) * count <= offsetsize: # value(s) can be written directly if isinstance(value, bytes): ifdentry.append(pack(valueformat, value)) elif count == 1: if isinstance(value, (tuple, list, numpy.ndarray)): value = value[0] ifdentry.append(pack(valueformat, pack(dtype, value))) else: ifdentry.append(pack(valueformat, pack(str(count) + dtype, *value))) else: # use offset to value(s) ifdentry.append(pack(offsetformat, 0)) if isinstance(value, bytes): ifdvalue = value elif isinstance(value, numpy.ndarray): if value.size != count: raise RuntimeError('value.size != count') if value.dtype.char != dtype: raise RuntimeError('value.dtype.char != dtype') ifdvalue = value.tobytes() elif isinstance(value, (tuple, list)): ifdvalue = pack(str(count) + dtype, *value) else: ifdvalue = pack(dtype, value) tags.append((code, b''.join(ifdentry), ifdvalue, writeonce)) def rational(arg, max_denominator=1000000): # return nominator and denominator from float or two integers from fractions import Fraction # delayed import try: f = Fraction.from_float(arg) except TypeError: f = Fraction(arg[0], arg[1]) f = f.limit_denominator(max_denominator) return f.numerator, f.denominator if description: # ImageDescription: user provided description addtag(270, 's', 0, description, writeonce=True) # write shape and metadata to ImageDescription self._metadata = {} if not metadata else metadata.copy() if self._ome: if len(self._ome.images) == 0: description = '\0' * 10 # will be rewritten at end of file else: description = None elif self._imagej: if ijmetadata is None: ijmetadata = parse_kwargs( self._metadata, 'Info', 'Labels', 'Ranges', 'LUTs', 'Plot', 'ROI', 'Overlays', 'info', 'labels', 'ranges', 'luts', 'plot', 'roi', 'overlays' ) # TODO: activate DeprecationWarning and update tests # else: # warnings.warn( # "TiffWriter: the 'ijmetadata' argument is deprecated", # DeprecationWarning # ) for t in imagej_metadata_tag(ijmetadata, byteorder): addtag(*t) description = imagej_description( inputshape, storedshape[-1] in (3, 4), self._colormap is not None, **self._metadata ) elif metadata or metadata == {}: if self._truncate: self._metadata.update(truncated=True) description = json_description(inputshape, **self._metadata) # elif metadata is None and self._truncate: # raise ValueError('cannot truncate without writing metadata') else: description = None if description: description = description.encode('ascii') if not self._ome: # add 64 bytes buffer # the description might be updated later with the final shape description += b'\0' * 64 self._descriptionlen = len(description) addtag(270, 's', 0, description, writeonce=True) del description if software is None: software = 'tifffile.py' if software: addtag(305, 's', 0, software, writeonce=True) if datetime: if isinstance(datetime, str): if len(datetime) != 19 or datetime[16] != ':': raise ValueError('invalid datetime string') else: try: datetime = datetime.strftime('%Y:%m:%d %H:%M:%S') except AttributeError: datetime = self._now().strftime('%Y:%m:%d %H:%M:%S') addtag(306, 's', 0, datetime, writeonce=True) addtag(259, 'H', 1, compresstag) # Compression if compresstag == 34887: # LERC without additional compression addtag(50674, 'I', 2, (4, 0)) if predictor: addtag(317, 'H', 1, predictortag) addtag(256, 'I', 1, storedshape[-2]) # ImageWidth addtag(257, 'I', 1, storedshape[-3]) # ImageLength if tile: addtag(322, 'I', 1, tile[-1]) # TileWidth addtag(323, 'I', 1, tile[-2]) # TileLength if volume: addtag(32997, 'I', 1, storedshape[-4]) # ImageDepth addtag(32998, 'I', 1, tile[0]) # TileDepth if subfiletype: addtag(254, 'I', 1, subfiletype) # NewSubfileType if (subifds or self._subifds) and self._subifdslevel < 0: if self._subifds: subifds = self._subifds else: self._subifds = subifds = int(subifds) addtag(330, 18 if self._bigtiff else 13, subifds, [0] * subifds) if not bilevel and not datadtype.kind == 'u': sampleformat = {'u': 1, 'i': 2, 'f': 3, 'c': 6}[datadtype.kind] addtag( 339, 'H', samplesperpixel, (sampleformat,) * samplesperpixel ) if colormap is not None: addtag(320, 'H', colormap.size, colormap) addtag(277, 'H', 1, samplesperpixel) if bilevel: pass elif planarconfig and samplesperpixel > 1: addtag(284, 'H', 1, planarconfig.value) # PlanarConfiguration addtag(258, 'H', samplesperpixel, (bitspersample,) * samplesperpixel) # BitsPerSample else: addtag(258, 'H', 1, bitspersample) if extrasamples: if extrasamples_ is not None: if extrasamples != len(extrasamples_): raise ValueError('wrong number of extrasamples specified') addtag(338, 'H', extrasamples, extrasamples_) elif photometric == RGB and extrasamples == 1: # Unassociated alpha channel addtag(338, 'H', 1, 2) else: # Unspecified alpha channel addtag(338, 'H', extrasamples, (0,) * extrasamples) if compresstag == 7 and photometric == RGB and planarconfig == 1: # JPEG compression with subsampling. Store as YCbCr # TODO: use JPEGTables for multiple tiles or strips if subsampling is None: subsampling = (2, 2) elif subsampling not in ((1, 1), (2, 1), (2, 2), (4, 1)): raise ValueError('invalid subsampling factors') maxsampling = max(subsampling) * 8 if tile and (tile[-1] % maxsampling or tile[-2] % maxsampling): raise ValueError(f'tile shape not a multiple of {maxsampling}') if extrasamples > 1: raise ValueError('JPEG subsampling requires RGB(A) images') addtag(530, 'H', 2, subsampling) # YCbCrSubSampling addtag(262, 'H', 1, 6) # PhotometricInterpretation YCBCR # ReferenceBlackWhite is required for YCBCR addtag(532, '2I', 6, (0, 1, 255, 1, 128, 1, 255, 1, 128, 1, 255, 1)) else: if subsampling not in (None, (1, 1)): log_warning('TiffWriter: cannot apply subsampling') subsampling = None maxsampling = 1 # PhotometricInterpretation addtag(262, 'H', 1, photometric.value) # if compresstag == 7: # addtag(530, 'H', 2, (1, 1)) # YCbCrSubSampling if resolution is not None: addtag(282, '2I', 1, rational(resolution[0])) # XResolution addtag(283, '2I', 1, rational(resolution[1])) # YResolution if len(resolution) > 2: unit = resolution[2] unit = 1 if unit is None else enumarg(TIFF.RESUNIT, unit) elif self._imagej: unit = 1 else: unit = 2 addtag(296, 'H', 1, unit) # ResolutionUnit elif not self._imagej: addtag(282, '2I', 1, (1, 1)) # XResolution addtag(283, '2I', 1, (1, 1)) # YResolution addtag(296, 'H', 1, 1) # ResolutionUnit def bytecount_format(bytecounts, compress=compress, size=offsetsize): # return small bytecount format if len(bytecounts) == 1: return {4: 'I', 8: 'Q'}[size] bytecount = bytecounts[0] if compress: bytecount = bytecount * 10 if bytecount < 2**16: return 'H' if bytecount < 2**32: return 'I' if size == 4: return 'I' return 'Q' # can save data array contiguous contiguous = not (compress or packints or bilevel) if tile: # one chunk per tile per plane if len(tile) == 2: tiles = ( (storedshape[3] + tile[0] - 1) // tile[0], (storedshape[4] + tile[1] - 1) // tile[1], ) contiguous = ( contiguous and storedshape[3] == tile[0] and storedshape[4] == tile[1] ) else: tiles = ( (storedshape[2] + tile[0] - 1) // tile[0], (storedshape[3] + tile[1] - 1) // tile[1], (storedshape[4] + tile[2] - 1) // tile[2], ) contiguous = ( contiguous and storedshape[2] == tile[0] and storedshape[3] == tile[1] and storedshape[4] == tile[2] ) numtiles = product(tiles) * storedshape[1] databytecounts = [ product(tile) * storedshape[-1] * datadtype.itemsize ] * numtiles bytecountformat = bytecount_format(databytecounts) addtag(tagbytecounts, bytecountformat, numtiles, databytecounts) addtag(tagoffsets, offsetformat, numtiles, [0] * numtiles) bytecountformat = bytecountformat * numtiles if contiguous or dataiter is not None: pass else: dataiter = iter_tiles(data, tile, tiles) elif contiguous and rowsperstrip is None: databytecounts = [ product(storedshape[2:]) * datadtype.itemsize ] * storedshape[1] bytecountformat = bytecount_format(databytecounts) addtag(tagbytecounts, bytecountformat, storedshape[1], databytecounts) addtag(tagoffsets, offsetformat, storedshape[1], [0] * storedshape[1]) addtag(278, 'I', 1, storedshape[-3]) # RowsPerStrip bytecountformat = bytecountformat * storedshape[1] if contiguous or dataiter is not None: pass else: dataiter = iter_images(data) else: # use rowsperstrip rowsize = product(storedshape[-2:]) * datadtype.itemsize if rowsperstrip is None: # compress ~64 KB chunks by default if compress: rowsperstrip = 65536 // rowsize else: rowsperstrip = storedshape[-3] if rowsperstrip < 1: rowsperstrip = maxsampling elif rowsperstrip > storedshape[-3]: rowsperstrip = storedshape[-3] elif subsampling and rowsperstrip % maxsampling: rowsperstrip = ( math.ceil(rowsperstrip / maxsampling) * maxsampling ) addtag(278, 'I', 1, rowsperstrip) # RowsPerStrip numstrips1 = (storedshape[-3] + rowsperstrip - 1) // rowsperstrip numstrips = numstrips1 * storedshape[1] # TODO: save bilevel data with rowsperstrip stripsize = rowsperstrip * rowsize databytecounts = [stripsize] * numstrips stripsize -= ( rowsize * (numstrips1 * rowsperstrip - storedshape[-3]) ) for i in range(numstrips1 - 1, numstrips, numstrips1): databytecounts[i] = stripsize bytecountformat = bytecount_format(databytecounts) addtag(tagbytecounts, bytecountformat, numstrips, databytecounts) addtag(tagoffsets, offsetformat, numstrips, [0] * numstrips) bytecountformat = bytecountformat * numstrips if contiguous or dataiter is not None: pass else: dataiter = iter_images(data) if data is None and not contiguous: raise ValueError('cannot write non-contiguous empty file') # add extra tags from user for t in extratags: addtag(*t) # TODO: check TIFFReadDirectoryCheckOrder warning in files containing # multiple tags of same code # the entries in an IFD must be sorted in ascending order by tag code tags = sorted(tags, key=lambda x: x[0]) # define compress function if bilevel: if compresstag == 1: def compress(data, level=None): return numpy.packbits(data, axis=-2).tobytes() elif compresstag in (5, 32773): # LZW, PackBits def compress(data, level=None, compressor=TIFF.COMPESSORS[compresstag]): data = numpy.packbits(data, axis=-2).tobytes() return compressor(data) else: raise ValueError('cannot compress bilevel image') elif compress: compressor = TIFF.COMPESSORS[compresstag] if subsampling: # JPEG with subsampling. Store RGB as YCbCr def compress(data, compressor=compressor, level=compresslevel, subsampling=subsampling): return compressor(data, level, subsampling=subsampling, colorspace=2, outcolorspace=3) elif predictor: def compress(data, predictor=predictor, compressor=compressor, level=compresslevel): data = predictor(data, axis=-2) return compressor(data, level) elif compresslevel is not None: def compress(data, compressor=compressor, level=compresslevel): return compressor(data, level) else: compress = compressor elif packints: def compress(data, bps=bitspersample): return packints_encode(data, bps, axis=-2) fhpos = fh.tell() if ( not (self._bigtiff or self._imagej or compress) and fhpos + datasize > 2**32 - 1 ): raise ValueError('data too large for standard TIFF file') # if not compressed or multi-tiled, write the first IFD and then # all data contiguously; else, write all IFDs and data interleaved for pageindex in range(1 if contiguous else storedshape[0]): ifdpos = fhpos if ifdpos % 2: # location of IFD must begin on a word boundary fh.write(b'\0') ifdpos += 1 if self._subifdslevel < 0: # update pointer at ifdoffset fh.seek(self._ifdoffset) fh.write(pack(offsetformat, ifdpos)) fh.seek(ifdpos) # create IFD in memory if pageindex < 2: subifdsoffsets = None ifd = io.BytesIO() ifd.write(pack(tagnoformat, len(tags))) tagoffset = ifd.tell() ifd.write(b''.join(t[1] for t in tags)) ifdoffset = ifd.tell() ifd.write(pack(offsetformat, 0)) # offset to next IFD # write tag values and patch offsets in ifdentries for tagindex, tag in enumerate(tags): offset = tagoffset + tagindex * tagsize + offsetsize + 4 code = tag[0] value = tag[2] if value: pos = ifd.tell() if pos % 2: # tag value is expected to begin on word boundary ifd.write(b'\0') pos += 1 ifd.seek(offset) ifd.write(pack(offsetformat, ifdpos + pos)) ifd.seek(pos) ifd.write(value) if code == tagoffsets: dataoffsetsoffset = offset, pos elif code == tagbytecounts: databytecountsoffset = offset, pos elif code == 270 and value.endswith(b'\0\0\0\0'): # image description buffer self._descriptionoffset = ifdpos + pos self._descriptionlenoffset = ( ifdpos + tagoffset + tagindex * tagsize + 4 ) elif code == 330: subifdsoffsets = offset, pos elif code == tagoffsets: dataoffsetsoffset = offset, None elif code == tagbytecounts: databytecountsoffset = offset, None elif code == 330: subifdsoffsets = offset, None ifdsize = ifd.tell() if ifdsize % 2: ifd.write(b'\0') ifdsize += 1 # write IFD later when strip/tile bytecounts and offsets are known fh.seek(ifdsize, 1) # write image data dataoffset = fh.tell() if align is None: align = 16 skip = (align - (dataoffset % align)) % align fh.seek(skip, 1) dataoffset += skip if contiguous: if data is None: fh.write_empty(datasize) elif dataiter is not None: for pagedata in dataiter: if pagedata.dtype != datadtype: raise ValueError( 'dtype of iterable does not match dtype' ) fh.write_array(pagedata.reshape(storedshape[1:])) else: fh.write_array(data) elif tile: tilesize = product(tile) * storedshape[-1] * datadtype.itemsize if data is None: fh.write_empty(numtiles * databytecounts[0]) elif compress: for tileindex in range(storedshape[1] * product(tiles)): chunk = next(dataiter) if chunk is None: databytecounts[tileindex] = 0 continue if chunk.size * chunk.itemsize != tilesize: raise ValueError('invalid tile shape or dtype') t = compress(chunk) fh.write(t) databytecounts[tileindex] = len(t) else: for tileindex in range(storedshape[1] * product(tiles)): chunk = next(dataiter) if chunk is None: fh.write_empty(databytecounts[0]) continue if chunk.size * chunk.itemsize != tilesize: raise ValueError('invalid tile shape or dtype') fh.write_array(chunk) elif compress: # write one strip per rowsperstrip if storedshape[2] != 1: raise RuntimeError('ImageDepth requires tiles') numstrips = ( (storedshape[-3] + rowsperstrip - 1) // rowsperstrip ) stripindex = 0 pagedata = next(dataiter).reshape(storedshape[1:]) if pagedata.dtype != datadtype: raise ValueError('dtype of iterable does not match dtype') for plane in pagedata: for i in range(numstrips): strip = plane[ 0, i * rowsperstrip: (i + 1) * rowsperstrip ] strip = compress(strip) fh.write(strip) databytecounts[stripindex] = len(strip) stripindex += 1 else: pagedata = next(dataiter).reshape(storedshape[1:]) if pagedata.dtype != datadtype: raise ValueError('dtype of iterable does not match dtype') fh.write_array(pagedata) # update strip/tile offsets offset, pos = dataoffsetsoffset ifd.seek(offset) if pos: ifd.write(pack(offsetformat, ifdpos + pos)) ifd.seek(pos) offset = dataoffset for size in databytecounts: ifd.write(pack(offsetformat, offset)) offset += size else: ifd.write(pack(offsetformat, dataoffset)) if compress: # update strip/tile bytecounts offset, pos = databytecountsoffset ifd.seek(offset) if pos: ifd.write(pack(offsetformat, ifdpos + pos)) ifd.seek(pos) ifd.write(pack(bytecountformat, *databytecounts)) if subifdsoffsets is not None: # update and save pointer to SubIFDs tag values if necessary offset, pos = subifdsoffsets if pos is not None: ifd.seek(offset) ifd.write(pack(offsetformat, ifdpos + pos)) self._subifdsoffsets.append(ifdpos + pos) else: self._subifdsoffsets.append(ifdpos + offset) fhpos = fh.tell() fh.seek(ifdpos) fh.write(ifd.getbuffer()) fh.flush() if self._subifdslevel < 0: self._ifdoffset = ifdpos + ifdoffset else: # update SubIFDs tag values fh.seek( self._subifdsoffsets[self._ifdindex] + self._subifdslevel * self._offsetsize ) fh.write(pack(offsetformat, ifdpos)) # update SubIFD chain offsets if self._subifdslevel == 0: self._nextifdoffsets.append(ifdpos + ifdoffset) else: fh.seek(self._nextifdoffsets[self._ifdindex]) fh.write(pack(offsetformat, ifdpos)) self._nextifdoffsets[self._ifdindex] = ifdpos + ifdoffset self._ifdindex += 1 self._ifdindex %= len(self._subifdsoffsets) fh.seek(fhpos) # remove tags that should be written only once if pageindex == 0: tags = [tag for tag in tags if not tag[-1]] self._storedshape = storedshape self._datashape = (1,) + inputshape self._datadtype = datadtype self._dataoffset = dataoffset self._databytecounts = databytecounts if contiguous: # write remaining IFDs/tags later self._tags = tags # return offset and size of image data if returnoffset: return dataoffset, sum(databytecounts) return None def _write_remaining_pages(self): """Write outstanding IFDs and tags to file.""" if not self._tags or self._truncate or self._datashape is None: return pageno = self._storedshape[0] * self._datashape[0] - 1 if pageno < 1: self._tags = None self._dataoffset = None self._databytecounts = None return fh = self._fh fhpos = fh.tell() if fhpos % 2: fh.write(b'\0') fhpos += 1 pack = struct.pack offsetformat = self._byteorder + self._offsetformat offsetsize = self._offsetsize tagnoformat = self._byteorder + self._tagnoformat tagsize = self._tagsize dataoffset = self._dataoffset pagedatasize = sum(self._databytecounts) subifdsoffsets = None # construct template IFD in memory # need to patch offsets to next IFD and data before writing to file ifd = io.BytesIO() ifd.write(pack(tagnoformat, len(self._tags))) tagoffset = ifd.tell() ifd.write(b''.join(t[1] for t in self._tags)) ifdoffset = ifd.tell() ifd.write(pack(offsetformat, 0)) # offset to next IFD # tag values for tagindex, tag in enumerate(self._tags): offset = tagoffset + tagindex * tagsize + offsetsize + 4 code = tag[0] value = tag[2] if value: pos = ifd.tell() if pos % 2: # tag value is expected to begin on word boundary ifd.write(b'\0') pos += 1 ifd.seek(offset) try: ifd.write(pack(offsetformat, fhpos + pos)) except Exception: # struct.error if self._imagej: warnings.warn( 'TiffWriter: truncating ImageJ file', UserWarning ) self._truncate = True return raise ValueError('data too large for non-BigTIFF file') ifd.seek(pos) ifd.write(value) if code == self._tagoffsets: # save strip/tile offsets for later updates dataoffsetsoffset = offset, pos elif code == 330: # save subifds offsets for later updates subifdsoffsets = offset, pos elif code == self._tagoffsets: dataoffsetsoffset = offset, None elif code == 330: subifdsoffsets = offset, None ifdsize = ifd.tell() if ifdsize % 2: ifd.write(b'\0') ifdsize += 1 # check if all IFDs fit in file if not self._bigtiff and fhpos + ifdsize * pageno > 2**32 - 32: if self._imagej: warnings.warn( 'TiffWriter: truncating ImageJ file', UserWarning ) self._truncate = True return raise ValueError('data too large for non-BigTIFF file') # assemble IFD chain in memory from IFD template ifds = io.BytesIO(bytes(ifdsize * pageno)) ifdpos = fhpos for _ in range(pageno): # update strip/tile offsets in IFD dataoffset += pagedatasize # offset to image data offset, pos = dataoffsetsoffset ifd.seek(offset) if pos is not None: ifd.write(pack(offsetformat, ifdpos + pos)) ifd.seek(pos) offset = dataoffset for size in self._databytecounts: ifd.write(pack(offsetformat, offset)) offset += size else: ifd.write(pack(offsetformat, dataoffset)) if subifdsoffsets is not None: offset, pos = subifdsoffsets self._subifdsoffsets.append( ifdpos + (pos if pos is not None else offset) ) if self._subifdslevel < 0: if subifdsoffsets is not None: # update pointer to SubIFDs tag values if necessary offset, pos = subifdsoffsets if pos is not None: ifd.seek(offset) ifd.write(pack(offsetformat, ifdpos + pos)) # update pointer at ifdoffset to point to next IFD in file ifdpos += ifdsize ifd.seek(ifdoffset) ifd.write(pack(offsetformat, ifdpos)) else: # update SubIFDs tag values in file fh.seek( self._subifdsoffsets[self._ifdindex] + self._subifdslevel * self._offsetsize ) fh.write(pack(offsetformat, ifdpos)) # update SubIFD chain if self._subifdslevel == 0: self._nextifdoffsets.append(ifdpos + ifdoffset) else: fh.seek(self._nextifdoffsets[self._ifdindex]) fh.write(pack(offsetformat, ifdpos)) self._nextifdoffsets[self._ifdindex] = ifdpos + ifdoffset self._ifdindex += 1 self._ifdindex %= len(self._subifdsoffsets) ifdpos += ifdsize # write IFD entry ifds.write(ifd.getbuffer()) # terminate IFD chain ifdoffset += ifdsize * (pageno - 1) ifds.seek(ifdoffset) ifds.write(pack(offsetformat, 0)) # write IFD chain to file fh.seek(fhpos) fh.write(ifds.getbuffer()) if self._subifdslevel < 0: # update file to point to new IFD chain pos = fh.tell() fh.seek(self._ifdoffset) fh.write(pack(offsetformat, fhpos)) fh.flush() fh.seek(pos) self._ifdoffset = fhpos + ifdoffset self._tags = None self._dataoffset = None self._databytecounts = None # do not reset _storedshape, _datashape, _datadtype def _write_image_description(self): """Write metadata to ImageDescription tag.""" if ( self._datashape is None or self._descriptionoffset <= 0 ): return if self._ome: if self._subifdslevel < 0: self._ome.addimage( self._datadtype, self._datashape[0 if self._datashape[0] != 1 else 1:], self._storedshape, **self._metadata ) description = self._ome.tostring(declaration=True) elif self._datashape[0] == 1: # description already up-to-date return # elif self._subifdlevel >= 0: # # don't write metadata to SubIFDs # return elif self._imagej: colormapped = self._colormap is not None isrgb = self._storedshape[-1] in (3, 4) description = imagej_description( self._datashape, isrgb, colormapped, **self._metadata) else: description = json_description(self._datashape, **self._metadata) # (re)write description, its position, and length to file description = description.encode() pos = self._fh.tell() if self._ome: self._descriptionoffset = pos self._descriptionlen = len(description) pos += self._descriptionlen else: description = description[:self._descriptionlen] self._fh.seek(self._descriptionoffset) self._fh.write(description) self._fh.seek(self._descriptionlenoffset) self._fh.write( struct.pack( self._byteorder + self._offsetformat + self._offsetformat, self._descriptionlen, self._descriptionoffset ) ) self._fh.seek(pos) self._descriptionoffset = 0 self._descriptionlenoffset = 0 self._descriptionlen = 0 def _now(self): """Return current date and time.""" return datetime.datetime.now() def close(self): """Write remaining pages and close file handle.""" if not self._truncate: self._write_remaining_pages() self._write_image_description() self._fh.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() class TiffFile: """Read image and metadata from TIFF file. TiffFile instances must be closed using the 'close' method, which is automatically called when using the 'with' context manager. TiffFile instances are not thread-safe. Attributes ---------- pages : TiffPages Sequence of TIFF pages in file. series : list of TiffPageSeries Sequences of closely related TIFF pages. These are computed from OME, LSM, ImageJ, etc. metadata or based on similarity of page properties such as shape, dtype, and compression. is_flag : bool If True, file is of a certain format. Flags are: bigtiff, uniform, shaped, ome, imagej, stk, lsm, fluoview, nih, vista, micromanager, metaseries, mdgel, mediacy, tvips, fei, sem, scn, svs, scanimage, andor, epics, ndpi, pilatus, qpi. All attributes are read-only. """ def __init__(self, arg, name=None, offset=None, size=None, multifile=True, _useframes=None, _master=None, **kwargs): """Initialize instance from file. Parameters ---------- arg : str or open file Name of file or open file object. The file objects are closed in TiffFile.close(). name : str Optional name of file in case 'arg' is a file handle. offset : int Optional start position of embedded file. By default, this is the current file position. size : int Optional size of embedded file. By default, this is the number of bytes from the 'offset' to the end of the file. multifile : bool If True (default), series may include pages from multiple files. Currently applies to OME-TIFF only. kwargs : bool 'is_ome': If False, disable processing of OME-XML metadata. """ if kwargs: for key in ('movie', 'fastij', 'multifile_close'): if key in kwargs: del kwargs[key] log_warning(f'TiffFile: the {key!r} argument is ignored') if 'pages' in kwargs: raise TypeError( "the TiffFile 'pages' argument is no longer supported.\n\n" "Use TiffFile.asarray(key=[...]) to read image data " "from specific pages.\n") for key, value in kwargs.items(): if key[:3] == 'is_' and key[3:] in TIFF.FILE_FLAGS: if value is not None: setattr(self, key, bool(value)) else: raise TypeError(f'unexpected keyword argument: {key}') fh = FileHandle(arg, mode='rb', name=name, offset=offset, size=size) self._fh = fh self._multifile = bool(multifile) self._files = {fh.name: self} # cache of TiffFiles self._decoders = {} # cache of TiffPage.decode functions self._master = self if _master is None else _master try: fh.seek(0) header = fh.read(4) try: byteorder = {b'II': '<', b'MM': '>', b'EP': '<'}[header[:2]] except KeyError: raise TiffFileError('not a TIFF file') version = struct.unpack(byteorder + 'H', header[2:4])[0] if version == 43: # BigTiff offsetsize, zero = struct.unpack(byteorder + 'HH', fh.read(4)) if zero != 0 or offsetsize != 8: raise TiffFileError('invalid BigTIFF file') if byteorder == '>': self.tiff = TIFF.BIG_BE else: self.tiff = TIFF.BIG_LE elif version == 42: # Classic TIFF if byteorder == '>': self.tiff = TIFF.CLASSIC_BE elif kwargs.get('is_ndpi', False) or fh.name.endswith('ndpi'): # NDPI uses 64 bit IFD offsets self.tiff = TIFF.NDPI_LE else: self.tiff = TIFF.CLASSIC_LE else: raise TiffFileError('invalid TIFF file') # file handle is at offset to offset to first page self.pages = TiffPages(self) if self.is_lsm and ( self.filehandle.size >= 2**32 or self.pages[0].compression != 1 or self.pages[1].compression != 1 ): self._lsm_load_pages() elif self.is_scanimage and ( not self.is_bigtiff and self.filehandle.size >= 2**31 ): self.pages._load_virtual_frames() elif self.is_philips: try: self._philips_load_pages() except Exception as exc: log_warning( f'philips_load_pages: {exc.__class__.__name__}: {exc}' ) elif _useframes: self.pages.useframes = True except Exception: fh.close() raise @property def byteorder(self): return self.tiff.byteorder @property def is_bigtiff(self): return self.tiff.version == 43 @property def filehandle(self): """Return file handle.""" return self._fh @property def filename(self): """Return name of file handle.""" return self._fh.name @lazyattr def fstat(self): """Return status of file handle as stat_result object.""" try: return os.fstat(self._fh.fileno()) except Exception: # io.UnsupportedOperation return None def close(self): """Close open file handle(s).""" for tif in self._files.values(): tif.filehandle.close() self._files = {} def asarray(self, key=None, series=None, level=None, out=None, maxworkers=None): """Return image data from selected TIFF page(s) as numpy array. By default, the data from the first series is returned. Parameters ---------- key : int, slice, or sequence of indices Defines which pages to return as array. If None (default), data from a series (default 0) is returned. If not None, data from the specified pages in the whole file (if 'series' is None) or a specified series are returned as a stacked array. Requesting an array from multiple pages that are not compatible wrt. shape, dtype, compression etc is undefined, i.e. may crash or return incorrect values. series : int or TiffPageSeries Defines which series of pages to return as array. level : int Defines which pyramid level of a series to return as array. out : numpy.ndarray, str, or file-like object Buffer where image data will be saved. If None (default), a new array will be created. If numpy.ndarray, a writable array of compatible dtype and shape. If 'memmap', directly memory-map the image data in the TIFF file if possible; else create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk. maxworkers : int or None Maximum number of threads to concurrently get data from multiple pages or compressed segments. If None (default), up to half the CPU cores are used. If 1, multi-threading is disabled. Reading data from file is limited to a single thread. Using multiple threads can significantly speed up this function if the bottleneck is decoding compressed data, e.g. in case of large LZW compressed LSM files or JPEG compressed tiled slides. If the bottleneck is I/O or pure Python code, using multiple threads might be detrimental. Returns ------- numpy.ndarray Image data from the specified pages. See TiffPage.asarray for operations that are applied (or not) to the raw data stored in the file. """ if not self.pages: return numpy.array([]) if key is None and series is None: series = 0 if series is None: pages = self.pages else: try: series = self.series[series] except (KeyError, TypeError): pass if level: series = series.levels[level] pages = series.pages if key is None: pass elif series is None: pages = self.pages._getlist(key) elif isinstance(key, (int, numpy.integer)): pages = [pages[key]] elif isinstance(key, slice): pages = pages[key] elif isinstance(key, Iterable): pages = [pages[k] for k in key] else: raise TypeError('key must be an int, slice, or sequence') if not pages: raise ValueError('no pages selected') if key is None and series and series.offset: typecode = self.byteorder + series.dtype.char if ( pages[0].is_memmappable and isinstance(out, str) and out == 'memmap' ): # direct mapping result = self.filehandle.memmap_array( typecode, series.shape, series.offset) else: # read into output if out is not None: out = create_output(out, series.shape, series.dtype) self.filehandle.seek(series.offset) result = self.filehandle.read_array( typecode, product(series.shape), out=out) elif len(pages) == 1: result = pages[0].asarray(out=out, maxworkers=maxworkers) else: result = stack_pages(pages, out=out, maxworkers=maxworkers) if result is None: return None if key is None: try: result.shape = series.shape except ValueError: try: log_warning( 'TiffFile.asarray: ' f'failed to reshape {result.shape} to {series.shape}' ) # try series of expected shapes result.shape = (-1,) + series.shape except ValueError: # revert to generic shape result.shape = (-1,) + pages[0].shape elif len(pages) == 1: result.shape = pages[0].shape else: result.shape = (-1,) + pages[0].shape return result @lazyattr def series(self): """Return related pages as TiffPageSeries. Side effect: after calling this function, TiffFile.pages might contain TiffPage and TiffFrame instances. """ if not self.pages: return [] useframes = self.pages.useframes keyframe = self.pages.keyframe.index series = [] for name in ( 'shaped', 'lsm', 'ome', 'imagej', 'fluoview', 'sis', 'svs', 'scn', 'qpi', 'ndpi', 'mdgel', # adds second page to cache 'uniform', ): if getattr(self, 'is_' + name, False): series = getattr(self, '_series_' + name)() break self.pages.useframes = useframes self.pages.keyframe = keyframe if not series: series = self._series_generic() # remove empty series, e.g. in MD Gel files # series = [s for s in series if product(s.shape) > 0] for i, s in enumerate(series): s.index = i return series def _series_uniform(self): """Return all images in file as single series.""" page = self.pages[0] shape = page.shape axes = page.axes dtype = page.dtype validate = not (page.is_scanimage or page.is_nih) pages = self.pages._getlist(validate=validate) lenpages = len(pages) if lenpages > 1: shape = (lenpages,) + shape axes = 'I' + axes if page.is_scanimage: kind = 'ScanImage' elif page.is_nih: kind = 'NIHImage' else: kind = 'Uniform' return [TiffPageSeries(pages, shape, dtype, axes, kind=kind)] def _series_generic(self): """Return image series in file. A series is a sequence of TiffPages with the same hash. """ pages = self.pages pages._clear(False) pages.useframes = False if pages.cache: pages._load() series = [] keys = [] seriesdict = {} def addpage(page): # add page to seriesdict if not page.shape: # or product(page.shape) == 0: return key = page.hash if key in seriesdict: for p in seriesdict[key]: if p.offset == page.offset: break # remove duplicate page else: seriesdict[key].append(page) else: keys.append(key) seriesdict[key] = [page] for page in pages: addpage(page) if page.subifds is not None: for i, offset in enumerate(page.subifds): if offset < 8: continue try: self._fh.seek(offset) subifd = TiffPage(self, (page.index, i)) except Exception as exc: log_warning( f'Generic series: {exc.__class__.__name__}: {exc}' ) else: addpage(subifd) for key in keys: pages = seriesdict[key] page = pages[0] shape = page.shape axes = page.axes if len(pages) > 1: shape = (len(pages),) + shape axes = 'I' + axes series.append( TiffPageSeries(pages, shape, page.dtype, axes, kind='Generic') ) self.is_uniform = len(series) == 1 pyramidize_series(series) return series def _series_shaped(self): """Return image series in "shaped" file.""" def append(series, pages, axes, shape, reshape, name, truncated): # append TiffPageSeries to series page = pages[0] if not axes: shape = page.shape axes = page.axes if len(pages) > 1: shape = (len(pages),) + shape axes = 'Q' + axes size = product(shape) resize = product(reshape) if page.is_contiguous and resize > size and resize % size == 0: if truncated is None: truncated = True axes = 'Q' + axes shape = (resize // size,) + shape try: axes = reshape_axes(axes, shape, reshape) shape = reshape except ValueError as exc: log_warning( f'Shaped series: {exc.__class__.__name__}: {exc}' ) series.append( TiffPageSeries(pages, shape, page.dtype, axes, name=name, kind='Shaped', truncated=truncated) ) def detect_series(pages, series, issubifds=False): lenpages = len(pages) keyframe = axes = shape = reshape = name = None index = 0 while True: if index >= lenpages: break if issubifds: keyframe = pages[0] else: # new keyframe; start of new series pages.keyframe = index keyframe = pages.keyframe if not keyframe.is_shaped: log_warning( 'Shaped series: invalid metadata or corrupted file' ) return None # read metadata axes = None shape = None metadata = json_description_metadata(keyframe.is_shaped) name = metadata.get('name', '') reshape = metadata['shape'] truncated = None if keyframe.subifds is None else False truncated = metadata.get('truncated', truncated) if 'axes' in metadata: axes = metadata['axes'] if len(axes) == len(reshape): shape = reshape else: axes = '' log_warning('Shaped series: axes do not match shape') # skip pages if possible spages = [keyframe] size = product(reshape) if size > 0: npages, mod = divmod(size, product(keyframe.shape)) else: npages = 1 mod = 0 if mod: log_warning( 'Shaped series: series shape does not match page shape' ) return None if 1 < npages <= lenpages - index: size *= keyframe._dtype.itemsize if truncated: npages = 1 elif ( keyframe.is_final and keyframe.offset + size < pages[index + 1].offset and keyframe.subifds is None ): truncated = False else: # need to read all pages for series truncated = False for j in range(index + 1, index + npages): page = pages[j] page.keyframe = keyframe spages.append(page) append(series, spages, axes, shape, reshape, name, truncated) index += npages # create series from SubIFDs if keyframe.subifds: for i, offset in enumerate(keyframe.subifds): if offset < 8: continue subifds = [] for j, page in enumerate(spages): # if page.subifds is not None: try: self._fh.seek(page.subifds[i]) if j == 0: subifd = TiffPage(self, (page.index, i)) keysubifd = subifd else: subifd = TiffFrame(self, (page.index, i), keyframe=keysubifd) except Exception as exc: log_warning( f'Generic series: {exc.__class__.__name__}' f': {exc}' ) return None subifds.append(subifd) if subifds: series = detect_series(subifds, series, True) if series is None: return None return series self.pages.useframes = True series = detect_series(self.pages, []) if series is None: return None self.is_uniform = len(series) == 1 pyramidize_series(series, isreduced=True) return series def _series_imagej(self): """Return image series in ImageJ file.""" # ImageJ's dimension order is always TZCYXS # TODO: fix loading of color, composite, or palette images pages = self.pages pages.useframes = True pages.keyframe = 0 page = pages[0] meta = self.imagej_metadata def is_virtual(): # ImageJ virtual hyperstacks store all image metadata in the first # page and image data are stored contiguously before the second # page, if any if not page.is_final: return False images = meta.get('images', 0) if images <= 1: return False offset, count = page.is_contiguous if ( count != product(page.shape) * page.bitspersample // 8 or offset + count * images > self.filehandle.size ): raise ValueError() # check that next page is stored after data if len(pages) > 1 and offset + count * images > pages[1].offset: return False return True try: isvirtual = is_virtual() except ValueError: log_warning('ImageJ series: invalid metadata or corrupted file') return None if isvirtual: # no need to read other pages pages = [page] else: pages = pages[:] images = meta.get('images', len(pages)) frames = meta.get('frames', 1) slices = meta.get('slices', 1) channels = meta.get('channels', 1) shape = [] axes = [] if frames > 1: shape.append(frames) axes.append('T') if slices > 1: shape.append(slices) axes.append('Z') if channels > 1 and (product(shape) if shape else 1) != images: shape.append(channels) axes.append('C') remain = images // (product(shape) if shape else 1) if remain > 1: shape.append(remain) axes.append('I') if page.axes[0] == 'S' and 'C' in axes: # planar storage, S == C, saved by Bio-Formats shape.extend(page.shape[1:]) axes.extend(page.axes[1:]) elif page.axes[0] == 'I': # contiguous multiple images shape.extend(page.shape[1:]) axes.extend(page.axes[1:]) elif page.axes[:2] == 'SI': # color-mapped contiguous multiple images shape = page.shape[0:1] + tuple(shape) + page.shape[2:] axes = list(page.axes[0]) + axes + list(page.axes[2:]) else: shape.extend(page.shape) axes.extend(page.axes) truncated = ( isvirtual and len(self.pages) == 1 and page.is_contiguous[1] != ( product(shape) * page.bitspersample // 8) ) self.is_uniform = True return [ TiffPageSeries(pages, shape, page.dtype, axes, kind='ImageJ', truncated=truncated) ] def _series_fluoview(self): """Return image series in FluoView file.""" pages = self.pages._getlist(validate=False) mm = self.fluoview_metadata mmhd = list(reversed(mm['Dimensions'])) axes = ''.join(TIFF.MM_DIMENSIONS.get(i[0].upper(), 'Q') for i in mmhd if i[1] > 1) shape = tuple(int(i[1]) for i in mmhd if i[1] > 1) self.is_uniform = True return [ TiffPageSeries(pages, shape, pages[0].dtype, axes, name=mm['ImageName'], kind='FluoView') ] def _series_mdgel(self): """Return image series in MD Gel file.""" # only a single page, scaled according to metadata in second page self.pages.useframes = False self.pages.keyframe = 0 md = self.mdgel_metadata if md['FileTag'] in (2, 128): dtype = numpy.dtype('float32') scale = md['ScalePixel'] scale = scale[0] / scale[1] # rational if md['FileTag'] == 2: # squary root data format def transform(a): return a.astype('float32')**2 * scale else: def transform(a): return a.astype('float32') * scale else: transform = None page = self.pages[0] self.is_uniform = False return [ TiffPageSeries([page], page.shape, dtype, page.axes, transform=transform, kind='MDGel') ] def _series_ndpi(self): """Return pyramidal image series in NDPI file.""" series = self._series_generic() for s in series: s.kind = 'NDPI' if s.is_pyramid: name = s.pages[0].tags.get(65427, None) s.name = 'Baseline' if name is None else name.value continue mag = s.pages[0].tags.get(65421, None) if mag is not None: mag = mag.value if mag == -1.0: s.name = 'Macro' elif mag == -2.0: s.name = 'Map' return series def _series_sis(self): """Return image series in Olympus SIS file.""" pages = self.pages._getlist(validate=False) page = pages[0] lenpages = len(pages) md = self.sis_metadata if 'shape' in md and 'axes' in md: shape = md['shape'] + page.shape axes = md['axes'] + page.axes elif lenpages == 1: shape = page.shape axes = page.axes else: shape = (lenpages,) + page.shape axes = 'I' + page.axes self.is_uniform = True return [ TiffPageSeries(pages, shape, page.dtype, axes, kind='SIS') ] def _series_qpi(self): """Return image series in PerkinElmer QPI file.""" series = [] pages = self.pages pages.cache = True pages.useframes = False pages.keyframe = 0 pages._load() # Baseline # TODO: get name from ImageDescription XML ifds = [] index = 0 axes = pages[0].axes dtype = pages[0].dtype shape = pshape = pages[0].shape while index < len(pages): page = pages[index] if page.shape != pshape: break ifds.append(page) index += 1 if len(ifds) > 1: axes = 'C' + axes shape = (len(ifds), ) + shape series.append( TiffPageSeries( ifds, shape, dtype, axes, name='Baseline', kind='QPI' ) ) if index < len(pages): # Thumbnail page = pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Thumbnail', kind='QPI' ) ) index += 1 if pages[0].is_tiled: # Resolutions while index < len(pages): pshape = (pshape[0] // 2, pshape[1] // 2) + pshape[2:] ifds = [] while index < len(pages): page = pages[index] if page.shape != pshape: break ifds.append(page) index += 1 if len(ifds) != len(series[0].pages): break shape = pshape if len(ifds) > 1: shape = (len(ifds), ) + shape series[0].levels.append( TiffPageSeries( ifds, shape, dtype, axes, name='Resolution', kind='QPI' ) ) if series[0].is_pyramid and index < len(pages): # Macro page = pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Macro', kind='QPI' ) ) index += 1 # Label if index < len(pages): page = pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Label', kind='QPI' ) ) self.is_uniform = False return series def _series_svs(self): """Return image series in Aperio SVS file.""" if not self.pages[0].is_tiled: return None series = [] self.is_uniform = False self.pages.cache = True self.pages.useframes = False self.pages.keyframe = 0 self.pages._load() # Baseline index = 0 page = self.pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Baseline', kind='SVS' ) ) # Thumbnail index += 1 if index == len(self.pages): return series page = self.pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Thumbnail', kind='SVS' ) ) # Resolutions # TODO: resolutions not by two index += 1 while index < len(self.pages): page = self.pages[index] if not page.is_tiled: break series[0].levels.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name='Resolution', kind='SVS' ) ) index += 1 # Label, Macro for name in ('Label', 'Macro'): if index == len(self.pages): break page = self.pages[index] series.append( TiffPageSeries( [page], page.shape, page.dtype, page.axes, name=name, kind='SVS' ) ) index += 1 return series def _series_scn(self): """Return pyramidal image series in Leica SCN file.""" # TODO: support collections and Z dimension from xml.etree import ElementTree as etree # delayed import scnxml = self.pages[0].description root = etree.fromstring(scnxml) series = [] self.is_uniform = False self.pages.cache = True self.pages.useframes = False self.pages.keyframe = 0 self.pages._load() for collection in root: if not collection.tag.endswith('collection'): continue for image in collection: if not image.tag.endswith('image'): continue name = image.attrib.get('name', 'Unknown') for pixels in image: if not pixels.tag.endswith('pixels'): continue resolutions = {} for dimension in pixels: if not dimension.tag.endswith('dimension'): continue if int(image.attrib.get('sizeZ', 1)) > 1: raise NotImplementedError( 'SCN series: Z-Stacks not supported' ) sizex = int(dimension.attrib['sizeX']) sizey = int(dimension.attrib['sizeY']) c = int(dimension.attrib.get('c', 0)) r = int(dimension.attrib.get('r', 0)) ifd = int(dimension.attrib['ifd']) if r in resolutions: level = resolutions[r] if c > level['channels']: level['channels'] = c level['ifds'][c] = ifd else: resolutions[r] = { 'size': [sizey, sizex], 'channels': c, 'ifds': {c: ifd}, } if not resolutions: continue levels = [] for r, level in sorted(resolutions.items()): ifds = [ self.pages[ifd] for c, ifd in sorted(level['ifds'].items()) ] dtype = ifds[0].dtype axes = ifds[0].axes shape = ifds[0].shape if level['channels'] > 0: shape = (level['channels'] + 1, ) + shape axes = 'C' + axes levels.append( TiffPageSeries( ifds, shape, dtype, axes, parent=self, name=name, kind='SCN' ) ) levels[0].levels.extend(levels[1:]) series.append(levels[0]) return series def _series_ome(self): """Return image series in OME-TIFF file(s).""" # xml.etree found to be faster than lxml from xml.etree import ElementTree as etree # delayed import omexml = self.pages[0].description try: root = etree.fromstring(omexml) except etree.ParseError as exc: # TODO: test badly encoded OME-XML log_warning(f'OME series: {exc.__class__.__name__}: {exc}') try: omexml = omexml.decode(errors='ignore').encode() root = etree.fromstring(omexml) except Exception: return None self.pages.cache = True self.pages.useframes = True self.pages.keyframe = 0 self.pages._load(keyframe=None) root_uuid = root.attrib.get('UUID', None) self._files = {root_uuid: self} dirname = self._fh.dirname moduloref = [] modulo = {} series = [] for element in root: if element.tag.endswith('BinaryOnly'): # TODO: load OME-XML from master or companion file log_warning('OME series: not an ome-tiff master file') break if element.tag.endswith('StructuredAnnotations'): for annot in element: if not annot.attrib.get('Namespace', '').endswith('modulo'): continue modulo[annot.attrib['ID']] = mod = {} for value in annot: for modul in value: for along in modul: if not along.tag[:-1].endswith('Along'): continue axis = along.tag[-1] newaxis = along.attrib.get('Type', 'other') newaxis = TIFF.AXES_LABELS[newaxis] if 'Start' in along.attrib: step = float(along.attrib.get('Step', 1)) start = float(along.attrib['Start']) stop = float(along.attrib['End']) + step labels = numpy.arange(start, stop, step) else: labels = [ label.text for label in along if label.tag.endswith('Label') ] mod[axis] = (newaxis, labels) if not element.tag.endswith('Image'): continue for annot in element: if annot.tag.endswith('AnnotationRef'): annotationref = annot.attrib['ID'] break else: annotationref = None attr = element.attrib name = attr.get('Name', None) for pixels in element: if not pixels.tag.endswith('Pixels'): continue attr = pixels.attrib # dtype = attr.get('PixelType', None) axes = ''.join(reversed(attr['DimensionOrder'])) shape = [int(attr['Size' + ax]) for ax in axes] size = product(shape[:-2]) ifds = None spp = 1 # samples per pixel for data in pixels: if data.tag.endswith('Channel'): attr = data.attrib if ifds is None: spp = int(attr.get('SamplesPerPixel', spp)) ifds = [None] * (size // spp) if spp > 1: # correct channel dimension for spp shape = [ shape[i] // spp if ax == 'C' else shape[i] for i, ax in enumerate(axes) ] elif int(attr.get('SamplesPerPixel', 1)) != spp: raise ValueError('OME series: cannot handle ' 'differing SamplesPerPixel') continue if ifds is None: ifds = [None] * (size // spp) if not data.tag.endswith('TiffData'): continue attr = data.attrib ifd = int(attr.get('IFD', 0)) num = int(attr.get('NumPlanes', 1 if 'IFD' in attr else 0)) num = int(attr.get('PlaneCount', num)) idx = [int(attr.get('First' + ax, 0)) for ax in axes[:-2]] try: idx = numpy.ravel_multi_index(idx, shape[:-2]) except ValueError: # ImageJ produces invalid ome-xml when cropping log_warning('OME series: invalid TiffData index') continue for uuid in data: if not uuid.tag.endswith('UUID'): continue if root_uuid is None and uuid.text is not None: # no global UUID, use this file root_uuid = uuid.text self._files[root_uuid] = self._files[None] elif uuid.text not in self._files: if not self._multifile: # abort reading multifile OME series # and fall back to generic series return [] fname = uuid.attrib['FileName'] try: tif = TiffFile( os.path.join(dirname, fname), _master=self ) tif.pages.cache = True tif.pages.useframes = True tif.pages.keyframe = 0 tif.pages._load(keyframe=None) except (OSError, FileNotFoundError, ValueError): log_warning( f'OME series: failed to read {fname!r}' ) break self._files[uuid.text] = tif tif.close() pages = self._files[uuid.text].pages try: for i in range(num if num else len(pages)): ifds[idx + i] = pages[ifd + i] except IndexError: log_warning('OME series: index out of range') # only process first UUID break else: pages = self.pages try: for i in range( num if num else min(len(pages), len(ifds)) ): ifds[idx + i] = pages[ifd + i] except IndexError: log_warning('OME series: index out of range') if ifds is None or all(i is None for i in ifds): # skip images without data continue # find a keyframe keyframe = None for i in ifds: # try find a TiffPage if i and i == i.keyframe: keyframe = i break if keyframe is None: # reload a TiffPage from file for i, keyframe in enumerate(ifds): if keyframe: keyframe.parent.pages.keyframe = keyframe.index keyframe = keyframe.parent.pages[keyframe.index] ifds[i] = keyframe break if spp > 1: if keyframe.planarconfig == 1: shape += [spp] axes += 'S' else: shape = shape[:-2] + [spp] + shape[-2:] axes = axes[:-2] + 'S' + axes[-2:] # FIXME: this implementation assumes the last dimensions are # stored in TIFF pages. Apparently that is not always the case. # For now, verify that shapes of keyframe and series match # If not, skip series. if keyframe.shape != tuple(shape[-len(keyframe.shape):]): log_warning( 'OME series: incompatible page shape %s; expected %s', keyframe.shape, tuple(shape[-len(keyframe.shape):]) ) del ifds continue # set a keyframe on all IFDs for i in ifds: if i is not None: try: i.keyframe = keyframe except RuntimeError as exc: log_warning(f'OME series: {exc}') moduloref.append(annotationref) series.append( TiffPageSeries(ifds, shape, keyframe.dtype, axes, parent=self, name=name, kind='OME') ) del ifds for serie, annotationref in zip(series, moduloref): if annotationref not in modulo: continue shape = list(serie.shape) for axis, (newaxis, labels) in modulo[annotationref].items(): i = serie.axes.index(axis) size = len(labels) if shape[i] == size: serie.axes = serie.axes.replace(axis, newaxis, 1) else: shape[i] //= size shape.insert(i + 1, size) serie.axes = serie.axes.replace(axis, axis + newaxis, 1) serie.shape = tuple(shape) # squeeze dimensions for serie in series: serie.shape, serie.axes = squeeze_axes(serie.shape, serie.axes) # pyramids for serie in series: keyframe = serie.keyframe if keyframe.subifds is None: continue if len(self._files) > 1: # TODO: support multi-file pyramids; need to re-open/close log_warning('OME series: cannot read multi-file pyramids') break for level in range(len(keyframe.subifds)): keyframe = None ifds = [] for page in serie.pages: if page is None: ifds.append(None) continue page.parent.filehandle.seek(page.subifds[level]) if page.keyframe == page: ifd = keyframe = TiffPage(self, (page.index, level)) elif keyframe is None: raise RuntimeError('no keyframe') else: ifd = TiffFrame(self, page.index, keyframe=keyframe) ifds.append(ifd) # fix shape shape = [] for i, ax in enumerate(serie.axes): if ax == 'X': shape.append(keyframe.imagewidth) elif ax == 'Y': shape.append(keyframe.imagelength) else: shape.append(serie.shape[i]) # add series serie.levels.append( TiffPageSeries(ifds, tuple(shape), keyframe.dtype, serie.axes, parent=self, name=f'level {level + 1}', kind='OME') ) self.is_uniform = len(series) == 1 and len(series[0].levels) == 1 return series def _series_lsm(self): """Return main and thumbnail series in LSM file.""" lsmi = self.lsm_metadata axes = TIFF.CZ_LSMINFO_SCANTYPE[lsmi['ScanType']] if self.pages[0].photometric == 2: # RGB; more than one channel axes = axes.replace('C', '').replace('XY', 'XYC') if lsmi.get('DimensionP', 0) > 1: axes += 'P' if lsmi.get('DimensionM', 0) > 1: axes += 'M' axes = axes[::-1] shape = tuple(int(lsmi[TIFF.CZ_LSMINFO_DIMENSIONS[i]]) for i in axes) name = lsmi.get('Name', '') pages = self.pages._getlist(slice(0, None, 2), validate=False) dtype = pages[0].dtype series = [ TiffPageSeries(pages, shape, dtype, axes, name=name, kind='LSM') ] if self.pages[1].is_reduced: pages = self.pages._getlist(slice(1, None, 2), validate=False) dtype = pages[0].dtype cp = 1 i = 0 while cp < len(pages) and i < len(shape) - 2: cp *= shape[i] i += 1 shape = shape[:i] + pages[0].shape axes = axes[:i] + 'CYX' series.append( TiffPageSeries(pages, shape, dtype, axes, name=name, kind='LSMreduced') ) self.is_uniform = False return series def _lsm_load_pages(self): """Load and fix all pages from LSM file.""" # cache all pages to preserve corrected values pages = self.pages pages.cache = True pages.useframes = True # use first and second page as keyframes pages.keyframe = 1 pages.keyframe = 0 # load remaining pages as frames pages._load(keyframe=None) # fix offsets and bytecounts first # TODO: fix multiple conversions between lists and tuples self._lsm_fix_strip_offsets() self._lsm_fix_strip_bytecounts() # assign keyframes for data and thumbnail series keyframe = pages[0] for page in pages[::2]: page.keyframe = keyframe keyframe = pages[1] for page in pages[1::2]: page.keyframe = keyframe def _lsm_fix_strip_offsets(self): """Unwrap strip offsets for LSM files greater than 4 GB. Each series and position require separate unwrapping (undocumented). """ if self.filehandle.size < 2**32: return pages = self.pages npages = len(pages) series = self.series[0] axes = series.axes # find positions positions = 1 for i in 0, 1: if series.axes[i] in 'PM': positions *= series.shape[i] # make time axis first if positions > 1: ntimes = 0 for i in 1, 2: if axes[i] == 'T': ntimes = series.shape[i] break if ntimes: div, mod = divmod(npages, 2 * positions * ntimes) if mod != 0: raise RuntimeError('mod != 0') shape = (positions, ntimes, div, 2) indices = numpy.arange(product(shape)).reshape(shape) indices = numpy.moveaxis(indices, 1, 0) else: indices = numpy.arange(npages).reshape(-1, 2) # images of reduced page might be stored first if pages[0]._offsetscounts[0][0] > pages[1]._offsetscounts[0][0]: indices = indices[..., ::-1] # unwrap offsets wrap = 0 previousoffset = 0 for i in indices.flat: page = pages[int(i)] dataoffsets = [] for currentoffset in page._offsetscounts[0]: if currentoffset < previousoffset: wrap += 2**32 dataoffsets.append(currentoffset + wrap) previousoffset = currentoffset page._offsetscounts = tuple(dataoffsets), page._offsetscounts[1] def _lsm_fix_strip_bytecounts(self): """Set databytecounts to size of compressed data. The StripByteCounts tag in LSM files contains the number of bytes for the uncompressed data. """ pages = self.pages if pages[0].compression == 1: return # sort pages by first strip offset pages = sorted(pages, key=lambda p: p._offsetscounts[0][0]) npages = len(pages) - 1 for i, page in enumerate(pages): if page.index % 2: continue offsets, bytecounts = page._offsetscounts if i < npages: lastoffset = pages[i + 1]._offsetscounts[0][0] else: # LZW compressed strips might be longer than uncompressed lastoffset = min(offsets[-1] + 2 * bytecounts[-1], self._fh.size) bytecounts = list(bytecounts) for j in range(len(bytecounts) - 1): bytecounts[j] = offsets[j + 1] - offsets[j] bytecounts[-1] = lastoffset - offsets[-1] page._offsetscounts = offsets, tuple(bytecounts) def _philips_load_pages(self): """Load and fix all pages from Philips slide file. The imagewidth and imagelength values of all tiled pages are corrected using the DICOM_PIXEL_SPACING attributes of the XML formatted description of the first page. """ from xml.etree import ElementTree as etree # delayed import pages = self.pages pages.cache = True pages.useframes = False pages._load() npages = len(pages) root = etree.fromstring(pages[0].description) imagewidth = pages[0].imagewidth imagelength = pages[0].imagelength sizes = None for elem in root.iter(): if ( elem.tag != 'Attribute' or elem.attrib['Name'] != 'DICOM_PIXEL_SPACING' ): continue w, h = (float(v) for v in elem.text.replace('"', '').split()) if sizes is None: imagelength *= h imagewidth *= w sizes = [] else: sizes.append(( int(math.ceil(imagelength / h)), int(math.ceil(imagewidth / w)) )) i = 0 for imagelength, imagewidth in sizes: while i < npages and pages[i].tilewidth == 0: # Label, Macro i += 1 continue if i == npages: break page = pages[i] page.imagewidth = imagewidth page.imagelength = imagelength if page.shaped[-1] > 1: page.shape = (imagelength, imagewidth, page.shape[-1]) elif page.shaped[1] > 1: page.shape = (page.shape[0], imagelength, imagewidth) else: page.shape = (imagelength, imagewidth) page.shaped = ( page.shaped[:3] + (imagelength, imagewidth) + page.shaped[-1:] ) i += 1 def __getattr__(self, name): """Return 'is_flag' attributes from first page.""" if name[3:] in TIFF.FILE_FLAGS: if not self.pages: return False value = bool(getattr(self.pages[0], name)) setattr(self, name, value) return value raise AttributeError( f'{self.__class__.__name__!r} object has no attribute {name!r}') def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __str__(self, detail=0, width=79): """Return string containing information about TiffFile. The detail parameter specifies the level of detail returned: 0: file only. 1: all series, first page of series and its tags. 2: large tag values and file metadata. 3: all pages. """ info = [ "TiffFile '{}'", format_size(self._fh.size), '' if byteorder_isnative(self.byteorder) else {'<': 'little-endian', '>': 'big-endian'}[self.byteorder] ] if self.is_bigtiff: info.append('BigTiff') info.append(' '.join(f.lower() for f in self.flags)) if len(self.pages) > 1: info.append(f'{len(self.pages)} Pages') if len(self.series) > 1: info.append(f'{len(self.series)} Series') if len(self._files) > 1: info.append(f'{len(self._files)} Files') info = ' '.join(info) info = info.replace(' ', ' ').replace(' ', ' ') info = info.format( snipstr(self._fh.name, max(12, width + 2 - len(info)))) if detail <= 0: return info info = [info] info.append('\n'.join(str(s) for s in self.series)) if detail >= 3: info.extend( TiffPage.__str__(p, detail=detail, width=width) for p in self.pages if p is not None ) elif self.series: info.extend( TiffPage.__str__(s.pages[0], detail=detail, width=width) for s in self.series if s.pages[0] is not None ) elif self.pages and self.pages[0]: info.append( TiffPage.__str__(self.pages[0], detail=detail, width=width) ) if detail >= 2: for name in sorted(self.flags): if hasattr(self, name + '_metadata'): m = getattr(self, name + '_metadata') if m: info.append( '{}_METADATA\n{}'.format( name.upper(), pformat(m, width=width, height=detail * 16) ) ) return '\n\n'.join(info).replace('\n\n\n', '\n\n') @lazyattr def flags(self): """Return set of file flags.""" return { name.lower() for name in sorted(TIFF.FILE_FLAGS) if getattr(self, 'is_' + name) } @lazyattr def is_mdgel(self): """File has MD Gel format.""" # side effect: add second page, if exists, to cache try: ismdgel = ( self.pages[0].is_mdgel or self.pages.get(1, cache=True).is_mdgel ) if ismdgel: self.is_uniform = False return ismdgel except IndexError: return False @lazyattr def is_uniform(self): """Return if file contains a uniform series of pages.""" # the hashes of IFDs 0, 7, and -1 are the same pages = self.pages page = pages[0] if page.subifds: return False if page.is_scanimage or page.is_nih: return True try: useframes = pages.useframes pages.useframes = False h = page.hash for i in (1, 7, -1): if pages[i].aspage().hash != h: return False except IndexError: return False finally: pages.useframes = useframes return True @property def is_appendable(self): """Return if pages can be appended to file without corrupting.""" # TODO: check other formats return not ( self.is_lsm or self.is_stk or self.is_imagej or self.is_fluoview or self.is_micromanager ) @lazyattr def shaped_metadata(self): """Return tifffile metadata from JSON descriptions as dicts.""" if not self.is_shaped: return None return tuple( json_description_metadata(s.pages[0].is_shaped) for s in self.series if s.kind.lower() == 'shaped' ) @property def ome_metadata(self): """Return OME XML.""" if not self.is_ome: return None # return xml2dict(self.pages[0].description)['OME'] return self.pages[0].description @property def scn_metadata(self): """Return Leica SCN XML.""" if not self.is_scn: return None return self.pages[0].description @property def philips_metadata(self): """Return Philips DP XML.""" if not self.is_philips: return None return self.pages[0].description @property def lsm_metadata(self): """Return LSM metadata from CZ_LSMINFO tag as dict.""" if not self.is_lsm: return None return self.pages[0].tags[34412].value # CZ_LSMINFO @lazyattr def stk_metadata(self): """Return STK metadata from UIC tags as dict.""" if not self.is_stk: return None page = self.pages[0] result = {} result['NumberPlanes'] = page.tags[33629].count # UIC2tag if page.description: result['PlaneDescriptions'] = page.description.split('\0') # result['plane_descriptions'] = stk_description_metadata( # page.image_description) tag = page.tags.get(33628) # UIC1tag if tag is not None: result.update(tag.value) tag = page.tags.get(33630) # UIC3tag if tag is not None: result.update(tag.value) # wavelengths tag = page.tags.get(33631) # UIC4tag if tag is not None: result.update(tag.value) # override UIC1 tags uic2tag = page.tags[33629].value result['ZDistance'] = uic2tag['ZDistance'] result['TimeCreated'] = uic2tag['TimeCreated'] result['TimeModified'] = uic2tag['TimeModified'] try: result['DatetimeCreated'] = numpy.array( [julian_datetime(*dt) for dt in zip(uic2tag['DateCreated'], uic2tag['TimeCreated'])], dtype='datetime64[ns]') result['DatetimeModified'] = numpy.array( [julian_datetime(*dt) for dt in zip(uic2tag['DateModified'], uic2tag['TimeModified'])], dtype='datetime64[ns]') except ValueError as exc: log_warning(f'STK metadata: {exc.__class__.__name__}: {exc}') return result @lazyattr def imagej_metadata(self): """Return consolidated ImageJ metadata as dict.""" if not self.is_imagej: return None page = self.pages[0] result = imagej_description_metadata(page.is_imagej) tag = page.tags.get(50839) # IJMetadata if tag is not None: try: result.update(tag.value) except Exception: pass return result @lazyattr def fluoview_metadata(self): """Return consolidated FluoView metadata as dict.""" if not self.is_fluoview: return None result = {} page = self.pages[0] result.update(page.tags[34361].value) # MM_Header # TODO: read stamps from all pages result['Stamp'] = page.tags[34362].value # MM_Stamp # skip parsing image description; not reliable # try: # t = fluoview_description_metadata(page.image_description) # if t is not None: # result['ImageDescription'] = t # except Exception as exc: # log_warning('FluoView metadata: ' # f'failed to parse image description ({exc})')) return result @lazyattr def nih_metadata(self): """Return NIH Image metadata from NIHImageHeader tag as dict.""" if not self.is_nih: return None return self.pages[0].tags[43314].value # NIHImageHeader @lazyattr def fei_metadata(self): """Return FEI metadata from SFEG or HELIOS tags as dict.""" if not self.is_fei: return None tags = self.pages[0].tags tag = tags.get(34680) # FEI_SFEG if tag is not None: return tag.value tag = tags.get(34682) # FEI_HELIOS if tag is not None: return tag.value return None @property def sem_metadata(self): """Return SEM metadata from CZ_SEM tag as dict.""" if not self.is_sem: return None return self.pages[0].tags[34118].value @lazyattr def sis_metadata(self): """Return Olympus SIS metadata from SIS and INI tags as dict.""" if not self.is_sis: return None tags = self.pages[0].tags result = {} try: result.update(tags[33471].value) # OlympusINI except Exception: pass try: result.update(tags[33560].value) # OlympusSIS except Exception: pass return result @lazyattr def mdgel_metadata(self): """Return consolidated metadata from MD GEL tags as dict.""" for page in self.pages[:2]: if 33445 in page.tags: # MDFileTag tags = page.tags break else: return None result = {} for code in range(33445, 33453): if code not in tags: continue name = TIFF.TAGS[code] result[name[2:]] = tags[code].value return result @property def andor_metadata(self): """Return Andor tags as dict.""" return self.pages[0].andor_tags @property def epics_metadata(self): """Return EPICS areaDetector tags as dict.""" return self.pages[0].epics_tags @property def tvips_metadata(self): """Return TVIPS tag as dict.""" if not self.is_tvips: return None return self.pages[0].tags[37706].value @lazyattr def metaseries_metadata(self): """Return MetaSeries metadata from image description as dict.""" if not self.is_metaseries: return None return metaseries_description_metadata(self.pages[0].description) @lazyattr def pilatus_metadata(self): """Return Pilatus metadata from image description as dict.""" if not self.is_pilatus: return None return pilatus_description_metadata(self.pages[0].description) @lazyattr def micromanager_metadata(self): """Return consolidated MicroManager metadata as dict.""" if not self.is_micromanager: return None # from file header return read_micromanager_metadata(self._fh) # from MicroManagerMetadata tag # result.update(self.pages[0].tags[51123].value) @lazyattr def scanimage_metadata(self): """Return ScanImage non-varying frame and ROI metadata as dict.""" if not self.is_scanimage: return None result = {} try: framedata, roidata = read_scanimage_metadata(self._fh) result['FrameData'] = framedata result.update(roidata) except ValueError: pass # TODO: scanimage_artist_metadata try: result['Description'] = scanimage_description_metadata( self.pages[0].description) except Exception as exc: log_warning(f'ScanImage metadata: {exc.__class__.__name__}: {exc}') return result @property def geotiff_metadata(self): """Return GeoTIFF metadata from first page as dict.""" if not self.is_geotiff: return None return self.pages[0].geotiff_tags class TiffPages: """Sequence of TIFF image file directories (IFD chain). Instances of TiffPages have a state (cache, keyframe, etc.) and are not thread-safe. """ def __init__(self, parent): """Initialize instance and read first TiffPage from file. If parent is a TiffFile, the file position must be at an offset to an offset to a TiffPage. If parent is a TiffPage, page offsets are read from the SubIFDs tag. """ self.parent = None self.pages = [] # cache of TiffPages, TiffFrames, or their offsets self._indexed = False # True if offsets to all pages were read self._cached = False # True if all pages were read into cache self._tiffpage = TiffPage # class used for reading pages self._keyframe = None # page that is currently used as keyframe self._cache = False # do not cache frames or pages (if not keyframe) self._nextpageoffset = None if isinstance(parent, TiffFile): # read offset to first page from current file position self.parent = parent fh = parent.filehandle self._nextpageoffset = fh.tell() offset = struct.unpack(parent.tiff.offsetformat, fh.read(parent.tiff.offsetsize))[0] if offset == 0: log_warning('TiffPages: file contains no pages') self._indexed = True return elif 330 in parent.tags: # use offsets from SubIFDs tag self.parent = parent.parent fh = self.parent.filehandle offsets = parent.tags[330].value offset = offsets[0] if offset == 0: log_warning('TiffPages: TiffPage contains invalid SubIFDs') self._indexed = True return else: self._indexed = True return if offset >= fh.size: log_warning(f'TiffPages: invalid page offset {offset!r}') self._indexed = True return # read and cache first page fh.seek(offset) page = TiffPage(self.parent, index=0) self.pages.append(page) self._keyframe = page if self._nextpageoffset is None: # offsets from SubIFDs tag self.pages.extend(offsets[1:]) self._indexed = True self._cached = True @property def cache(self): """Return if pages/frames are currently being cached.""" return self._cache @cache.setter def cache(self, value): """Enable or disable caching of pages/frames. Clear cache if False.""" value = bool(value) if self._cache and not value: self._clear() self._cache = value @property def useframes(self): """Return if currently using TiffFrame (True) or TiffPage (False).""" return self._tiffpage == TiffFrame and TiffFrame is not TiffPage @useframes.setter def useframes(self, value): """Set to use TiffFrame (True) or TiffPage (False).""" self._tiffpage = TiffFrame if value else TiffPage @property def keyframe(self): """Return current keyframe.""" return self._keyframe @keyframe.setter def keyframe(self, index): """Set current keyframe. Load TiffPage from file if necessary.""" index = int(index) if index < 0: index %= len(self) if self._keyframe.index == index: return if index == 0: self._keyframe = self.pages[0] return if self._indexed or index < len(self.pages): page = self.pages[index] if isinstance(page, TiffPage): self._keyframe = page return if isinstance(page, TiffFrame): # remove existing TiffFrame self.pages[index] = page.offset # load TiffPage from file tiffpage = self._tiffpage self._tiffpage = TiffPage try: self._keyframe = self._getitem(index) finally: self._tiffpage = tiffpage # always cache keyframes self.pages[index] = self._keyframe @property def next_page_offset(self): """Return offset where offset to a new page can be stored.""" if not self._indexed: self._seek(-1) return self._nextpageoffset def get(self, key, default=None, validate=False, cache=None, aspage=True): """Return specified page from cache or file.""" try: return self._getitem( key, validate=validate, cache=cache, aspage=aspage ) except IndexError: if default is None: raise return default def _load(self, keyframe=True): """Read all remaining pages from file.""" if self._cached: return pages = self.pages if not pages: return if not self._indexed: self._seek(-1) if not self._cache: return fh = self.parent.filehandle if keyframe is not None: keyframe = self._keyframe for i, page in enumerate(pages): if isinstance(page, (int, numpy.integer)): fh.seek(page) page = self._tiffpage(self.parent, index=i, keyframe=keyframe) pages[i] = page self._cached = True def _load_virtual_frames(self): """Calculate virtual TiffFrames.""" pages = self.pages try: if len(pages) > 1: raise ValueError('pages already loaded') page = pages[0] bytecounts = page._offsetscounts[1] if len(bytecounts) != 1: raise ValueError('data not contiguous') self._seek(4) delta = pages[2] - pages[1] if pages[3] - pages[2] != delta or pages[4] - pages[3] != delta: raise ValueError('page offsets not equidistant') page1 = self._getitem(1, validate=page.hash) offsetoffset = page1._offsetscounts[0][0] - page1.offset if offsetoffset < 0 or offsetoffset > delta: raise ValueError('page offsets not equidistant') pages = [page, page1] filesize = self.parent.filehandle.size - delta for index, offset in enumerate(range(page1.offset + delta, filesize, delta)): offsets = [offset + offsetoffset] offset = offset if offset < 2**31 else None pages.append( TiffFrame( parent=page.parent, index=index + 2, offset=None, offsets=offsets, bytecounts=bytecounts, keyframe=page ) ) self.pages = pages self._cache = True self._cached = True self._indexed = True except Exception as exc: log_warning(f'TiffPages: failed to load virtual frames: {exc}') def _clear(self, fully=True): """Delete all but first page from cache. Set keyframe to first page.""" pages = self.pages if not pages: return self._keyframe = pages[0] if fully: # delete all but first TiffPage/TiffFrame for i, page in enumerate(pages[1:]): if not isinstance(page, int) and page.offset is not None: pages[i + 1] = page.offset elif TiffFrame is not TiffPage: # delete only TiffFrames for i, page in enumerate(pages): if isinstance(page, TiffFrame) and page.offset is not None: pages[i] = page.offset self._cached = False def _seek(self, index, maxpages=None): """Seek file to offset of page specified by index.""" pages = self.pages lenpages = len(pages) if lenpages == 0: raise IndexError('index out of range') fh = self.parent.filehandle if fh.closed: raise ValueError('seek of closed file') if self._indexed or 0 <= index < lenpages: page = pages[index] offset = page if isinstance(page, int) else page.offset fh.seek(offset) return tiff = self.parent.tiff offsetformat = tiff.offsetformat offsetsize = tiff.offsetsize tagnoformat = tiff.tagnoformat tagnosize = tiff.tagnosize tagsize = tiff.tagsize unpack = struct.unpack page = pages[-1] offset = page if isinstance(page, int) else page.offset if maxpages is None: maxpages = 2**22 while lenpages < maxpages: # read offsets to pages from file until index is reached fh.seek(offset) # skip tags try: tagno = unpack(tagnoformat, fh.read(tagnosize))[0] if tagno > 4096: raise TiffFileError(f'suspicious number of tags {tagno!r}') except Exception: log_warning( 'TiffPages: corrupted tag list of page ' f'{lenpages} @ {offset}', ) del pages[-1] lenpages -= 1 self._indexed = True break self._nextpageoffset = offset + tagnosize + tagno * tagsize fh.seek(self._nextpageoffset) # read offset to next page offset = unpack(offsetformat, fh.read(offsetsize))[0] if offset == 0: self._indexed = True break if offset >= fh.size: log_warning(f'TiffPages: invalid page offset {offset!r}') self._indexed = True break pages.append(offset) lenpages += 1 if 0 <= index < lenpages: break # detect some circular references if lenpages == 100: for p in pages[:-1]: if offset == (p if isinstance(p, int) else p.offset): raise TiffFileError('invalid circular IFD reference') if index >= lenpages: raise IndexError('index out of range') page = pages[index] fh.seek(page if isinstance(page, int) else page.offset) def _getlist(self, key=None, useframes=True, validate=True): """Return specified pages as list of TiffPages or TiffFrames. The first item is a TiffPage, and is used as a keyframe for following TiffFrames. """ getitem = self._getitem _useframes = self.useframes if key is None: key = iter(range(len(self))) elif isinstance(key, Iterable): key = iter(key) elif isinstance(key, slice): start, stop, _ = key.indices(2**31 - 1) if not self._indexed and max(stop, start) > len(self.pages): self._seek(-1) key = iter(range(*key.indices(len(self.pages)))) elif isinstance(key, (int, numpy.integer)): # return single TiffPage self.useframes = False if key == 0: return [self.pages[key]] try: return [getitem(key)] finally: self.useframes = _useframes else: raise TypeError('key must be an integer, slice, or iterable') # use first page as keyframe keyframe = self._keyframe self.keyframe = next(key) if validate: validate = self._keyframe.hash if useframes: self.useframes = True try: pages = [getitem(i, validate) for i in key] pages.insert(0, self._keyframe) finally: # restore state self._keyframe = keyframe if useframes: self.useframes = _useframes return pages def _getitem(self, key, validate=False, cache=None, aspage=None): """Return specified page from cache or file.""" key = int(key) pages = self.pages if key < 0: key %= len(self) elif self._indexed and key >= len(pages): raise IndexError(f'index {key} out of range({len(pages)})') tiffpage = TiffPage if aspage else self._tiffpage if key < len(pages): page = pages[key] if self._cache and not aspage: if not isinstance(page, (int, numpy.integer)): if validate and validate != page.hash: raise RuntimeError('page hash mismatch') return page elif isinstance(page, (TiffPage, tiffpage)): if validate and validate != page.hash: raise RuntimeError('page hash mismatch') return page self._seek(key) page = tiffpage(self.parent, index=key, keyframe=self._keyframe) if validate and validate != page.hash: raise RuntimeError('page hash mismatch') if self._cache or cache: pages[key] = page return page def __getitem__(self, key): """Return specified page(s).""" pages = self.pages getitem = self._getitem if isinstance(key, (int, numpy.integer)): if key == 0: return pages[key] return getitem(key) if isinstance(key, slice): start, stop, _ = key.indices(2**31 - 1) if not self._indexed and max(stop, start) > len(pages): self._seek(-1) return [getitem(i) for i in range(*key.indices(len(pages)))] if isinstance(key, Iterable): return [getitem(k) for k in key] raise TypeError('key must be an integer, slice, or iterable') def __iter__(self): """Return iterator over all pages.""" i = 0 while True: try: yield self._getitem(i) i += 1 except IndexError: break if self._cache: self._cached = True def __bool__(self): """Return True if file contains any pages.""" return len(self.pages) > 0 def __len__(self): """Return number of pages in file.""" if not self._indexed: self._seek(-1) return len(self.pages) class TiffPage: """TIFF image file directory (IFD). Attributes ---------- index : int Index of the page in file. dtype : numpy.dtype or None Data type (native byte order) of the image in IFD. shape : tuple of int Dimensions of the image in IFD, as returned by asarray. axes : str Axes label codes for each dimension in shape: 'X' width, 'Y' height, 'S' sample, 'I' image series|page|plane, 'Z' depth, 'C' color|em-wavelength|channel, 'E' ex-wavelength|lambda, 'T' time, 'R' region|tile, 'A' angle, 'P' phase, 'H' lifetime, 'L' exposure, 'V' event, 'Q' unknown, '_' missing tags : TiffTags Multidict like interface to tags in IFD. colormap : numpy.ndarray Color look up table, if exists. shaped : tuple of int Normalized 6 dimensional shape of the image in IFD: 0 : number planes (stk), images (ij), or 1. 1 : separate samplesperpixel or 1. 2 : imagedepth Z (sgi) or 1. 3 : imagelength Y. 4 : imagewidth X. 5 : contig samplesperpixel or 1. All attributes are read-only. """ # default properties; will be updated from tags subfiletype = 0 imagewidth = 0 imagelength = 0 imagedepth = 1 tilewidth = 0 tilelength = 0 tiledepth = 1 bitspersample = 1 samplesperpixel = 1 sampleformat = 1 rowsperstrip = 2**32 - 1 compression = 1 planarconfig = 1 fillorder = 1 photometric = 0 predictor = 1 extrasamples = () subifds = None jpegtables = None colormap = None software = '' description = '' description1 = '' nodata = 0 def __init__(self, parent, index, keyframe=None): """Initialize instance from file. The file handle position must be at offset to a valid IFD. """ self.parent = parent self.index = index self.shape = () self.shaped = () self.dtype = None self._dtype = None self.axes = '' self.tags = tags = TiffTags() self.dataoffsets = () self.databytecounts = () tiff = parent.tiff # read TIFF IFD structure and its tags from file fh = parent.filehandle self.offset = fh.tell() # offset to this IFD try: tagno = struct.unpack(tiff.tagnoformat, fh.read(tiff.tagnosize))[0] if tagno > 4096: raise TiffFileError( f'TiffPage {self.index}: suspicious number of tags' ) except Exception: raise TiffFileError( f'TiffPage {self.index}: ' f'corrupted tag list at offset {self.offset}' ) tagoffset = self.offset + tiff.tagnosize # fh.tell() tagsize = tiff.tagsize data = fh.read(tagsize * tagno) isndpi = tiff.version == 42 and tiff.offsetsize == 8 if isndpi: # patch offsets/values for 64-bit NDPI file tagsize = 16 fh.seek(8, 1) ext = fh.read(4 * tagno) # high bits data = b''.join(data[i*12: i*12+12] + ext[i*4: i*4+4] for i in range(tagno)) tagindex = -tagsize for _ in range(tagno): tagindex += tagsize tagdata = data[tagindex: tagindex + tagsize] try: tag = TiffTag(parent, tagdata, tagoffset + tagindex, isndpi) except TiffFileError as exc: log_warning( f'TiffPage {self.index}: {exc.__class__.__name__}: {exc}' ) continue tags.add(tag) if not tags: return # found in FIBICS for code, name in TIFF.TAG_ATTRIBUTES.items(): tag = tags.get(code) if tag is not None: if code in (270, 305) and not isinstance(tag.value, str): # wrong string type for software or description continue setattr(self, name, tag.value) tag = tags.get(270, index=1) if tag: self.description1 = tag.value tag = tags.get(255) # SubfileType if tag and self.subfiletype == 0: if tag.value == 2: self.subfiletype = 0b1 # reduced image elif tag.value == 3: self.subfiletype = 0b10 # multi-page # consolidate private tags; remove them from self.tags # if self.is_andor: # self.andor_tags # elif self.is_epics: # self.epics_tags # elif self.is_ndpi: # self.ndpi_tags # if self.is_sis and 34853 in tags: # # TODO: can't change tag.name # tags[34853].name = 'OlympusSIS2' if self.is_lsm or (self.index != 0 and self.parent.is_lsm): # correct non standard LSM bitspersample tags tags[258]._fix_lsm_bitspersample(self) if self.compression == 1 and self.predictor != 1: # work around bug in LSM510 software self.predictor = 1 elif self.is_vista or (self.index != 0 and self.parent.is_vista): # ISS Vista writes wrong ImageDepth tag self.imagedepth = 1 elif self.is_stk: tag = tags.get(33628) # UIC1tag if tag is not None and not tag.value: # read UIC1tag now that plane count is known fh.seek(tag.valueoffset) tag.value = read_uic1tag( fh, tiff.byteorder, tag.dtype, tag.count, None, tags[33629].count # UIC2tag ) if 50839 in tags: # decode IJMetadata tag try: tags[50839].value = imagej_metadata( tags[50839].value, tags[50838].value, # IJMetadataByteCounts tiff.byteorder) except Exception as exc: log_warning( f'TiffPage {self.index}: {exc.__class__.__name__}: {exc}' ) # BitsPerSample tag = tags.get(258) if tag is not None: if tag.count == 1: self.bitspersample = tag.value else: # LSM might list more items than samplesperpixel value = tag.value[:self.samplesperpixel] if any(v - value[0] for v in value): self.bitspersample = value else: self.bitspersample = value[0] # SampleFormat tag = tags.get(339) if tag is not None: if tag.count == 1: self.sampleformat = tag.value else: value = tag.value[:self.samplesperpixel] if any(v - value[0] for v in value): self.sampleformat = value else: self.sampleformat = value[0] if 322 in tags: # TileWidth self.rowsperstrip = None elif 257 in tags: # ImageLength if 278 not in tags or tags[278].count > 1: # RowsPerStrip self.rowsperstrip = self.imagelength self.rowsperstrip = min(self.rowsperstrip, self.imagelength) # self.stripsperimage = int(math.floor( # float(self.imagelength + self.rowsperstrip - 1) / # self.rowsperstrip)) # determine dtype dtype = self.sampleformat, self.bitspersample dtype = TIFF.SAMPLE_DTYPES.get(dtype, None) if dtype is not None: dtype = numpy.dtype(dtype) self.dtype = self._dtype = dtype # determine shape of data imagelength = self.imagelength imagewidth = self.imagewidth imagedepth = self.imagedepth samplesperpixel = self.samplesperpixel if self.is_stk: if imagedepth != 1: raise ValueError('STK imagedepth must be 1') tag = tags[33629] # UIC2tag uictag = tag.value planes = tag.count if self.planarconfig == 1: self.shaped = ( planes, 1, 1, imagelength, imagewidth, samplesperpixel, ) if samplesperpixel == 1: self.shape = (planes, imagelength, imagewidth) self.axes = 'YX' else: self.shape = ( planes, imagelength, imagewidth, samplesperpixel, ) self.axes = 'YXS' else: self.shaped = ( planes, samplesperpixel, 1, imagelength, imagewidth, 1, ) if samplesperpixel == 1: self.shape = (planes, imagelength, imagewidth) self.axes = 'YX' else: self.shape = ( planes, samplesperpixel, imagelength, imagewidth, ) self.axes = 'SYX' # detect type of series if planes == 1: self.shape = self.shape[1:] elif numpy.all(uictag['ZDistance'] != 0): self.axes = 'Z' + self.axes elif numpy.all(numpy.diff(uictag['TimeCreated']) != 0): self.axes = 'T' + self.axes else: self.axes = 'I' + self.axes elif self.photometric == 2 or samplesperpixel > 1: # PHOTOMETRIC.RGB if self.planarconfig == 1: self.shaped = ( 1, 1, imagedepth, imagelength, imagewidth, samplesperpixel, ) if imagedepth == 1: self.shape = (imagelength, imagewidth, samplesperpixel) self.axes = 'YXS' else: self.shape = ( imagedepth, imagelength, imagewidth, samplesperpixel, ) self.axes = 'ZYXS' else: self.shaped = ( 1, samplesperpixel, imagedepth, imagelength, imagewidth, 1, ) if imagedepth == 1: self.shape = (samplesperpixel, imagelength, imagewidth) self.axes = 'SYX' else: self.shape = ( samplesperpixel, imagedepth, imagelength, imagewidth, ) self.axes = 'SZYX' else: self.shaped = (1, 1, imagedepth, imagelength, imagewidth, 1) if imagedepth == 1: self.shape = (imagelength, imagewidth) self.axes = 'YX' else: self.shape = (imagedepth, imagelength, imagewidth) self.axes = 'ZYX' # dataoffsets and databytecounts if 324 in tags: # TileOffsets self.dataoffsets = tags[324].value elif 273 in tags: # StripOffsets self.dataoffsets = tags[273].value if 325 in tags: # TileByteCounts self.databytecounts = tags[325].value elif 279 in tags: # StripByteCounts self.databytecounts = tags[279].value else: self.databytecounts = ( product(self.shape) * (self.bitspersample // 8),) if self.compression != 1: log_warning( f'TiffPage {self.index}: ByteCounts tag is missing' ) if imagelength and self.rowsperstrip and not self.is_lsm: # fix incorrect number of strip bytecounts and offsets maxstrips = int(math.floor( imagelength + self.rowsperstrip - 1) / self.rowsperstrip) if self.planarconfig == 2: maxstrips *= self.samplesperpixel if maxstrips != len(self.databytecounts): log_warning( f'TiffPage {self.index}: incorrect StripByteCounts count' ) self.databytecounts = self.databytecounts[:maxstrips] if maxstrips != len(self.dataoffsets): log_warning( f'TiffPage {self.index}: incorrect StripOffsets count' ) self.dataoffsets = self.dataoffsets[:maxstrips] tag = tags.get(42113) # GDAL_NODATA if tag is not None: try: pytype = type(dtype.type(0).item()) self.nodata = pytype(tag.value) except Exception: pass @lazyattr def decode(self): """Return decoded segment, its shape, and indices in image. The decode function is implemeted as a closure. Parameters ---------- data : bytes Encoded bytes of a segment (aka strile, strip or tile) or None for empty segments. index : int The index of the segment in the Offsets and Bytecount tag values. tables : bytes or None For JPEG compressed segments only, the value of the JPEGTables tag if any. Returns ------- segment : numpy.ndarray Decoded segment or None for empty segments. indices : tuple of int The position of the segment in the image array of normalized shape: (0, separate sample, depth, length, width, contig sample). shape : tuple of int The shape of the segment: (depth, height, width, contig samples). The shape of strips depends on their linear index. Raises ValueError or NotImplementedError if decoding is not supported. """ if self.hash in self.parent._master._decoders: return self.parent._master._decoders[self.hash] def cache(decode): self.parent._master._decoders[self.hash] = decode return decode if self.dtype is None: def decode(*args, **kwargs): raise ValueError( f'TiffPage {self.index}: data type not supported: ' f'{self.sampleformat}{self.bitspersample}' ) return cache(decode) try: if self.compression == 1: decompress = None else: decompress = TIFF.DECOMPESSORS[self.compression] except KeyError as exc: def decode(*args, exc=str(exc)[1:-1], **kwargs): raise ValueError(f'TiffPage {self.index}: {exc}') return cache(decode) try: if self.predictor == 1: unpredict = None else: unpredict = TIFF.UNPREDICTORS[self.predictor] except KeyError as exc: def decode(*args, exc=str(exc)[1:-1], **kwargs): raise ValueError(f'TiffPage {self.index}: {exc}') return cache(decode) if self.tags.get(339) is not None: tag = self.tags[339] # SampleFormat if tag.count != 1 and any(i - tag.value[0] for i in tag.value): def decode(*args, **kwargs): raise ValueError( f'TiffPage {self.index}: ' f'sample formats do not match {tag.value}' ) return cache(decode) if ( self.is_subsampled and (self.compression not in (6, 7) or self.planarconfig == 2) ): def decode(*args, **kwargs): raise NotImplementedError( f'TiffPage {self.index}: chroma subsampling not supported' ) return cache(decode) # normalize segments shape to [depth, length, height, contig] if self.is_tiled: stshape = [self.tiledepth, self.tilelength, self.tilewidth, 1] else: stshape = [self.imagedepth, self.rowsperstrip, self.imagewidth, 1] if self.planarconfig == 1: stshape[-1] = self.samplesperpixel stshape = tuple(stshape) stdepth, stlength, stwidth, samples = stshape imdepth, imlength, imwidth, samples = self.shaped[2:] if self.is_tiled: width = (imwidth + stwidth - 1) // stwidth length = (imlength + stlength - 1) // stlength depth = (imdepth + stdepth - 1) // stdepth def indices(tileindex): # return indices and shape of tile in image array return ( 0, tileindex // (width * length * depth), (tileindex // (width * length)) % depth * stdepth, (tileindex // width) % length * stlength, tileindex % width * stwidth, 0 ), stshape def reshape(data, indices, shape): # return reshaped tile if data is None: return data size = shape[0] * shape[1] * shape[2] * shape[3] if data.size > size: # decompression / unpacking might return too many bytes data.shape = -1 data = data[:size] if data.size == size: # complete tile data.shape = shape else: # data fills remaining space # found in some JPEG/PNG compressed tiles try: data.shape = ( min(imdepth - indices[2], shape[0]), min(imlength - indices[3], shape[1]), min(imwidth - indices[4], shape[2]), samples, ) except ValueError: # incomplete tile; see gdal issue #1179 log_warning( f'reshape: incomplete tile {data.shape} {shape}' ) t = numpy.zeros(size, data.dtype) size = min(data.size, size) t[:size] = data[:size] data = t.reshape(shape) return data else: # strips length = (imlength + stlength - 1) // stlength def indices(stripindex, length=length, imlength=imlength, stlength=stlength, stwidth=stwidth, stdepth=stdepth, samples=samples): # return indices and shape of strip in image array indices = ( 0, stripindex // length, 0, stripindex % length * stlength, 0, 0 ) shape = ( stdepth, min(stlength, imlength - indices[3]), stwidth, samples, ) return indices, shape def reshape(data, indices, shape): # return reshaped strip if data is None: return data size = shape[0] * shape[1] * shape[2] * shape[3] if data.size > size: # decompression / unpacking might return too many bytes data.shape = -1 data = data[:size] if data.size == size: # expected size data.shape = shape else: # should not happen, but try different height data.shape = shape[0], -1, shape[2], shape[3] # raise RuntimeError( # f'invalid strip shape {data.shape} or size {size}') return data if self.compression in (6, 7): # COMPRESSION.JPEG needs special handling if self.fillorder == 2: log_warning( f'TiffPage {self.index}: disabling LSB2MSB for JPEG' ) if unpredict: log_warning( f'TiffPage {self.index}: disabling predictor for JPEG' ) colorspace = None outcolorspace = None if 338 in self.tags: # ExtraSamples pass elif self.photometric == 6: # YCBCR -> RGB outcolorspace = 2 # RGB elif self.photometric == 2: if self.planarconfig == 1: colorspace = outcolorspace = 2 # RGB elif self.photometric > 2: outcolorspace = TIFF.PHOTOMETRIC(self.photometric).value def decode(data, segmentindex, tables=None, bitspersample=self.bitspersample, colorspace=colorspace, outcolorspace=outcolorspace): # return decoded segment, its shape, and indices in image index, shape = indices(segmentindex) if data is None: return data, index, shape data = imagecodecs.jpeg_decode( data, bitspersample=bitspersample, tables=tables, colorspace=colorspace, outcolorspace=outcolorspace, shape=shape[1:3] ) data = reshape(data, index, shape) return data, index, shape return cache(decode) dtype = numpy.dtype(self.parent.byteorder + self._dtype.char) if self.bitspersample in (8, 16, 32, 64, 128): # regular data types if (self.bitspersample * stwidth * samples) % 8: raise ValueError( f'TiffPage {self.index}: data and sample size mismatch' ) if self.predictor == 3: # PREDICTOR.FLOATINGPOINT # floating-point horizontal differencing decoder needs # raw byte order dtype = numpy.dtype(self._dtype.char) def unpack(data): # return numpy array from buffer try: # read only numpy array return numpy.frombuffer(data, dtype) except ValueError: # e.g. LZW strips may be missing EOI bps = self.bitspersample // 8 size = (len(data) // bps) * bps return numpy.frombuffer(data[:size], dtype) elif isinstance(self.bitspersample, tuple): # e.g. RGB 565 def unpack(data): # return numpy array from packed integers return unpack_rgb(data, dtype, self.bitspersample) else: # bilevel and packed integers def unpack(data): # Return numpy array from packed integers. return packints_decode( data, dtype, self.bitspersample, stwidth * samples ) def decode(data, segmentindex): # return decoded segment, its shape, and indices in image index, shape = indices(segmentindex) if data is None: return data, index, shape if self.fillorder == 2: data = bitorder_decode(data, out=data) if decompress is not None: # TODO: calculate correct size for packed integers size = shape[0] * shape[1] * shape[2] * shape[3] data = decompress(data, out=size * dtype.itemsize) data = unpack(data) data = reshape(data, index, shape) if unpredict is not None: data = unpredict(data, axis=-2, out=data) return data, index, shape return cache(decode) def segments(self, lock=None, maxworkers=None, func=None, sort=False): """Return iterator over decoded segments in TiffPage. See the decode function for return values. """ keyframe = self.keyframe # self or keyframe if not keyframe.is_contiguous: offsets, bytecounts = self._offsetscounts elif keyframe is self: offsets = self.dataoffsets bytecounts = self.databytecounts else: bytecounts = keyframe.databytecounts offset = self.is_contiguous[0] offsets = [offset] for bytecount in bytecounts[:-1]: offset += bytecount offsets.append(offset) fh = self.parent.filehandle if lock is None: lock = fh.lock decodeargs = {} if keyframe.compression in (6, 7): # COMPRESSION.JPEG decodeargs['tables'] = self.jpegtables def decode(args, decodeargs=decodeargs, keyframe=keyframe, func=func): result = keyframe.decode(*args, **decodeargs) if func is not None: return func(result) return result if maxworkers is None or maxworkers < 1: maxworkers = keyframe.maxworkers if maxworkers < 2: for segment in fh.read_segments( *self._offsetscounts, lock=lock, sort=sort, flat=True ): yield decode(segment) else: # reduce memory overhead by processing chunks of up to # ~64 MB of segments because ThreadPoolExecutor.map is not # collecting iterables lazily with ThreadPoolExecutor(maxworkers) as executor: for segments in fh.read_segments( *self._offsetscounts, lock=lock, sort=sort, flat=False ): yield from executor.map(decode, segments) def asarray(self, out=None, squeeze=True, lock=None, reopen=True, maxworkers=None): """Read image data from file and return as numpy array. Raise ValueError if format is unsupported. Parameters ---------- out : numpy.ndarray, str, or file-like object Buffer where image data will be saved. If None (default), a new array will be created. If numpy.ndarray, a writable array of compatible dtype and shape. If 'memmap', directly memory-map the image data in the TIFF file if possible; else create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk. squeeze : bool If True (default), all length-1 dimensions (except X and Y) are squeezed out from the array. If False, the shape of the returned array might be different from the page.shape. lock : {RLock, NullContext} A reentrant lock used to synchronize seeks and reads from file. If None (default), the lock of the parent's filehandle is used. reopen : bool If True (default) and the parent file handle is closed, the file is temporarily re-opened and closed if no exception occurs. maxworkers : int or None Maximum number of threads to concurrently decode strips ot tiles. If None (default), up to half the CPU cores are used. See remarks in TiffFile.asarray. Returns ------- numpy.ndarray Numpy array of decompressed, depredicted, and unpacked image data read from Strip/Tile Offsets/ByteCounts, formatted according to shape and dtype metadata found in tags and parameters. Photometric conversion, pre-multiplied alpha, orientation, and colorimetry corrections are not applied. Specifically, CMYK images are not converted to RGB, MinIsWhite images are not inverted, and color palettes are not applied. An exception are YCbCr JPEG compressed images, which are converted to RGB. """ keyframe = self.keyframe # self or keyframe if not keyframe.shaped or product(keyframe.shaped) == 0: return None fh = self.parent.filehandle if lock is None: lock = fh.lock with lock: closed = fh.closed if closed: if reopen: fh.open() else: raise OSError( f'TiffPage {self.index}: file handle is closed') if ( isinstance(out, str) and out == 'memmap' and keyframe.is_memmappable ): # direct memory map array in file with lock: result = fh.memmap_array( keyframe.parent.byteorder + keyframe._dtype.char, keyframe.shaped, offset=self._offsetscounts[0][0] ) elif keyframe.is_contiguous: # read contiguous bytes to array if keyframe.is_subsampled: raise NotImplementedError( f'TiffPage {self.index}: chroma subsampling not supported' ) if out is not None: out = create_output(out, keyframe.shaped, keyframe._dtype) with lock: fh.seek(self._offsetscounts[0][0]) result = fh.read_array( keyframe.parent.byteorder + keyframe._dtype.char, product(keyframe.shaped), out=out ) if keyframe.fillorder == 2: bitorder_decode(result, out=result) if keyframe.predictor != 1: # predictors without compression unpredict = TIFF.UNPREDICTORS[keyframe.predictor] if keyframe.predictor == 1: unpredict(result, axis=-2, out=result) else: # floatpred cannot decode in-place out = unpredict(result, axis=-2, out=result) result[:] = out else: # decode individual strips or tiles result = create_output(out, keyframe.shaped, keyframe._dtype) out = result[0] keyframe.decode # init TiffPage.decode function def func(decoderesult, keyframe=keyframe, out=out): # copy decoded segments to output array segment, (_, s, d, l, w, _), shape = decoderesult if segment is None: segment = keyframe.nodata else: segment = segment[:keyframe.imagedepth - d, :keyframe.imagelength - l, :keyframe.imagewidth - w] out[s, d: d + shape[0], l: l + shape[1], w: w + shape[2]] = segment # except IndexError: # pass # corrupted files e.g. with too many strips for _ in self.segments( func=func, lock=lock, maxworkers=maxworkers, sort=True ): pass result.shape = keyframe.shaped if squeeze: try: result.shape = keyframe.shape except ValueError: log_warning( f'TiffPage {self.index}: ' f'failed to reshape {result.shape} to {keyframe.shape}' ) if closed: # TODO: file should remain open if an exception occurred above fh.close() return result def asrgb(self, uint8=False, alpha=None, colormap=None, dmin=None, dmax=None, **kwargs): """Return image data as RGB(A). Work in progress. """ data = self.asarray(**kwargs) keyframe = self.keyframe # self or keyframe if keyframe.photometric == TIFF.PHOTOMETRIC.PALETTE: colormap = keyframe.colormap if ( colormap.shape[1] < 2**keyframe.bitspersample or keyframe.dtype.char not in 'BH' ): raise ValueError( f'TiffPage {self.index}: cannot apply colormap' ) if uint8: if colormap.max() > 255: colormap >>= 8 colormap = colormap.astype('uint8') if 'S' in keyframe.axes: data = data[..., 0] if keyframe.planarconfig == 1 else data[0] data = apply_colormap(data, colormap) elif keyframe.photometric == TIFF.PHOTOMETRIC.RGB: if keyframe.extrasamples: if alpha is None: alpha = TIFF.EXTRASAMPLE for i, exs in enumerate(keyframe.extrasamples): if exs in alpha: if keyframe.planarconfig == 1: data = data[..., [0, 1, 2, 3 + i]] else: data = data[:, [0, 1, 2, 3 + i]] break else: if keyframe.planarconfig == 1: data = data[..., :3] else: data = data[:, :3] # TODO: convert to uint8? elif keyframe.photometric == TIFF.PHOTOMETRIC.MINISBLACK: raise NotImplementedError() elif keyframe.photometric == TIFF.PHOTOMETRIC.MINISWHITE: raise NotImplementedError() elif keyframe.photometric == TIFF.PHOTOMETRIC.SEPARATED: raise NotImplementedError() else: raise NotImplementedError() return data def _gettags(self, codes=None, lock=None): """Return list of (code, TiffTag).""" return [ (tag.code, tag) for tag in self.tags if codes is None or tag.code in codes ] def _nextifd(self): """Return offset to next IFD from file.""" fh = self.parent.filehandle tiff = self.parent.tiff fh.seek(self.offset) tagno = struct.unpack(tiff.tagnoformat, fh.read(tiff.tagnosize))[0] fh.seek(self.offset + tiff.tagnosize + tagno * tiff.tagsize) return struct.unpack(tiff.offsetformat, fh.read(tiff.offsetsize))[0] def aspage(self): """Return self.""" return self @property def keyframe(self): """Return keyframe, self.""" return self @keyframe.setter def keyframe(self, index): """Set keyframe, NOP.""" return @lazyattr def pages(self): """Return sequence of sub-pages (SubIFDs).""" if 330 not in self.tags: return () return TiffPages(self) @lazyattr def hash(self): """Return checksum to identify pages in same series. Pages with the same hash can use the same decode function. """ return hash( self.shaped + ( self.parent.byteorder, self.tilewidth, self.tilelength, self.tiledepth, self.sampleformat, self.bitspersample, self.rowsperstrip, self.fillorder, self.predictor, self.extrasamples, self.photometric, self.planarconfig, self.compression, )) @lazyattr def maxworkers(self): """Return maximum number of threads for decoding strips or tiles.""" if self.is_contiguous: return 1 if len(self._offsetscounts[0]) < 4: return 1 if self.compression != 1 or self.fillorder != 1 or self.predictor != 1: if self.compression == 5 and self._offsetscounts[1][0] < 8192: # disable multi-threading for small LZW compressed segments return 1 if imagecodecs is not None: return min(TIFF.MAXWORKERS, len(self._offsetscounts[0])) return 2 # optimum for large number of uncompressed tiles @lazyattr def _offsetscounts(self): """Return simplified offsets and bytecounts.""" if self.is_contiguous: offset, bytecount = self.is_contiguous return ((offset,), (bytecount,)) return self.dataoffsets, self.databytecounts @lazyattr def is_contiguous(self): """Return offset and size of contiguous data, else None. Excludes prediction and fill_order. """ if self.compression != 1 or self.bitspersample not in (8, 16, 32, 64): return None if 322 in self.tags: # TileWidth if ( self.imagewidth != self.tilewidth or self.imagelength % self.tilelength or self.tilewidth % 16 or self.tilelength % 16 ): return None if ( 32997 in self.tags and # ImageDepth 32998 in self.tags and # TileDepth ( self.imagelength != self.tilelength or self.imagedepth % self.tiledepth ) ): return None offsets = self.dataoffsets bytecounts = self.databytecounts if len(offsets) == 1: return offsets[0], bytecounts[0] if self.is_stk or self.is_lsm: return offsets[0], sum(bytecounts) if all( bytecounts[i] != 0 and offsets[i] + bytecounts[i] == offsets[i + 1] for i in range(len(offsets) - 1) ): return offsets[0], sum(bytecounts) return None @lazyattr def is_final(self): """Return if page's image data are stored in final form. Excludes byte-swapping. """ return ( self.is_contiguous and self.fillorder == 1 and self.predictor == 1 and not self.is_subsampled ) @lazyattr def is_memmappable(self): """Return if page's image data in file can be memory-mapped.""" return ( self.parent.filehandle.is_file and self.is_final # and (self.bitspersample == 8 or self.parent.isnative) # aligned? and self.is_contiguous[0] % self.dtype.itemsize == 0 ) def __str__(self, detail=0, width=79): """Return string containing information about TiffPage.""" if self.keyframe != self: return TiffFrame.__str__(self, detail, width) attr = '' for name in ('memmappable', 'final', 'contiguous'): attr = getattr(self, 'is_' + name) if attr: attr = name.upper() break def tostr(name, skip=1): obj = getattr(self, name) try: value = getattr(obj, 'name') except AttributeError: return '' if obj != skip: return value return '' info = ' '.join( s.lower() for s in ( 'x'.join(str(i) for i in self.shape), '{}{}'.format( TIFF.SAMPLEFORMAT(self.sampleformat).name, self.bitspersample, ), ' '.join( i for i in ( TIFF.PHOTOMETRIC(self.photometric).name, 'REDUCED' if self.is_reduced else '', 'MASK' if self.is_mask else '', 'TILED' if self.is_tiled else '', tostr('compression'), tostr('planarconfig'), tostr('predictor'), tostr('fillorder'), ) + tuple(f.upper() for f in self.flags) + (attr,) if i ), ) if s ) info = f'TiffPage {self.index} @{self.offset} {info}' if detail <= 0: return info info = [info, self.tags.__str__(detail+1, width=width)] if detail > 1: for name in ('ndpi',): name = name + '_tags' attr = getattr(self, name, False) if attr: info.append(f'{name.upper()}\n{pformat(attr)}') if detail > 3: try: info.append('DATA\n{}'.format( pformat(self.asarray(), width=width, height=detail * 8) )) except Exception: pass return '\n\n'.join(info) @lazyattr def flags(self): """Return set of flags.""" return { name.lower() for name in sorted(TIFF.FILE_FLAGS) if getattr(self, 'is_' + name) } @property def ndim(self): """Return number of array dimensions.""" return len(self.shape) @property def size(self): """Return number of elements in array.""" return product(self.shape) @lazyattr def andor_tags(self): """Return consolidated metadata from Andor tags as dict.""" if not self.is_andor: return None result = {'Id': self.tags[4864].value} # AndorId for tag in self.tags: # list(self.tags.values()): code = tag.code if not 4864 < code < 5031: continue name = tag.name name = name[5:] if len(name) > 5 else name result[name] = tag.value # del self.tags[code] return result @lazyattr def epics_tags(self): """Return consolidated metadata from EPICS areaDetector tags as dict. Use epics_datetime() to get a datetime object from the epicsTSSec and epicsTSNsec tags. """ if not self.is_epics: return None result = {} for tag in self.tags: # list(self.tags.values()): code = tag.code if not 65000 <= code < 65500: continue value = tag.value if code == 65000: # not a POSIX timestamp # https://github.com/bluesky/area-detector-handlers/issues/20 result['timeStamp'] = float(value) elif code == 65001: result['uniqueID'] = int(value) elif code == 65002: result['epicsTSSec'] = int(value) elif code == 65003: result['epicsTSNsec'] = int(value) else: key, value = value.split(':', 1) result[key] = astype(value) # del self.tags[code] return result @lazyattr def ndpi_tags(self): """Return consolidated metadata from Hamamatsu NDPI as dict.""" # TODO: parse 65449 ini style comments if not self.is_ndpi: return None tags = self.tags result = {} for name in ('Make', 'Model', 'Software'): result[name] = tags[name].value for code, name in TIFF.NDPI_TAGS.items(): if code in tags: result[name] = tags[code].value # del tags[code] if 'McuStarts' in result: mcustarts = result['McuStarts'] if 'McuStartsHighBytes' in result: high = result['McuStartsHighBytes'].astype('uint64') high <<= 32 mcustarts = mcustarts.astype('uint64') mcustarts += high del result['McuStartsHighBytes'] result['McuStarts'] = mcustarts return result @lazyattr def geotiff_tags(self): """Return consolidated metadata from GeoTIFF tags as dict.""" if not self.is_geotiff: return None tags = self.tags gkd = tags[34735].value # GeoKeyDirectoryTag if gkd[0] != 1: log_warning('GeoTIFF tags: invalid GeoKeyDirectoryTag') return {} result = { 'KeyDirectoryVersion': gkd[0], 'KeyRevision': gkd[1], 'KeyRevisionMinor': gkd[2], # 'NumberOfKeys': gkd[3], } # deltags = ['GeoKeyDirectoryTag'] geokeys = TIFF.GEO_KEYS geocodes = TIFF.GEO_CODES for index in range(gkd[3]): try: keyid, tagid, count, offset = gkd[4 + index * 4: index * 4 + 8] except Exception as exc: log_warning(f'GeoTIFF tags: {exc}') continue keyid = geokeys.get(keyid, keyid) if tagid == 0: value = offset else: try: value = tags[tagid].value[offset: offset + count] except KeyError: log_warning(f'GeoTIFF tags: {tagid} not found') continue if tagid == 34737 and count > 1 and value[-1] == '|': value = value[:-1] value = value if count > 1 else value[0] if keyid in geocodes: try: value = geocodes[keyid](value) except Exception: pass result[keyid] = value tag = tags.get(33920) # IntergraphMatrixTag if tag is not None: value = numpy.array(tag.value) if len(value) == 16: value = value.reshape((4, 4)).tolist() result['IntergraphMatrix'] = value tag = tags.get(33550) # ModelPixelScaleTag if tag is not None: result['ModelPixelScale'] = numpy.array(tag.value).tolist() tag = tags.get(33922) # ModelTiepointTag if tag is not None: value = numpy.array(tag.value).reshape((-1, 6)).squeeze().tolist() result['ModelTiepoint'] = value tag = tags.get(34264) # ModelTransformationTag if tag is not None: value = numpy.array(tag.value).reshape((4, 4)).tolist() result['ModelTransformation'] = value # if 33550 in tags and 33922 in tags: # sx, sy, sz = tags[33550].value # ModelPixelScaleTag # tiepoints = tags[33922].value # ModelTiepointTag # transforms = [] # for tp in range(0, len(tiepoints), 6): # i, j, k, x, y, z = tiepoints[tp:tp+6] # transforms.append([ # [sx, 0.0, 0.0, x - i * sx], # [0.0, -sy, 0.0, y + j * sy], # [0.0, 0.0, sz, z - k * sz], # [0.0, 0.0, 0.0, 1.0]]) # if len(tiepoints) == 6: # transforms = transforms[0] # result['ModelTransformation'] = transforms tag = tags.get(50844) # RPCCoefficientTag if tag is not None: rpcc = tag.value result['RPCCoefficient'] = { 'ERR_BIAS': rpcc[0], 'ERR_RAND': rpcc[1], 'LINE_OFF': rpcc[2], 'SAMP_OFF': rpcc[3], 'LAT_OFF': rpcc[4], 'LONG_OFF': rpcc[5], 'HEIGHT_OFF': rpcc[6], 'LINE_SCALE': rpcc[7], 'SAMP_SCALE': rpcc[8], 'LAT_SCALE': rpcc[9], 'LONG_SCALE': rpcc[10], 'HEIGHT_SCALE': rpcc[11], 'LINE_NUM_COEFF': rpcc[12:33], 'LINE_DEN_COEFF ': rpcc[33:53], 'SAMP_NUM_COEFF': rpcc[53:73], 'SAMP_DEN_COEFF': rpcc[73:], } return result @property def is_reduced(self): """Page is reduced image of another image.""" return self.subfiletype & 0b1 @property def is_multipage(self): """Page is part of multi-page image.""" return self.subfiletype & 0b10 @property def is_mask(self): """Page is transparency mask for another image.""" return self.subfiletype & 0b100 @property def is_mrc(self): """Page is part of Mixed Raster Content.""" return self.subfiletype & 0b1000 @property def is_tiled(self): """Page contains tiled image.""" return 322 in self.tags # TileWidth @property def is_subsampled(self): """Page contains chroma subsampled image.""" tag = self.tags.get(530) # YCbCrSubSampling if tag is not None: return tag.value != (1, 1) return ( self.compression == 7 and self.planarconfig == 1 and self.photometric in (2, 6) ) @lazyattr def is_imagej(self): """Return ImageJ description if exists, else None.""" for description in (self.description, self.description1): if not description: return None if description[:7] == 'ImageJ=': return description return None @lazyattr def is_shaped(self): """Return description containing array shape if exists, else None.""" for description in (self.description, self.description1): if not description: return None if description[:1] == '{' and '"shape":' in description: return description if description[:6] == 'shape=': return description return None @property def is_mdgel(self): """Page contains MDFileTag tag.""" return 33445 in self.tags # MDFileTag @property def is_mediacy(self): """Page contains Media Cybernetics Id tag.""" tag = self.tags.get(50288) # MC_Id return tag is not None and tag.value[:7] == b'MC TIFF' @property def is_stk(self): """Page contains UIC2Tag tag.""" return 33629 in self.tags @property def is_lsm(self): """Page contains CZ_LSMINFO tag.""" return 34412 in self.tags @property def is_fluoview(self): """Page contains FluoView MM_STAMP tag.""" return 34362 in self.tags @property def is_nih(self): """Page contains NIHImageHeader tag.""" return 43314 in self.tags @property def is_sgi(self): """Page contains SGI ImageDepth and TileDepth tags.""" return 32998 in self.tags and 32997 in self.tags @property def is_vista(self): """Software tag is 'ISS Vista'.""" return self.software == 'ISS Vista' @property def is_metaseries(self): """Page contains MDS MetaSeries metadata in ImageDescription tag.""" if self.index != 0 or self.software != 'MetaSeries': return False d = self.description return d.startswith('') and d.endswith('') @property def is_ome(self): """Page contains OME-XML in ImageDescription tag.""" if self.index != 0 or not self.description: return False return self.description[-4:] == 'OME>' # and [:13] == '' @property def is_micromanager(self): """Page contains MicroManagerMetadata tag.""" return 51123 in self.tags @property def is_andor(self): """Page contains Andor Technology tags 4864-5030.""" return 4864 in self.tags @property def is_pilatus(self): """Page contains Pilatus tags.""" return self.software[:8] == 'TVX TIFF' and self.description[:2] == '# ' @property def is_epics(self): """Page contains EPICS areaDetector tags.""" return ( self.description == 'EPICS areaDetector' or self.software == 'EPICS areaDetector' ) @property def is_tvips(self): """Page contains TVIPS metadata.""" return 37706 in self.tags @property def is_fei(self): """Page contains FEI_SFEG or FEI_HELIOS tags.""" return 34680 in self.tags or 34682 in self.tags @property def is_sem(self): """Page contains CZ_SEM tag.""" return 34118 in self.tags @property def is_svs(self): """Page contains Aperio metadata.""" return self.description[:7] == 'Aperio ' @property def is_scanimage(self): """Page contains ScanImage metadata.""" return ( self.description[:12] == 'state.config' or self.software[:22] == 'SI.LINE_FORMAT_VERSION' or 'scanimage.SI' in self.description[-256:] ) @property def is_qpi(self): """Page contains PerkinElmer tissue images metadata.""" # The ImageDescription tag contains XML with a top-level # element return self.software[:15] == 'PerkinElmer-QPI' @property def is_geotiff(self): """Page contains GeoTIFF metadata.""" return 34735 in self.tags # GeoKeyDirectoryTag @property def is_tiffep(self): """Page contains TIFF/EP metadata.""" return 37398 in self.tags # TIFF/EPStandardID @property def is_sis(self): """Page contains Olympus SIS metadata.""" return 33560 in self.tags or 33471 in self.tags @lazyattr # must not be property; tag 65420 is later removed def is_ndpi(self): """Page contains NDPI metadata.""" return 65420 in self.tags and 271 in self.tags @property def is_philips(self): """Page contains Philips DP metadata.""" return ( self.software[:10] == 'Philips DP' and self.description[-13:] == '' ) class TiffFrame: """Lightweight TIFF image file directory (IFD). Only a limited number of tag values are read from file, e.g. StripOffsets, and StripByteCounts. Other tag values are assumed to be identical with a specified TiffPage instance, the keyframe. TiffFrame is intended to reduce resource usage and speed up reading image data from file, not for introspection of metadata. """ __slots__ = ( 'index', 'parent', 'offset', 'subifds', 'jpegtables', '_offsetscounts', '_keyframe' ) is_mdgel = False pages = None # tags = {} def __init__(self, parent, index, offset=None, keyframe=None, offsets=None, bytecounts=None): """Initialize TiffFrame from file or values. The file handle position must be at the offset to a valid IFD. """ self._keyframe = None self.parent = parent self.index = index self.offset = offset self.subifds = None self.jpegtables = None if offsets is not None: # initialize "virtual frame" from offsets and bytecounts self._offsetscounts = offsets, bytecounts self._keyframe = keyframe return if offset is None: self.offset = parent.filehandle.tell() else: parent.filehandle.seek(offset) if keyframe is None: tags = {273, 279, 324, 325, 330, 347} elif keyframe.is_contiguous: tags = {256, 273, 324, 330} else: tags = {256, 273, 279, 324, 325, 330, 347} dataoffsets = databytecounts = [] for code, tag in self._gettags(tags): if code == 273 or code == 324: dataoffsets = tag.value elif code == 279 or code == 325: databytecounts = tag.value elif code == 330: self.subifds = tag.value elif code == 347: self.jpegtables = tag.value elif code == 256 and keyframe.imagewidth != tag.value: raise RuntimeError( f'TiffFrame {self.index} incompatible keyframe' ) if not dataoffsets: log_warning(f'TiffFrame {self.index}: missing required tags') self._offsetscounts = dataoffsets, databytecounts if keyframe is not None: self.keyframe = keyframe def _gettags(self, codes=None, lock=None): """Return list of (code, TiffTag) from file.""" fh = self.parent.filehandle tiff = self.parent.tiff unpack = struct.unpack lock = NullContext() if lock is None else lock tags = [] with lock: fh.seek(self.offset) try: tagno = unpack(tiff.tagnoformat, fh.read(tiff.tagnosize))[0] if tagno > 4096: raise TiffFileError( f'TiffFrame {self.index}: suspicious number of tags' ) except Exception: raise TiffFileError( f'TiffFrame {self.index}: ' f'corrupted page list at offset {self.offset}' ) tagoffset = self.offset + tiff.tagnosize # fh.tell() tagsize = tiff.tagsize tagindex = -tagsize codeformat = tiff.tagformat1[:2] tagbytes = fh.read(tagsize * tagno) for _ in range(tagno): tagindex += tagsize code = unpack(codeformat, tagbytes[tagindex: tagindex + 2])[0] if codes and code not in codes: continue try: tag = TiffTag(self.parent, tagbytes[tagindex: tagindex + tagsize], tagoffset + tagindex) except TiffFileError as exc: log_warning( f'TiffFrame {self.index}: ' f'{exc.__class__.__name__}: {exc}' ) continue tags.append((code, tag)) return tags def _nextifd(self): """Return offset to next IFD from file.""" return TiffPage._nextifd(self) def aspage(self): """Return TiffPage from file.""" if self.offset is None: raise ValueError( f'TiffFrame {self.index}: cannot return virtual frame as page' ) self.parent.filehandle.seek(self.offset) return TiffPage(self.parent, index=self.index) def asarray(self, *args, **kwargs): """Read image data from file and return as numpy array.""" if self._keyframe is None: raise RuntimeError(f'TiffFrame {self.index}: keyframe not set') return TiffPage.asarray(self, *args, **kwargs) def asrgb(self, *args, **kwargs): """Read image data from file and return RGB image as numpy array.""" if self._keyframe is None: raise RuntimeError(f'TiffFrame {self.index}: keyframe not set') return TiffPage.asrgb(self, *args, **kwargs) def segments(self, *args, **kwargs): """Return iterator over decoded segments in TiffFrame.""" if self._keyframe is None: raise RuntimeError(f'TiffFrame {self.index}: keyframe not set') return TiffPage.segments(self, *args, **kwargs) @property def keyframe(self): """Return keyframe.""" return self._keyframe @keyframe.setter def keyframe(self, keyframe): """Set keyframe.""" if self._keyframe == keyframe: return if self._keyframe is not None: raise RuntimeError( f'TiffFrame {self.index}: cannot reset keyframe' ) if len(self._offsetscounts[0]) != len(keyframe.dataoffsets): raise RuntimeError( f'TiffFrame {self.index}: incompatible keyframe' ) if keyframe.is_tiled: pass if keyframe.is_contiguous: self._offsetscounts = ( (self._offsetscounts[0][0], ), (keyframe.is_contiguous[1], ), ) self._keyframe = keyframe @property def is_contiguous(self): """Return offset and size of contiguous data, else None.""" if self._keyframe is None: raise RuntimeError(f'TiffFrame {self.index}: keyframe not set') if self._keyframe.is_contiguous: return self._offsetscounts[0][0], self._keyframe.is_contiguous[1] return None @property def is_memmappable(self): """Return if page's image data in file can be memory-mapped.""" if self._keyframe is None: raise RuntimeError(f'TiffFrame {self.index}: keyframe not set') return self._keyframe.is_memmappable @property def hash(self): """Return checksum to identify pages in same series.""" if self._keyframe is None: raise RuntimeError(f'TiffFrame {self.index}: keyframe not set') return self._keyframe.hash def __getattr__(self, name): """Return attribute from keyframe.""" if name in TIFF.FRAME_ATTRS: return getattr(self._keyframe, name) # this error could be raised because an AttributeError was # raised inside a @property function raise AttributeError( f'{self.__class__.__name__!r} object has no attribute {name!r}' ) def __str__(self, detail=0, width=79): """Return string containing information about TiffFrame.""" if self._keyframe is None: info = '' kf = None else: info = ' '.join(s for s in ('x'.join(str(i) for i in self.shape), str(self.dtype))) kf = TiffPage.__str__(self._keyframe, width=width - 11) if detail > 3: of, bc = self._offsetscounts of = pformat(of, width=width - 9, height=detail - 3) bc = pformat(bc, width=width - 13, height=detail - 3) info = f'\n Keyframe {kf}\n Offsets {of}\n Bytecounts {bc}' return f'TiffFrame {self.index} @{self.offset} {info}' class TiffTag: """TIFF tag structure. Attributes ---------- name : string Name of tag, TIFF.TAGS[code]. code : int Decimal code of tag. dtype : str Datatype of tag data. One of TIFF DATA_FORMATS. count : int Number of values. value : various types Tag data as Python object. offset : int Location of tag structure in file. valueoffset : int Location of value in file. All attributes are read-only. """ __slots__ = ('code', 'count', 'dtype', 'value', 'offset', 'valueoffset') def __init__(self, parent, tagheader, tagoffset, isndpi=False): """Initialize instance from tag header.""" fh = parent.filehandle tiff = parent.tiff byteorder = tiff.byteorder offsetsize = tiff.offsetsize unpack = struct.unpack self.offset = tagoffset self.valueoffset = tagoffset + offsetsize + 4 code, type_ = unpack(tiff.tagformat1, tagheader[:4]) count, value = unpack(tiff.tagformat2, tagheader[4:]) try: dtype = TIFF.DATA_FORMATS[type_] except KeyError: raise TiffFileError(f'unknown tag data type {type_!r}') fmt = '{}{}{}'.format(byteorder, count * int(dtype[0]), dtype[1]) size = struct.calcsize(fmt) if size > tiff.tagoffsetthreshold or code in TIFF.TAG_READERS: self.valueoffset = offset = unpack(tiff.offsetformat, value)[0] if offset < 8 or offset > fh.size - size: raise TiffFileError('invalid tag value offset') # if offset % 2: # log_warning('TiffTag: value does not begin on word boundary') fh.seek(offset) if code in TIFF.TAG_READERS: readfunc = TIFF.TAG_READERS[code] value = readfunc(fh, byteorder, dtype, count, offsetsize) elif type_ == 7 or (count > 1 and dtype[-1] == 'B'): value = read_bytes(fh, byteorder, dtype, count, offsetsize) # elif code in TIFF.TAGS or dtype[-1] == 's': else: value = unpack(fmt, fh.read(size)) # else: # value = read_numpy(fh, byteorder, dtype, count, offsetsize) elif dtype[-1] == 'B' or type_ == 7: value = value[:size] elif ( isndpi and count == 1 and dtype == '1I' and value[4:] != b'\x00\x00\x00\x00' ): # patch NDPI offsets and sizes dtype = '1Q' value = unpack(' 0 and len(value) > width: if detail < 2 and tag.code in (273, 279, 324, 325): value = pformat(tag.value, width=width, height=detail * 4) else: value = pformat(tag.value, width=width, height=detail * 12) vlines.append(f'{tag.name}\n{value}') info.append('\n'.join(tlines)) if detail > 0 and vlines: info.append('\n') info.append('\n\n'.join(vlines)) return '\n'.join(info) class TiffPageSeries: """Series of TIFF pages with compatible shape and data type. Attributes ---------- pages : list of TiffPage Sequence of TiffPages in series. dtype : numpy.dtype Data type (native byte order) of the image array in series. shape : tuple Dimensions of the image array in series. axes : str Labels of axes in shape. See TiffPage.axes. offset : int or None Position of image data in file if memory-mappable, else None. levels : list of TiffPageSeries Pyramid levels. """ def __init__(self, pages, shape, dtype, axes, parent=None, name=None, transform=None, kind=None, truncated=False): """Initialize instance.""" self.index = 0 self._pages = pages # might contain only first of contiguous pages self.levels = [self] self.shape = tuple(shape) self.axes = ''.join(axes) self.dtype = numpy.dtype(dtype) self.kind = kind if kind else '' self.name = name if name else '' self.transform = transform self.keyframe = next(p.keyframe for p in pages if p is not None) if parent: self.parent = parent elif pages: self.parent = self.keyframe.parent else: self.parent = None if not truncated and len(pages) == 1: s = product(pages[0].shape) if s > 0: self._len = int(product(self.shape) // s) else: self._len = len(pages) else: self._len = len(pages) def asarray(self, level=None, **kwargs): """Return image data from series of TIFF pages as numpy array.""" if level is not None: return self.levels[level].asarray(**kwargs) if self.parent: result = self.parent.asarray(series=self, **kwargs) if self.transform is not None: result = self.transform(result) return result return None @lazyattr def offset(self): """Return offset to series data in file, if any.""" if not self._pages: return None pos = 0 for page in self._pages: if page is None: return None if not page.is_final: return None if not pos: pos = page.is_contiguous[0] + page.is_contiguous[1] continue if pos != page.is_contiguous[0]: return None pos += page.is_contiguous[1] page = self._pages[0] offset = page.is_contiguous[0] if (page.is_imagej or page.is_shaped) and len(self._pages) == 1: # truncated files return offset if pos == offset + product(self.shape) * self.dtype.itemsize: return offset return None @property def is_pyramid(self): """Return if series contains several levels.""" return len(self.levels) > 1 @property def ndim(self): """Return number of array dimensions.""" return len(self.shape) @property def size(self): """Return number of elements in array.""" return int(product(self.shape)) @property def pages(self): """Return sequence of all pages in series.""" # a workaround to keep the old interface working return self def _getitem(self, key): """Return specified page of series from cache or file.""" key = int(key) if key < 0: key %= self._len if len(self._pages) == 1 and 0 < key < self._len: index = self._pages[0].index return self.parent.pages._getitem(index + key) return self._pages[key] def __getitem__(self, key): """Return specified page(s).""" getitem = self._getitem if isinstance(key, (int, numpy.integer)): return getitem(key) if isinstance(key, slice): return [getitem(i) for i in range(*key.indices(self._len))] if isinstance(key, Iterable): return [getitem(k) for k in key] raise TypeError('key must be an integer, slice, or iterable') def __iter__(self): """Return iterator over pages in series.""" if len(self._pages) == self._len: yield from self._pages else: pages = self.parent.pages index = self._pages[0].index for i in range(self._len): yield pages[index + i] def __len__(self): """Return number of pages in series.""" return self._len def __str__(self): """Return string with information about TiffPageSeries.""" s = ' '.join( s for s in ( snipstr(f'{self.name!r}', 20) if self.name else '', 'x'.join(str(i) for i in self.shape), str(self.dtype), self.axes, self.kind, (f'{len(self.levels)} Levels') if self.is_pyramid else '', f'{len(self.pages)} Pages', (f'@{self.offset}') if self.offset else '') if s ) return f'TiffPageSeries {self.index} {s}' class FileSequence: """Series of files containing array data of compatible shape and data type. Attributes ---------- files : list List of file names. shape : tuple Shape of file series. Excludes shape of individual arrays. axes : str Labels of axes in shape. """ _patterns = { 'axes': r""" # matches Olympus OIF and Leica TIFF series _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4})) _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))? """ } def __init__(self, fromfile, files, container=None, sort=None, pattern=None, axesorder=None): """Initialize instance from multiple files. Parameters ---------- fromfile : function or class Array read function or class with asarray function returning numpy array from single file. files : str, path-like, or sequence thereof Glob filename pattern or sequence of file names. Default: \\*. Binary streams are not supported. container : str or container instance Name or open instance of ZIP file in which files are stored. sort : function Sort function used to sort file names when 'files' is a pattern. The default (None) is natural_sorted. Use sort=False to disable sorting. pattern : str Regular expression pattern that matches axes and sequence indices in file names. By default (None), no pattern matching is performed. Axes can be specified by matching groups preceding the index groups in the file name, be provided as group names for the index groups, or be omitted. The predefined 'axes' pattern matches Olympus OIF and Leica TIFF series. axesorder : sequence of int Indices of axes in pattern. """ if files is None: files = '*' if sort is None: sort = natural_sorted self._container = container if container: import fnmatch if isinstance(container, (str, os.PathLike)): import zipfile self._container = zipfile.ZipFile(container) elif not hasattr(self._container, 'open'): raise ValueError('invalid container') if isinstance(files, str): files = fnmatch.filter(self._container.namelist(), files) if sort: files = sort(files) elif isinstance(files, os.PathLike): files = [os.fspath(files)] elif isinstance(files, str): files = glob.glob(files) if sort: files = sort(files) files = [os.fspath(f) for f in files] if not files: raise ValueError('no files found') if hasattr(fromfile, 'asarray'): # redefine fromfile to use asarray from fromfile class if not callable(fromfile.asarray): raise ValueError('invalid fromfile function') _fromfile0 = fromfile def fromfile(fname, **kwargs): with _fromfile0(fname) as handle: return handle.asarray(**kwargs) elif not callable(fromfile): raise ValueError('invalid fromfile function') if container: # redefine fromfile to read from container _fromfile1 = fromfile def fromfile(fname, **kwargs): with self._container.open(fname) as handle1: with io.BytesIO(handle1.read()) as handle2: return _fromfile1(handle2, **kwargs) axes = 'I' shape = (len(files),) indices = tuple((i,) for i in range(len(files))) startindex = (0,) pattern = self._patterns.get(pattern, pattern) if pattern: try: axes, shape, indices, startindex = parse_filenames( files, pattern, axesorder) except ValueError as exc: log_warning( f'FileSequence: failed to parse file names ({exc})') if product(shape) != len(files): log_warning( 'FileSequence: files are missing. Missing data are zeroed') self.fromfile = fromfile self.files = files self.pattern = pattern self.axes = axes.upper() self.shape = shape self._indices = indices self._startindex = startindex def __str__(self): """Return string with information about file FileSequence.""" file = str(self._container) if self._container else self.files[0] file = os.path.split(file)[-1] return '\n '.join(( self.__class__.__name__, file, f'files: {len(self.files)}', 'shape: {}'.format(', '.join(str(i) for i in self.shape)), f'axes: {self.axes}', )) def __len__(self): return len(self.files) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): if self._container: self._container.close() self._container = None def asarray(self, file=None, ioworkers=1, out=None, **kwargs): """Read image data from files and return as numpy array. Raise IndexError or ValueError if array shapes do not match. Parameters ---------- file : int or None Index or name of single file to read. ioworkers : int or None Maximum number of threads to execute the array read function asynchronously. Default: 1. If None, default to the number of processors multiplied by 5. Using threads can significantly improve runtime when reading many small files from a network share. out : numpy.ndarray, str, or file-like object Buffer where image data will be saved. If None (default), a new array will be created. If numpy.ndarray, a writable array of compatible dtype and shape. If 'memmap', create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk. kwargs : dict Additional parameters passed to the array read function. """ if file is not None: if isinstance(file, int): return self.fromfile(self.files[file], **kwargs) return self.fromfile(file, **kwargs) im = self.fromfile(self.files[0], **kwargs) shape = self.shape + im.shape result = create_output(out, shape, dtype=im.dtype) result = result.reshape(-1, *im.shape) def func(index, fname): """Read single image from file into result.""" index = [i - j for i, j in zip(index, self._startindex)] index = numpy.ravel_multi_index(index, self.shape) im = self.fromfile(fname, **kwargs) result[index] = im if len(self.files) < 2: ioworkers = 1 elif ioworkers is None or ioworkers < 1: import multiprocessing ioworkers = max(multiprocessing.cpu_count() * 5, 1) if ioworkers < 2: for index, fname in zip(self._indices, self.files): func(index, fname) else: with ThreadPoolExecutor(ioworkers) as executor: for _ in executor.map(func, self._indices, self.files): pass result.shape = shape return result class TiffSequence(FileSequence): """Series of TIFF files.""" def __init__(self, files=None, container=None, sort=None, pattern=None, imread=imread): """Initialize instance from multiple TIFF files.""" super().__init__( imread, '*.tif' if files is None else files, container=container, sort=sort, pattern=pattern) class FileHandle: """Binary file handle. A limited, special purpose file handle that can: * handle embedded files (for CZI within CZI files) * re-open closed files (for multi-file formats, such as OME-TIFF) * read and write numpy arrays and records from file like objects Only 'rb' and 'wb' modes are supported. Concurrently reading and writing of the same stream is untested. When initialized from another file handle, do not use it unless this FileHandle is closed. Attributes ---------- name : str Name of the file. path : str Absolute path to file. size : int Size of file in bytes. is_file : bool If True, file has a filno and can be memory-mapped. All attributes are read-only. """ __slots__ = ( '_fh', '_file', '_mode', '_name', '_dir', '_lock', '_offset', '_size', '_close', 'is_file' ) def __init__(self, file, mode='rb', name=None, offset=None, size=None): """Initialize file handle from file name or another file handle. Parameters ---------- file : str, path-like, binary stream, or FileHandle File name or seekable binary stream, such as an open file or BytesIO. mode : str File open mode in case 'file' is a file name. Must be 'rb' or 'wb'. name : str Optional name of file in case 'file' is a binary stream. offset : int Optional start position of embedded file. By default, this is the current file position. size : int Optional size of embedded file. By default, this is the number of bytes from the 'offset' to the end of the file. """ self._fh = None self._file = file self._mode = mode self._name = name self._dir = '' self._offset = offset self._size = size self._close = True self.is_file = False self._lock = NullContext() self.open() def open(self): """Open or re-open file.""" if self._fh: return # file is open if isinstance(self._file, os.PathLike): self._file = os.fspath(self._file) if isinstance(self._file, str): # file name self._file = os.path.realpath(self._file) self._dir, self._name = os.path.split(self._file) self._fh = open(self._file, self._mode) self._close = True if self._offset is None: self._offset = 0 elif isinstance(self._file, FileHandle): # FileHandle self._fh = self._file._fh if self._offset is None: self._offset = 0 self._offset += self._file._offset self._close = False if not self._name: if self._offset: name, ext = os.path.splitext(self._file._name) self._name = f'{name}@{self._offset}{ext}' else: self._name = self._file._name if self._mode and self._mode != self._file._mode: raise ValueError('FileHandle has wrong mode') self._mode = self._file._mode self._dir = self._file._dir elif hasattr(self._file, 'seek'): # binary stream: open file, BytesIO try: self._file.tell() except Exception: raise ValueError('binary stream is not seekable') self._fh = self._file if self._offset is None: self._offset = self._file.tell() self._close = False if not self._name: try: self._dir, self._name = os.path.split(self._fh.name) except AttributeError: self._name = 'Unnamed binary stream' try: self._mode = self._fh.mode except AttributeError: pass else: raise ValueError('the first parameter must be a file name, ' 'seekable binary stream, or FileHandle') if self._offset: self._fh.seek(self._offset) if self._size is None: pos = self._fh.tell() self._fh.seek(self._offset, 2) self._size = self._fh.tell() self._fh.seek(pos) try: self._fh.fileno() self.is_file = True except Exception: self.is_file = False def close(self): """Close file.""" if self._close and self._fh: self._fh.close() self._fh = None def tell(self): """Return file's current position.""" return self._fh.tell() - self._offset def seek(self, offset, whence=0): """Set file's current position.""" if self._offset: if whence == 0: self._fh.seek(self._offset + offset, whence) return if whence == 2 and self._size > 0: self._fh.seek(self._offset + self._size + offset, 0) return self._fh.seek(offset, whence) def read(self, size=-1): """Read 'size' bytes from file, or until EOF is reached.""" if size < 0 and self._offset: size = self._size return self._fh.read(size) def readinto(self, b): """Read up to len(b) bytes into b, and return number of bytes read.""" return self._fh.readinto(b) def write(self, bytestring): """Write bytes to file.""" return self._fh.write(bytestring) def flush(self): """Flush write buffers if applicable.""" return self._fh.flush() def memmap_array(self, dtype, shape, offset=0, mode='r', order='C'): """Return numpy.memmap of data stored in file.""" if not self.is_file: raise ValueError('cannot memory-map file without fileno') return numpy.memmap(self._fh, dtype=dtype, mode=mode, offset=self._offset + offset, shape=shape, order=order) def read_array(self, dtype, count=-1, out=None): """Return numpy array from file in native byte order.""" fh = self._fh dtype = numpy.dtype(dtype) if count < 0: size = self._size if out is None else out.nbytes count = size // dtype.itemsize else: size = count * dtype.itemsize result = numpy.empty(count, dtype) if out is None else out if result.nbytes != size: raise ValueError('size mismatch') n = fh.readinto(result) if n != size: raise ValueError(f'failed to read {size} bytes') if not result.dtype.isnative: if not dtype.isnative: result.byteswap(True) result = result.newbyteorder() elif result.dtype.isnative != dtype.isnative: result.byteswap(True) if out is not None: if hasattr(out, 'flush'): out.flush() return result def read_record(self, dtype, shape=1, byteorder=None): """Return numpy record from file.""" rec = numpy.rec try: record = rec.fromfile(self._fh, dtype, shape, byteorder=byteorder) except Exception: dtype = numpy.dtype(dtype) if shape is None: shape = self._size // dtype.itemsize size = product(sequence(shape)) * dtype.itemsize # data = bytearray(size) # n = self._fh.readinto(data) # data = data[:n] data = self._fh.read(size) record = rec.fromstring(data, dtype, shape, byteorder=byteorder) return record[0] if shape == 1 else record def write_empty(self, size): """Append size bytes to file. Position must be at end of file.""" if size < 1: return self._fh.seek(size - 1, 1) self._fh.write(b'\x00') def write_array(self, data): """Write numpy array to binary file.""" try: data.tofile(self._fh) except Exception: # BytesIO self._fh.write(data.tobytes()) def read_segments(self, offsets, bytecounts, indices=None, sort=True, lock=None, buffersize=None, flat=True): """Return iterator over segments read from file and their indices. The purpose of this function is to * reduce small or random reads * reduce acquiring reentrant locks * synchronize seeks and reads * limit the size of segments read into memory at once (ThreadPoolExecutor.map is not collecting iterables lazily). Parameters ---------- offsets, bytecounts : sequence of int offsets and bytecounts of the segments to read from file. indices : sequence of int Indices of the segments in the image. Default: range(len(offsets)). sort : bool If True (default), segments are read from file in the order of their offsets. lock: A reentrant lock used to synchronize seeks and reads. buffersize : int Approximate number of bytes to read from file in one pass. Default: 64 MB. flat : bool If True (default), return an iterator over individual (segment, index) tuples. Else return an iterator over a list of (segment, index) tuples that were acquired in one pass. Returns ------- items : (bytes, int) or [(bytes, int)] Iterator over individual or lists of (segment, index) tuples. """ length = len(offsets) if length < 1: return if length == 1: index = 0 if indices is None else indices[0] if bytecounts[index] > 0 and offsets[index] > 0: if lock is None: lock = self._lock with lock: self.seek(offsets[index]) data = self._fh.read(bytecounts[index]) else: data = None yield (data, index) if flat else [(data, index)] return if lock is None: lock = self._lock if buffersize is None: buffersize = 2**26 # 64 MB if indices is None: segments = [(i, offsets[i], bytecounts[i]) for i in range(length)] else: segments = [(indices[i], offsets[i], bytecounts[i]) for i in range(length)] if sort: segments = sorted(segments, key=lambda x: x[1]) seek = self.seek read = self._fh.read i = 0 while i < length: result = [] size = 0 with lock: while size < buffersize and i < length: # TODO: consolidate reads? index, offset, bytecount = segments[i] if offset > 0 and bytecount > 0: seek(offset) result.append((read(bytecount), index)) # buffer = bytearray(bytecount) # n = fh.readinto(buffer) # data.append(buffer[:n]) size += bytecount else: result.append((None, index)) i += 1 if flat: yield from result else: yield result def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __getattr__(self, name): """Return attribute from underlying file object.""" if self._offset: warnings.warn( f'FileHandle: {name!r} not implemented for embedded files', UserWarning ) return getattr(self._fh, name) @property def name(self): return self._name @property def dirname(self): return self._dir @property def path(self): return os.path.join(self._dir, self._name) @property def size(self): return self._size @property def closed(self): return self._fh is None @property def lock(self): return self._lock @lock.setter def lock(self, value): self._lock = threading.RLock() if value else NullContext() class NullContext: """Null context manager. >>> with NullContext(): ... pass """ __slots = () def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): pass class OpenFileCache: """Keep files open.""" __slots__ = ('files', 'past', 'lock', 'size') def __init__(self, size, lock=None): """Initialize open file cache.""" self.past = [] # FIFO of opened files self.files = {} # refcounts of opened files self.lock = NullContext() if lock is None else lock self.size = int(size) def open(self, filehandle): """Re-open file if necessary.""" with self.lock: if filehandle in self.files: self.files[filehandle] += 1 elif filehandle.closed: filehandle.open() self.files[filehandle] = 1 self.past.append(filehandle) def close(self, filehandle): """Close openend file if no longer used.""" with self.lock: if filehandle in self.files: self.files[filehandle] -= 1 # trim the file cache index = 0 size = len(self.past) while size > self.size and index < size: filehandle = self.past[index] if self.files[filehandle] == 0: filehandle.close() del self.files[filehandle] del self.past[index] size -= 1 else: index += 1 def clear(self): """Close all opened files if not in use.""" with self.lock: for filehandle, refcount in list(self.files.items()): if refcount == 0: filehandle.close() del self.files[filehandle] del self.past[self.past.index(filehandle)] class Timer: """Stopwatch for timing execution speed.""" __slots__ = ('started', 'stopped', 'duration') clock = time.perf_counter def __init__(self, message=None, end=' '): """Initialize timer and print message.""" if message is not None: print(message, end=end, flush=True) self.duration = 0 self.started = self.stopped = Timer.clock() def start(self, message=None, end=' '): """Start timer and return current time.""" if message is not None: print(message, end=end, flush=True) self.duration = 0 self.started = self.stopped = Timer.clock() return self.started def stop(self, message=None, end=' '): """Return duration of timer till start.""" self.stopped = Timer.clock() if message is not None: print(message, end=end, flush=True) self.duration = self.stopped - self.started return self.duration def print(self, message=None, end=None): """Print duration from timer start till last stop or now.""" msg = str(self) if message is not None: print(message, end=' ') print(msg, end=end, flush=True) def __str__(self): """Return duration from timer start till last stop or now as string.""" if self.duration <= 0: # not stopped duration = Timer.clock() - self.started else: duration = self.duration s = str(datetime.timedelta(seconds=duration)) i = 0 while i < len(s) and s[i:i + 2] in '0:0010203040506070809': i += 1 if s[i:i + 1] == ':': i += 1 return f'{s[i:]} s' def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.print() class OmeXmlError(Exception): """Exception to indicate invalid OME-XML or unsupported cases.""" class OmeXml: """OME-TIFF XML.""" def __init__(self, **metadata): """Create a new instance. Creator : str (optional) Name of the creating application. Default 'tifffile.py'. UUID : str (optional) Unique identifier. """ if 'OME' in metadata: metadata = metadata['OME'] self.ifd = 0 self.images = [] self.annotations = [] self.elements = [] # TODO: parse other OME elements from metadata # Project # Dataset # Folder # Experiment # Plate # Screen # Experimenter # ExperimenterGroup # Instrument # StructuredAnnotations # ROI if 'UUID' in metadata: self.uuid = metadata['UUID'].split(':')[-1] else: from uuid import uuid1 # noqa: delayed import self.uuid = str(uuid1()) creator = OmeXml._attribute( metadata, 'Creator', default=f'tifffile.py {__version__}' ) schema = 'http://www.openmicroscopy.org/Schemas/OME/2016-06' self.xml = ( '{declaration}' f'' '{images}' '{annotations}' '{elements}' f'' ) def addimage(self, dtype, shape, storedshape, axes=None, **metadata): """Add image to OME-XML. The OME model can handle up to 9 dimensional images for selected axes orders. Refer to the OME-XML specification for details. Non-TZCYXS (modulo) dimensions must be after a TZC dimension or require an unused TZC dimension. dtype : numpy.dtype Data type of image array. shape : tuple Shape of image array. storedshape: tuple Normalized shape describing how the image array is stored in TIFF: (pages, separate_samples, depth, height, width, contig_samples). axes : str (optional) Axes labels for each dimension in shape. By default, axes will be matched to the shape in reverse order of TZC(S)YX(S) based on storedshape. The following axes codes are supported: 'S' sample, 'X' width, 'Y' height, 'C' channel, 'Z' depth, 'T' time, 'A' angle, 'P' phase, 'R' tile, 'H' lifetime, 'E' lambda, 'Q' other. metadata : misc (optional) Additional OME-XML attributes or elements to be stored. Image/Pixels: Name, AcquisitionDate, Description, PhysicalSizeX, PhysicalSizeXUnit, PhysicalSizeY, PhysicalSizeYUnit, PhysicalSizeZ, PhysicalSizeZUnit, TimeIncrement, TimeIncrementUnit. Per Plane: DeltaTUnit, ExposureTime, ExposureTimeUnit, PositionX, PositionXUnit, PositionY, PositionYUnit, PositionZ, PositionZUnit. Per Channel: Name, AcquisitionMode, Color, ContrastMethod, EmissionWavelength, EmissionWavelengthUnit, ExcitationWavelength, ExcitationWavelengthUnit, Fluor, IlluminationType, NDFilter, PinholeSize, PinholeSizeUnit, PockelCellSetting. """ index = len(self.images) # get Image and Pixels metadata metadata = metadata.get('OME', metadata) metadata = metadata.get('Image', metadata) if isinstance(metadata, (list, tuple)): # multiple images metadata = metadata[index] if 'Pixels' in metadata: # merge with Image if 'ID' in metadata['Pixels']: del metadata['Pixels']['ID'] metadata.update(metadata['Pixels']) del metadata['Pixels'] try: dtype = numpy.dtype(dtype).name dtype = { 'int8': 'int8', 'int16': 'int16', 'int32': 'int32', 'uint8': 'uint8', 'uint16': 'uint16', 'uint32': 'uint32', 'float32': 'float', 'float64': 'double', 'complex64': 'complex', 'complex128': 'double-complex', 'bool': 'bit', }[dtype] except KeyError: raise OmeXmlError(f'data type {dtype!r} not supported') if metadata.get('Type', dtype) != dtype: raise OmeXmlError( f'metadata Pixels Type {metadata["Type"]!r} ' f'does not match array dtype {dtype!r}' ) samples = 1 planecount, separate, depth, height, width, contig = storedshape if depth != 1: raise OmeXmlError('ImageDepth not supported') if not (separate == 1 or contig == 1): raise ValueError('invalid stored shape') shape = tuple(int(i) for i in shape) ndim = len(shape) if ndim < 1 or product(shape) <= 0: raise OmeXmlError('empty arrays not supported') if axes is None: # get axes from shape and stored shape if contig != 1 or shape[-3:] == (height, width, 1): axes = 'YXS' samples = contig elif separate != 1 or (ndim == 6 and shape[-3:] == (1, height, width)): axes = 'SYX' samples = separate else: axes = 'YX' if not len(axes) <= ndim <= (6 if 'S' in axes else 5): raise OmeXmlError(f'{ndim} dimensions not supported') axes = 'TZC'[(6 if 'S' in axes else 5) - ndim:] + axes assert len(axes) == len(shape) else: # validate axes against shape and stored shape axes = axes.upper() if len(axes) != len(shape): raise ValueError('axes do not match shape') if not (axes.endswith('YX') or axes.endswith('YXS')): raise OmeXmlError('dimensions must end with YX or YXS') unique = [] for ax in axes: if ax not in 'TZCYXSAPRHEQ': raise OmeXmlError(f'dimension {ax!r} not supported') if ax in unique: raise OmeXmlError(f'multiple {ax!r} dimensions') unique.append(ax) if ndim > (9 if 'S' in axes else 8): raise OmeXmlError('more than 8 dimensions not supported') if contig != 1: samples = contig if ndim < 3: raise ValueError('dimensions do not match stored shape') if axes[-1] != 'S': raise ValueError('axes do not match stored shape') if shape[-1] != contig or shape[-2] != width: raise ValueError('shape does not match stored shape') elif separate != 1: samples = separate if ndim < 3: raise ValueError('dimensions do not match stored shape') if axes[-3] != 'S': raise ValueError('axes do not match stored shape') if shape[-3] != separate or shape[-1] != height: raise ValueError('shape does not match stored shape') if ( shape[axes.index('X')] != width or shape[axes.index('Y')] != height ): raise ValueError('shape does not match stored shape') if 'S' in axes: hiaxes = axes[:min(axes.index('S'), axes.index('Y'))] else: hiaxes = axes[:axes.index('Y')] if any(ax in 'APRHEQ' for ax in hiaxes): # modulo axes modulo = {} dimorder = [] axestype = { 'A': 'angle', 'P': 'phase', 'R': 'tile', 'H': 'lifetime', 'E': 'lambda', 'Q': 'other', } for i, ax in enumerate(hiaxes): if ax in 'APRHEQ': x = hiaxes[i-1:i] if x and x in 'TZC': # use previous axis modulo[x] = axestype[ax], shape[i] else: # use next unused axis for x in 'TZC': if x not in dimorder and x not in modulo: modulo[x] = axestype[ax], shape[i] dimorder.append(x) break else: # TODO: support any order of axes, e.g. APRTZC raise OmeXmlError('more than 3 modulo dimensions') else: dimorder.append(ax) hiaxes = ''.join(dimorder) # TODO: use user-specified start, stop, step, or labels moduloalong = ''.join( f'' for ax, (axtype, size) in modulo.items() ) annotationref = f'' annotations = ( f'' '' '' f'{moduloalong}' '' '' '' ) self.annotations.append(annotations) else: modulo = {} annotationref = '' hiaxes = hiaxes[::-1] for dimorder in ( metadata.get('DimensionOrder', 'XYCZT'), 'XYCZT', 'XYZCT', 'XYZTC', 'XYCTZ', 'XYTCZ', 'XYTZC' ): if hiaxes in dimorder: break else: raise OmeXmlError(f'dimension order {axes!r} not supported') dimsizes = [] for ax in dimorder: if ax == 'S': continue if ax in axes: size = shape[axes.index(ax)] else: size = 1 if ax == 'C': sizec = size size *= samples if ax in modulo: size *= modulo[ax][1] dimsizes.append(size) sizes = ''.join( f' Size{ax}="{size}"' for ax, size in zip(dimorder, dimsizes) ) # verify DimensionOrder in metadata is compatible if 'DimensionOrder' in metadata: omedimorder = metadata['DimensionOrder'] omedimorder = ''.join( ax for ax in omedimorder if dimsizes[dimorder.index(ax)] > 1 ) if hiaxes not in omedimorder: raise OmeXmlError( f'metadata DimensionOrder does not match {axes!r}' ) # verify metadata Size values match shape for ax, size in zip(dimorder, dimsizes): if metadata.get(f'Size{ax}', size) != size: raise OmeXmlError( f'metadata Size{ax} does not match {shape!r}' ) dimsizes[dimorder.index('C')] //= samples if planecount != product(dimsizes[2:]): raise ValueError('shape does not match stored shape') planes = [] planeattributes = metadata.get('Plane', '') if planeattributes: cztorder = tuple(dimorder[2:].index(ax) for ax in 'CZT') for p in range(planecount): attributes = OmeXml._attributes( planeattributes, p, 'DeltaTUnit', 'ExposureTime', 'ExposureTimeUnit', 'PositionX', 'PositionXUnit', 'PositionY', 'PositionYUnit', 'PositionZ', 'PositionZUnit' ) unraveled = numpy.unravel_index(p, dimsizes[2:], order='F') c, z, t = (unraveled[i] for i in cztorder) planes.append( f'' ) # TODO: if possible, verify c, z, t match planeattributes planes = ''.join(planes) channels = [] for c in range(sizec): lightpath = '' # TODO: use LightPath elements from metadata # 'AnnotationRef', # 'DichroicRef', # 'EmissionFilterRef', # 'ExcitationFilterRef' attributes = OmeXml._attributes( metadata.get('Channel', ''), c, 'Name', 'AcquisitionMode', 'Color', 'ContrastMethod', 'EmissionWavelength', 'EmissionWavelengthUnit', 'ExcitationWavelength', 'ExcitationWavelengthUnit', 'Fluor', 'IlluminationType', 'NDFilter', 'PinholeSize', 'PinholeSizeUnit', 'PockelCellSetting' ) channels.append( f'' f'{lightpath}' '' ) channels = ''.join(channels) # TODO: support more Image elements elements = OmeXml._elements(metadata, 'AcquisitionDate', 'Description') name = OmeXml._attribute(metadata, 'Name', default=f'Image{index}') attributes = OmeXml._attributes( metadata, None, 'SignificantBits', 'PhysicalSizeX', 'PhysicalSizeXUnit', 'PhysicalSizeY', 'PhysicalSizeYUnit', 'PhysicalSizeZ', 'PhysicalSizeZUnit', 'TimeIncrement', 'TimeIncrementUnit', ) if separate > 1 or contig > 1: interleaved = 'false' if separate > 1 else 'true' interleaved = f' Interleaved="{interleaved}"' else: interleaved = '' self.images.append( f'' f'{elements}' f'' f'{channels}' f'' f'{planes}' f'' f'{annotationref}' f'' ) self.ifd += planecount def tostring(self, declaration=False): """Return OME-XML string.""" # TODO: support other top-level elements elements = ''.join(self.elements) images = ''.join(self.images) annotations = ''.join(self.annotations) if annotations: annotations = ( f'{annotations}' ) if declaration: declaration = '' else: declaration = '' xml = self.xml.format( declaration=declaration, images=images, annotations=annotations, elements=elements ) return xml def __str__(self): """Return OME-XML string.""" xml = self.tostring() try: from lxml import etree # noqa: delayed import parser = etree.XMLParser(remove_blank_text=True) xml = etree.fromstring(xml, parser) xml = etree.tostring(xml, encoding='utf-8', pretty_print=True, xml_declaration=True) return xml.decode() except Exception: return xml @staticmethod def _escape(value): """Return escaped string of value.""" if not isinstance(value, str): value = str(value) elif '&' in value or '>' in value or '<' in value: return value value = value.replace('&', '&') value = value.replace('>', '>') value = value.replace('<', '<') return value @staticmethod def _element(metadata, name, default=None): """Return XML formatted element if name in metadata.""" value = metadata.get(name, default) if value is None: return None return f'<{name}>{OmeXml._escape(value)}' @staticmethod def _elements(metadata, *names): """Return XML formatted elements.""" if not metadata: return '' elements = (OmeXml._element(metadata, name) for name in names) return ''.join(e for e in elements if e) @staticmethod def _attribute(metadata, name, index=None, default=None): """Return XML formatted attribute if name in metadata.""" value = metadata.get(name, default) if value is None: return None if index is not None: if isinstance(value, (list, tuple)): value = value[index] elif index > 0: raise TypeError( f'{type(value).__name__!r} is not a list or tuple' ) return f' {name}="{OmeXml._escape(value)}"' @staticmethod def _attributes(metadata, index_, *names): """Return XML formatted attributes.""" if not metadata: return '' if index_ is None: attributes = (OmeXml._attribute(metadata, name) for name in names) elif isinstance(metadata, (list, tuple)): metadata = metadata[index_] attributes = (OmeXml._attribute(metadata, name) for name in names) elif isinstance(metadata, dict): attributes = ( OmeXml._attribute(metadata, name, index_) for name in names ) return ''.join(a for a in attributes if a) @staticmethod def _reference(metadata, name): """Return XML formatted reference element.""" value = metadata.get(name, None) if value is None: return '' try: value = value['ID'] except KeyError: pass return f'<{name} ID="{OmeXml._escape(value)}"/>' @staticmethod def validate(omexml, omexsd=None, assert_=True, _schema=[]): """Return if OME-XML is valid according to XMLSchema. If assert_ is True, raise an AssertionError if validation fails. On first run, this function takes several seconds to download and parse the 2016-06 OME XMLSchema. """ from lxml import etree # noqa: delay import if not _schema: if omexsd is None: omexsd = os.path.join(os.path.dirname(__file__), 'ome.xsd') if os.path.exists(omexsd): with open(omexsd, 'rb') as fh: omexsd = fh.read() else: import urllib.request # noqa: delay import with urllib.request.urlopen( 'https://www.openmicroscopy.org/' 'Schemas/OME/2016-06/ome.xsd' ) as fh: omexsd = fh.read() if omexsd.startswith(b'', 1)[-1] try: _schema.append( etree.XMLSchema(etree.fromstring(omexsd.decode())) ) except Exception: # raise _schema.append(None) if _schema and _schema[0] is not None: if omexml.startswith('', 1)[-1] xml = etree.fromstring(omexml) if assert_: _schema[0].assert_(xml) return True return _schema[0].validate(xml) return None class LazyConst: """Class whose attributes are computed on first access from its methods.""" def __init__(self, cls): self._cls = cls self.__doc__ = getattr(cls, '__doc__') def __getattr__(self, name): func = getattr(self._cls, name) if not callable(func): return func value = func() setattr(self, name, value) return value @LazyConst class TIFF: """Namespace for module constants.""" def CLASSIC_LE(): class ClassicTiffLe: __slots__ = () version = 42 byteorder = '<' offsetsize = 4 offsetformat = '= 32768 (32781, 'ImageID'), (32931, 'WangTag1'), (32932, 'WangAnnotation'), (32933, 'WangTag3'), (32934, 'WangTag4'), (32953, 'ImageReferencePoints'), (32954, 'RegionXformTackPoint'), (32955, 'WarpQuadrilateral'), (32956, 'AffineTransformMat'), (32995, 'Matteing'), (32996, 'DataType'), # use SampleFormat (32997, 'ImageDepth'), (32998, 'TileDepth'), (33300, 'ImageFullWidth'), (33301, 'ImageFullLength'), (33302, 'TextureFormat'), (33303, 'TextureWrapModes'), (33304, 'FieldOfViewCotangent'), (33305, 'MatrixWorldToScreen'), (33306, 'MatrixWorldToCamera'), (33405, 'Model2'), (33421, 'CFARepeatPatternDim'), (33422, 'CFAPattern'), (33423, 'BatteryLevel'), (33424, 'KodakIFD'), (33434, 'ExposureTime'), (33437, 'FNumber'), (33432, 'Copyright'), (33445, 'MDFileTag'), (33446, 'MDScalePixel'), (33447, 'MDColorTable'), (33448, 'MDLabName'), (33449, 'MDSampleInfo'), (33450, 'MDPrepDate'), (33451, 'MDPrepTime'), (33452, 'MDFileUnits'), (33471, 'OlympusINI'), (33550, 'ModelPixelScaleTag'), (33560, 'OlympusSIS'), # see also 33471 and 34853 (33589, 'AdventScale'), (33590, 'AdventRevision'), (33628, 'UIC1tag'), # Metamorph Universal Imaging Corp STK (33629, 'UIC2tag'), (33630, 'UIC3tag'), (33631, 'UIC4tag'), (33723, 'IPTCNAA'), (33858, 'ExtendedTagsOffset'), # DEFF points IFD with private tags (33918, 'IntergraphPacketData'), # INGRPacketDataTag (33919, 'IntergraphFlagRegisters'), # INGRFlagRegisters (33920, 'IntergraphMatrixTag'), # IrasBTransformationMatrix (33921, 'INGRReserved'), (33922, 'ModelTiepointTag'), (33923, 'LeicaMagic'), (34016, 'Site'), # 34016..34032 ANSI IT8 TIFF/IT (34017, 'ColorSequence'), (34018, 'IT8Header'), (34019, 'RasterPadding'), (34020, 'BitsPerRunLength'), (34021, 'BitsPerExtendedRunLength'), (34022, 'ColorTable'), (34023, 'ImageColorIndicator'), (34024, 'BackgroundColorIndicator'), (34025, 'ImageColorValue'), (34026, 'BackgroundColorValue'), (34027, 'PixelIntensityRange'), (34028, 'TransparencyIndicator'), (34029, 'ColorCharacterization'), (34030, 'HCUsage'), (34031, 'TrapIndicator'), (34032, 'CMYKEquivalent'), (34118, 'CZ_SEM'), # Zeiss SEM (34152, 'AFCP_IPTC'), (34232, 'PixelMagicJBIGOptions'), # EXIF, also TI FrameCount (34263, 'JPLCartoIFD'), (34122, 'IPLAB'), # number of images (34264, 'ModelTransformationTag'), (34306, 'WB_GRGBLevels'), # Leaf MOS (34310, 'LeafData'), (34361, 'MM_Header'), (34362, 'MM_Stamp'), (34363, 'MM_Unknown'), (34377, 'ImageResources'), # Photoshop (34386, 'MM_UserBlock'), (34412, 'CZ_LSMINFO'), (34665, 'ExifTag'), (34675, 'InterColorProfile'), # ICCProfile (34680, 'FEI_SFEG'), # (34682, 'FEI_HELIOS'), # (34683, 'FEI_TITAN'), # (34687, 'FXExtensions'), (34688, 'MultiProfiles'), (34689, 'SharedData'), (34690, 'T88Options'), (34710, 'MarCCD'), # offset to MarCCD header (34732, 'ImageLayer'), (34735, 'GeoKeyDirectoryTag'), (34736, 'GeoDoubleParamsTag'), (34737, 'GeoAsciiParamsTag'), (34750, 'JBIGOptions'), (34821, 'PIXTIFF'), # ? Pixel Translations Inc (34850, 'ExposureProgram'), (34852, 'SpectralSensitivity'), (34853, 'GPSTag'), # GPSIFD also OlympusSIS2 (34853, 'OlympusSIS2'), (34855, 'ISOSpeedRatings'), (34856, 'OECF'), (34857, 'Interlace'), (34858, 'TimeZoneOffset'), (34859, 'SelfTimerMode'), (34864, 'SensitivityType'), (34865, 'StandardOutputSensitivity'), (34866, 'RecommendedExposureIndex'), (34867, 'ISOSpeed'), (34868, 'ISOSpeedLatitudeyyy'), (34869, 'ISOSpeedLatitudezzz'), (34908, 'HylaFAXFaxRecvParams'), (34909, 'HylaFAXFaxSubAddress'), (34910, 'HylaFAXFaxRecvTime'), (34911, 'FaxDcs'), (34929, 'FedexEDR'), (34954, 'LeafSubIFD'), (34959, 'Aphelion1'), (34960, 'Aphelion2'), (34961, 'AphelionInternal'), # ADCIS (36864, 'ExifVersion'), (36867, 'DateTimeOriginal'), (36868, 'DateTimeDigitized'), (36873, 'GooglePlusUploadCode'), (36880, 'OffsetTime'), (36881, 'OffsetTimeOriginal'), (36882, 'OffsetTimeDigitized'), # TODO, Pilatus/CHESS/TV6 36864..37120 conflicting with Exif tags (36864, 'TVX_Unknown'), (36865, 'TVX_NumExposure'), (36866, 'TVX_NumBackground'), (36867, 'TVX_ExposureTime'), (36868, 'TVX_BackgroundTime'), (36870, 'TVX_Unknown'), (36873, 'TVX_SubBpp'), (36874, 'TVX_SubWide'), (36875, 'TVX_SubHigh'), (36876, 'TVX_BlackLevel'), (36877, 'TVX_DarkCurrent'), (36878, 'TVX_ReadNoise'), (36879, 'TVX_DarkCurrentNoise'), (36880, 'TVX_BeamMonitor'), (37120, 'TVX_UserVariables'), # A/D values (37121, 'ComponentsConfiguration'), (37122, 'CompressedBitsPerPixel'), (37377, 'ShutterSpeedValue'), (37378, 'ApertureValue'), (37379, 'BrightnessValue'), (37380, 'ExposureBiasValue'), (37381, 'MaxApertureValue'), (37382, 'SubjectDistance'), (37383, 'MeteringMode'), (37384, 'LightSource'), (37385, 'Flash'), (37386, 'FocalLength'), (37387, 'FlashEnergy'), # 37387 (37388, 'SpatialFrequencyResponse'), # 37388 (37389, 'Noise'), (37390, 'FocalPlaneXResolution'), (37391, 'FocalPlaneYResolution'), (37392, 'FocalPlaneResolutionUnit'), (37393, 'ImageNumber'), (37394, 'SecurityClassification'), (37395, 'ImageHistory'), (37396, 'SubjectLocation'), (37397, 'ExposureIndex'), (37398, 'TIFFEPStandardID'), (37399, 'SensingMethod'), (37434, 'CIP3DataFile'), (37435, 'CIP3Sheet'), (37436, 'CIP3Side'), (37439, 'StoNits'), (37500, 'MakerNote'), (37510, 'UserComment'), (37520, 'SubsecTime'), (37521, 'SubsecTimeOriginal'), (37522, 'SubsecTimeDigitized'), (37679, 'MODIText'), # Microsoft Office Document Imaging (37680, 'MODIOLEPropertySetStorage'), (37681, 'MODIPositioning'), (37706, 'TVIPS'), # offset to TemData structure (37707, 'TVIPS1'), (37708, 'TVIPS2'), # same TemData structure as undefined (37724, 'ImageSourceData'), # Photoshop (37888, 'Temperature'), (37889, 'Humidity'), (37890, 'Pressure'), (37891, 'WaterDepth'), (37892, 'Acceleration'), (37893, 'CameraElevationAngle'), (40000, 'XPos'), # Janelia (40001, 'YPos'), (40002, 'ZPos'), (40001, 'MC_IpWinScal'), # Media Cybernetics (40001, 'RecipName'), # MS FAX (40002, 'RecipNumber'), (40003, 'SenderName'), (40004, 'Routing'), (40005, 'CallerId'), (40006, 'TSID'), (40007, 'CSID'), (40008, 'FaxTime'), (40100, 'MC_IdOld'), (40106, 'MC_Unknown'), (40965, 'InteroperabilityTag'), # InteropOffset (40091, 'XPTitle'), (40092, 'XPComment'), (40093, 'XPAuthor'), (40094, 'XPKeywords'), (40095, 'XPSubject'), (40960, 'FlashpixVersion'), (40961, 'ColorSpace'), (40962, 'PixelXDimension'), (40963, 'PixelYDimension'), (40964, 'RelatedSoundFile'), (40976, 'SamsungRawPointersOffset'), (40977, 'SamsungRawPointersLength'), (41217, 'SamsungRawByteOrder'), (41218, 'SamsungRawUnknown'), (41483, 'FlashEnergy'), (41484, 'SpatialFrequencyResponse'), (41485, 'Noise'), # 37389 (41486, 'FocalPlaneXResolution'), # 37390 (41487, 'FocalPlaneYResolution'), # 37391 (41488, 'FocalPlaneResolutionUnit'), # 37392 (41489, 'ImageNumber'), # 37393 (41490, 'SecurityClassification'), # 37394 (41491, 'ImageHistory'), # 37395 (41492, 'SubjectLocation'), # 37395 (41493, 'ExposureIndex '), # 37397 (41494, 'TIFF-EPStandardID'), (41495, 'SensingMethod'), # 37399 (41728, 'FileSource'), (41729, 'SceneType'), (41730, 'CFAPattern'), # 33422 (41985, 'CustomRendered'), (41986, 'ExposureMode'), (41987, 'WhiteBalance'), (41988, 'DigitalZoomRatio'), (41989, 'FocalLengthIn35mmFilm'), (41990, 'SceneCaptureType'), (41991, 'GainControl'), (41992, 'Contrast'), (41993, 'Saturation'), (41994, 'Sharpness'), (41995, 'DeviceSettingDescription'), (41996, 'SubjectDistanceRange'), (42016, 'ImageUniqueID'), (42032, 'CameraOwnerName'), (42033, 'BodySerialNumber'), (42034, 'LensSpecification'), (42035, 'LensMake'), (42036, 'LensModel'), (42037, 'LensSerialNumber'), (42112, 'GDAL_METADATA'), (42113, 'GDAL_NODATA'), (42240, 'Gamma'), (43314, 'NIHImageHeader'), (44992, 'ExpandSoftware'), (44993, 'ExpandLens'), (44994, 'ExpandFilm'), (44995, 'ExpandFilterLens'), (44996, 'ExpandScanner'), (44997, 'ExpandFlashLamp'), (48129, 'PixelFormat'), # HDP and WDP (48130, 'Transformation'), (48131, 'Uncompressed'), (48132, 'ImageType'), (48256, 'ImageWidth'), # 256 (48257, 'ImageHeight'), (48258, 'WidthResolution'), (48259, 'HeightResolution'), (48320, 'ImageOffset'), (48321, 'ImageByteCount'), (48322, 'AlphaOffset'), (48323, 'AlphaByteCount'), (48324, 'ImageDataDiscard'), (48325, 'AlphaDataDiscard'), (50003, 'KodakAPP3'), (50215, 'OceScanjobDescription'), (50216, 'OceApplicationSelector'), (50217, 'OceIdentificationNumber'), (50218, 'OceImageLogicCharacteristics'), (50255, 'Annotations'), (50288, 'MC_Id'), # Media Cybernetics (50289, 'MC_XYPosition'), (50290, 'MC_ZPosition'), (50291, 'MC_XYCalibration'), (50292, 'MC_LensCharacteristics'), (50293, 'MC_ChannelName'), (50294, 'MC_ExcitationWavelength'), (50295, 'MC_TimeStamp'), (50296, 'MC_FrameProperties'), (50341, 'PrintImageMatching'), (50495, 'PCO_RAW'), # TODO, PCO CamWare (50547, 'OriginalFileName'), (50560, 'USPTO_OriginalContentType'), # US Patent Office (50561, 'USPTO_RotationCode'), (50648, 'CR2Unknown1'), (50649, 'CR2Unknown2'), (50656, 'CR2CFAPattern'), (50674, 'LercParameters'), # ESGI 50674 .. 50677 (50706, 'DNGVersion'), # DNG 50706 .. 51112 (50707, 'DNGBackwardVersion'), (50708, 'UniqueCameraModel'), (50709, 'LocalizedCameraModel'), (50710, 'CFAPlaneColor'), (50711, 'CFALayout'), (50712, 'LinearizationTable'), (50713, 'BlackLevelRepeatDim'), (50714, 'BlackLevel'), (50715, 'BlackLevelDeltaH'), (50716, 'BlackLevelDeltaV'), (50717, 'WhiteLevel'), (50718, 'DefaultScale'), (50719, 'DefaultCropOrigin'), (50720, 'DefaultCropSize'), (50721, 'ColorMatrix1'), (50722, 'ColorMatrix2'), (50723, 'CameraCalibration1'), (50724, 'CameraCalibration2'), (50725, 'ReductionMatrix1'), (50726, 'ReductionMatrix2'), (50727, 'AnalogBalance'), (50728, 'AsShotNeutral'), (50729, 'AsShotWhiteXY'), (50730, 'BaselineExposure'), (50731, 'BaselineNoise'), (50732, 'BaselineSharpness'), (50733, 'BayerGreenSplit'), (50734, 'LinearResponseLimit'), (50735, 'CameraSerialNumber'), (50736, 'LensInfo'), (50737, 'ChromaBlurRadius'), (50738, 'AntiAliasStrength'), (50739, 'ShadowScale'), (50740, 'DNGPrivateData'), (50741, 'MakerNoteSafety'), (50752, 'RawImageSegmentation'), (50778, 'CalibrationIlluminant1'), (50779, 'CalibrationIlluminant2'), (50780, 'BestQualityScale'), (50781, 'RawDataUniqueID'), (50784, 'AliasLayerMetadata'), (50827, 'OriginalRawFileName'), (50828, 'OriginalRawFileData'), (50829, 'ActiveArea'), (50830, 'MaskedAreas'), (50831, 'AsShotICCProfile'), (50832, 'AsShotPreProfileMatrix'), (50833, 'CurrentICCProfile'), (50834, 'CurrentPreProfileMatrix'), (50838, 'IJMetadataByteCounts'), (50839, 'IJMetadata'), (50844, 'RPCCoefficientTag'), (50879, 'ColorimetricReference'), (50885, 'SRawType'), (50898, 'PanasonicTitle'), (50899, 'PanasonicTitle2'), (50908, 'RSID'), # DGIWG (50909, 'GEO_METADATA'), # DGIWG XML (50931, 'CameraCalibrationSignature'), (50932, 'ProfileCalibrationSignature'), (50933, 'ProfileIFD'), (50934, 'AsShotProfileName'), (50935, 'NoiseReductionApplied'), (50936, 'ProfileName'), (50937, 'ProfileHueSatMapDims'), (50938, 'ProfileHueSatMapData1'), (50939, 'ProfileHueSatMapData2'), (50940, 'ProfileToneCurve'), (50941, 'ProfileEmbedPolicy'), (50942, 'ProfileCopyright'), (50964, 'ForwardMatrix1'), (50965, 'ForwardMatrix2'), (50966, 'PreviewApplicationName'), (50967, 'PreviewApplicationVersion'), (50968, 'PreviewSettingsName'), (50969, 'PreviewSettingsDigest'), (50970, 'PreviewColorSpace'), (50971, 'PreviewDateTime'), (50972, 'RawImageDigest'), (50973, 'OriginalRawFileDigest'), (50974, 'SubTileBlockSize'), (50975, 'RowInterleaveFactor'), (50981, 'ProfileLookTableDims'), (50982, 'ProfileLookTableData'), (51008, 'OpcodeList1'), (51009, 'OpcodeList2'), (51022, 'OpcodeList3'), (51023, 'FibicsXML'), # (51041, 'NoiseProfile'), (51043, 'TimeCodes'), (51044, 'FrameRate'), (51058, 'TStop'), (51081, 'ReelName'), (51089, 'OriginalDefaultFinalSize'), (51090, 'OriginalBestQualitySize'), (51091, 'OriginalDefaultCropSize'), (51105, 'CameraLabel'), (51107, 'ProfileHueSatMapEncoding'), (51108, 'ProfileLookTableEncoding'), (51109, 'BaselineExposureOffset'), (51110, 'DefaultBlackRender'), (51111, 'NewRawImageDigest'), (51112, 'RawToPreviewGain'), (51125, 'DefaultUserCrop'), (51123, 'MicroManagerMetadata'), (51159, 'ZIFmetadata'), # Objective Pathology Services (51160, 'ZIFannotations'), # Objective Pathology Services (59932, 'Padding'), (59933, 'OffsetSchema'), # Reusable Tags 65000-65535 # (65000, Dimap_Document XML # (65000-65112, Photoshop Camera RAW EXIF tags # (65000, 'OwnerName'), # (65001, 'SerialNumber'), # (65002, 'Lens'), # (65024, 'KDC_IFD'), # (65100, 'RawFile'), # (65101, 'Converter'), # (65102, 'WhiteBalance'), # (65105, 'Exposure'), # (65106, 'Shadows'), # (65107, 'Brightness'), # (65108, 'Contrast'), # (65109, 'Saturation'), # (65110, 'Sharpness'), # (65111, 'Smoothness'), # (65112, 'MoireFilter'), (65200, 'FlexXML'), )) def TAG_READERS(): # map tag codes to import functions return { 320: read_colormap, # 700: read_bytes, # read_utf8, # 34377: read_bytes, 33723: read_bytes, # 34675: read_bytes, 33628: read_uic1tag, # Universal Imaging Corp STK 33629: read_uic2tag, 33630: read_uic3tag, 33631: read_uic4tag, 34118: read_cz_sem, # Carl Zeiss SEM 34361: read_mm_header, # Olympus FluoView 34362: read_mm_stamp, 34363: read_numpy, # MM_Unknown 34386: read_numpy, # MM_UserBlock 34412: read_cz_lsminfo, # Carl Zeiss LSM 34680: read_fei_metadata, # S-FEG 34682: read_fei_metadata, # Helios NanoLab 37706: read_tvips_header, # TVIPS EMMENU 37724: read_bytes, # ImageSourceData 33923: read_bytes, # read_leica_magic 43314: read_nih_image_header, # 40001: read_bytes, 40100: read_bytes, 50288: read_bytes, 50296: read_bytes, 50839: read_bytes, 51123: read_json, 33471: read_sis_ini, 33560: read_sis, 34665: read_exif_ifd, 34853: read_gps_ifd, # conflicts with OlympusSIS 40965: read_interoperability_ifd, 65426: read_numpy, # NDPI McuStarts 65432: read_numpy, # NDPI McuStartsHighBytes 65439: read_numpy, # NDPI unknown 65459: read_bytes, # NDPI bytes, not string } def TAG_TUPLE(): # tags whose values must be stored as tuples return frozenset((273, 279, 324, 325, 330, 338, 530, 531, 34736)) def TAG_ATTRIBUTES(): # map tag codes to TiffPage attribute names return { 254: 'subfiletype', 256: 'imagewidth', 257: 'imagelength', 258: 'bitspersample', 259: 'compression', 262: 'photometric', 266: 'fillorder', 270: 'description', 277: 'samplesperpixel', 278: 'rowsperstrip', 284: 'planarconfig', 305: 'software', 320: 'colormap', 317: 'predictor', 322: 'tilewidth', 323: 'tilelength', 330: 'subifds', 338: 'extrasamples', 339: 'sampleformat', 347: 'jpegtables', 32997: 'imagedepth', 32998: 'tiledepth', } def TAG_ENUM(): # map tag codes to Enums return { 254: TIFF.FILETYPE, 255: TIFF.OFILETYPE, 259: TIFF.COMPRESSION, 262: TIFF.PHOTOMETRIC, 263: TIFF.THRESHHOLD, 266: TIFF.FILLORDER, 274: TIFF.ORIENTATION, 284: TIFF.PLANARCONFIG, 290: TIFF.GRAYRESPONSEUNIT, # 292: TIFF.GROUP3OPT, # 293: TIFF.GROUP4OPT, 296: TIFF.RESUNIT, 300: TIFF.COLORRESPONSEUNIT, 317: TIFF.PREDICTOR, 338: TIFF.EXTRASAMPLE, 339: TIFF.SAMPLEFORMAT, # 512: TIFF.JPEGPROC, # 531: TIFF.YCBCRPOSITION, } def FILETYPE(): class FILETYPE(enum.IntFlag): UNDEFINED = 0 REDUCEDIMAGE = 1 PAGE = 2 MASK = 4 UNKNOWN = 8 # found in AperioSVS return FILETYPE def OFILETYPE(): class OFILETYPE(enum.IntEnum): UNDEFINED = 0 IMAGE = 1 REDUCEDIMAGE = 2 PAGE = 3 return OFILETYPE def COMPRESSION(): class COMPRESSION(enum.IntEnum): NONE = 1 # Uncompressed CCITTRLE = 2 # CCITT 1D CCITT_T4 = 3 # 'T4/Group 3 Fax', CCITT_T6 = 4 # 'T6/Group 4 Fax', LZW = 5 OJPEG = 6 # old-style JPEG JPEG = 7 ADOBE_DEFLATE = 8 JBIG_BW = 9 JBIG_COLOR = 10 JPEG_99 = 99 KODAK_262 = 262 NEXT = 32766 SONY_ARW = 32767 PACKED_RAW = 32769 SAMSUNG_SRW = 32770 CCIRLEW = 32771 SAMSUNG_SRW2 = 32772 PACKBITS = 32773 THUNDERSCAN = 32809 IT8CTPAD = 32895 IT8LW = 32896 IT8MP = 32897 IT8BL = 32898 PIXARFILM = 32908 PIXARLOG = 32909 DEFLATE = 32946 DCS = 32947 APERIO_JP2000_YCBC = 33003 # Leica Aperio APERIO_JP2000_RGB = 33005 # Leica Aperio JBIG = 34661 SGILOG = 34676 SGILOG24 = 34677 JPEG2000 = 34712 NIKON_NEF = 34713 JBIG2 = 34715 MDI_BINARY = 34718 # Microsoft Document Imaging MDI_PROGRESSIVE = 34719 # Microsoft Document Imaging MDI_VECTOR = 34720 # Microsoft Document Imaging LERC = 34887 # ESRI Lerc JPEG_LOSSY = 34892 LZMA = 34925 ZSTD_DEPRECATED = 34926 WEBP_DEPRECATED = 34927 PNG = 34933 # Objective Pathology Services JPEGXR = 34934 # Objective Pathology Services ZSTD = 50000 WEBP = 50001 PIXTIFF = 50013 KODAK_DCR = 65000 PENTAX_PEF = 65535 def __bool__(self): return self != 1 return COMPRESSION def PHOTOMETRIC(): class PHOTOMETRIC(enum.IntEnum): MINISWHITE = 0 MINISBLACK = 1 RGB = 2 PALETTE = 3 MASK = 4 SEPARATED = 5 # CMYK YCBCR = 6 CIELAB = 8 ICCLAB = 9 ITULAB = 10 CFA = 32803 # Color Filter Array LOGL = 32844 LOGLUV = 32845 LINEAR_RAW = 34892 return PHOTOMETRIC def THRESHHOLD(): class THRESHHOLD(enum.IntEnum): BILEVEL = 1 HALFTONE = 2 ERRORDIFFUSE = 3 return THRESHHOLD def FILLORDER(): class FILLORDER(enum.IntEnum): MSB2LSB = 1 LSB2MSB = 2 return FILLORDER def ORIENTATION(): class ORIENTATION(enum.IntEnum): TOPLEFT = 1 TOPRIGHT = 2 BOTRIGHT = 3 BOTLEFT = 4 LEFTTOP = 5 RIGHTTOP = 6 RIGHTBOT = 7 LEFTBOT = 8 return ORIENTATION def PLANARCONFIG(): class PLANARCONFIG(enum.IntEnum): CONTIG = 1 SEPARATE = 2 return PLANARCONFIG def GRAYRESPONSEUNIT(): class GRAYRESPONSEUNIT(enum.IntEnum): _10S = 1 _100S = 2 _1000S = 3 _10000S = 4 _100000S = 5 return GRAYRESPONSEUNIT def GROUP4OPT(): class GROUP4OPT(enum.IntEnum): UNCOMPRESSED = 2 return GROUP4OPT def RESUNIT(): class RESUNIT(enum.IntEnum): NONE = 1 INCH = 2 CENTIMETER = 3 def __bool__(self): return self != 1 return RESUNIT def COLORRESPONSEUNIT(): class COLORRESPONSEUNIT(enum.IntEnum): _10S = 1 _100S = 2 _1000S = 3 _10000S = 4 _100000S = 5 return COLORRESPONSEUNIT def PREDICTOR(): class PREDICTOR(enum.IntEnum): NONE = 1 HORIZONTAL = 2 FLOATINGPOINT = 3 HORIZONTALX2 = 34892 # DNG HORIZONTALX4 = 34893 FLOATINGPOINTX2 = 34894 FLOATINGPOINTX4 = 34895 def __bool__(self): return self != 1 return PREDICTOR def EXTRASAMPLE(): class EXTRASAMPLE(enum.IntEnum): UNSPECIFIED = 0 ASSOCALPHA = 1 UNASSALPHA = 2 return EXTRASAMPLE def SAMPLEFORMAT(): class SAMPLEFORMAT(enum.IntEnum): UINT = 1 INT = 2 IEEEFP = 3 VOID = 4 COMPLEXINT = 5 COMPLEXIEEEFP = 6 return SAMPLEFORMAT def DATATYPES(): class DATATYPES(enum.IntEnum): NOTYPE = 0 BYTE = 1 ASCII = 2 SHORT = 3 LONG = 4 RATIONAL = 5 SBYTE = 6 UNDEFINED = 7 SSHORT = 8 SLONG = 9 SRATIONAL = 10 FLOAT = 11 DOUBLE = 12 IFD = 13 UNICODE = 14 COMPLEX = 15 LONG8 = 16 SLONG8 = 17 IFD8 = 18 return DATATYPES def DATA_FORMATS(): # map TIFF DATATYPES to Python struct formats return { 1: '1B', # BYTE 8-bit unsigned integer. 2: '1s', # ASCII 8-bit byte that contains a 7-bit ASCII code; # the last byte must be NULL (binary zero). 3: '1H', # SHORT 16-bit (2-byte) unsigned integer 4: '1I', # LONG 32-bit (4-byte) unsigned integer. 5: '2I', # RATIONAL Two LONGs: the first represents the numerator # of a fraction; the second, the denominator. 6: '1b', # SBYTE An 8-bit signed (twos-complement) integer. 7: '1B', # UNDEFINED An 8-bit byte that may contain anything, # depending on the definition of the field. 8: '1h', # SSHORT A 16-bit (2-byte) signed (twos-complement) # integer. 9: '1i', # SLONG A 32-bit (4-byte) signed (twos-complement) # integer. 10: '2i', # SRATIONAL Two SLONGs: the first represents the # numerator of a fraction, the second the denominator. 11: '1f', # FLOAT Single precision (4-byte) IEEE format. 12: '1d', # DOUBLE Double precision (8-byte) IEEE format. 13: '1I', # IFD unsigned 4 byte IFD offset. # 14: '', # UNICODE # 15: '', # COMPLEX 16: '1Q', # LONG8 unsigned 8 byte integer (BigTiff) 17: '1q', # SLONG8 signed 8 byte integer (BigTiff) 18: '1Q', # IFD8 unsigned 8 byte IFD offset (BigTiff) } def DATA_DTYPES(): # map numpy dtypes to TIFF DATATYPES return { 'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6, 'h': 8, 'i': 9, '2i': 10, 'f': 11, 'd': 12, 'Q': 16, 'q': 17, } def SAMPLE_DTYPES(): # map SampleFormat and BitsPerSample to numpy dtype return { # UINT (1, 1): '?', # bitmap (1, 2): 'B', (1, 3): 'B', (1, 4): 'B', (1, 5): 'B', (1, 6): 'B', (1, 7): 'B', (1, 8): 'B', (1, 9): 'H', (1, 10): 'H', (1, 11): 'H', (1, 12): 'H', (1, 13): 'H', (1, 14): 'H', (1, 15): 'H', (1, 16): 'H', (1, 17): 'I', (1, 18): 'I', (1, 19): 'I', (1, 20): 'I', (1, 21): 'I', (1, 22): 'I', (1, 23): 'I', (1, 24): 'I', (1, 25): 'I', (1, 26): 'I', (1, 27): 'I', (1, 28): 'I', (1, 29): 'I', (1, 30): 'I', (1, 31): 'I', (1, 32): 'I', (1, 64): 'Q', # VOID : treat as UINT (4, 1): '?', # bitmap (4, 2): 'B', (4, 3): 'B', (4, 4): 'B', (4, 5): 'B', (4, 6): 'B', (4, 7): 'B', (4, 8): 'B', (4, 9): 'H', (4, 10): 'H', (4, 11): 'H', (4, 12): 'H', (4, 13): 'H', (4, 14): 'H', (4, 15): 'H', (4, 16): 'H', (4, 17): 'I', (4, 18): 'I', (4, 19): 'I', (4, 20): 'I', (4, 21): 'I', (4, 22): 'I', (4, 23): 'I', (4, 24): 'I', (4, 25): 'I', (4, 26): 'I', (4, 27): 'I', (4, 28): 'I', (4, 29): 'I', (4, 30): 'I', (4, 31): 'I', (4, 32): 'I', (4, 64): 'Q', # INT (2, 8): 'b', (2, 16): 'h', (2, 32): 'i', (2, 64): 'q', # IEEEFP : 24 bit not supported by numpy (3, 16): 'e', # (3, 24): '', # (3, 32): 'f', (3, 64): 'd', # COMPLEXIEEEFP (6, 64): 'F', (6, 128): 'D', # RGB565 (1, (5, 6, 5)): 'B', # COMPLEXINT : not supported by numpy } def PREDICTORS(): # map PREDICTOR to predictor encode functions class PREDICTORS: def __init__(self): self._codecs = {None: identityfunc, 1: identityfunc} if imagecodecs is None: self._codecs[2] = delta_encode def __getitem__(self, key): if key in self._codecs: return self._codecs[key] try: if key == 2: codec = imagecodecs.delta_encode elif key == 3: codec = imagecodecs.floatpred_encode else: raise KeyError(f'{key} is not a valid PREDICTOR') except AttributeError: raise KeyError( f'{TIFF.PREDICTOR(key)!r}' " requires the 'imagecodecs' package" ) self._codecs[key] = codec return codec return PREDICTORS() def UNPREDICTORS(): # map PREDICTOR to predictor decode functions class UNPREDICTORS: def __init__(self): self._codecs = {None: identityfunc, 1: identityfunc} if imagecodecs is None: self._codecs[2] = delta_decode def __getitem__(self, key): if key in self._codecs: return self._codecs[key] try: if key == 2: codec = imagecodecs.delta_decode elif key == 3: codec = imagecodecs.floatpred_decode else: raise KeyError(f'{key} is not a valid PREDICTOR') except AttributeError: raise KeyError( f'{TIFF.PREDICTOR(key)!r}' " requires the 'imagecodecs' package" ) self._codecs[key] = codec return codec return UNPREDICTORS() def COMPESSORS(): # map COMPRESSION to compress functions class COMPESSORS: def __init__(self): self._codecs = {None: identityfunc, 1: identityfunc} if imagecodecs is None: self._codecs[8] = zlib_encode self._codecs[32946] = zlib_encode self._codecs[34925] = lzma_encode def __getitem__(self, key): if key in self._codecs: return self._codecs[key] try: if key == 5: codec = imagecodecs.lzw_encode elif key == 7: codec = imagecodecs.jpeg_encode elif key == 8 or key == 32946: codec = imagecodecs.zlib_encode elif key == 32773: codec = imagecodecs.packbits_encode elif key == 33003 or key == 33005 or key == 34712: codec = imagecodecs.jpeg2k_encode elif key == 34887: codec = imagecodecs.lerc_encode elif key == 34925: codec = imagecodecs.lzma_encode elif key == 34933: codec = imagecodecs.png_encode elif key == 34934: codec = imagecodecs.jpegxr_encode elif key == 50000: codec = imagecodecs.zstd_encode elif key == 50001: codec = imagecodecs.webp_encode else: try: msg = f'{TIFF.COMPRESSION(key)!r} not supported' except ValueError: msg = f'{key} is not a valid COMPRESSION' raise KeyError(msg) except AttributeError: raise KeyError( f'{TIFF.COMPRESSION(key)!r} ' "requires the 'imagecodecs' package" ) self._codecs[key] = codec return codec return COMPESSORS() def DECOMPESSORS(): # map COMPRESSION to decompress functions class DECOMPESSORS: def __init__(self): self._codecs = {None: identityfunc, 1: identityfunc} if imagecodecs is None: self._codecs[8] = zlib_decode self._codecs[32773] = packbits_decode self._codecs[32946] = zlib_decode self._codecs[34925] = lzma_decode def __getitem__(self, key): if key in self._codecs: return self._codecs[key] try: if key == 5: codec = imagecodecs.lzw_decode elif key == 6 or key == 7: codec = imagecodecs.jpeg_decode elif key == 8 or key == 32946: codec = imagecodecs.zlib_decode elif key == 32773: codec = imagecodecs.packbits_decode # elif key == 34892: # codec = imagecodecs.jpeg_decode # DNG lossy elif key == 33003 or key == 33005 or key == 34712: codec = imagecodecs.jpeg2k_decode elif key == 34887: codec = imagecodecs.lerc_decode elif key == 34925: codec = imagecodecs.lzma_decode elif key == 34933: codec = imagecodecs.png_decode elif key == 34934: codec = imagecodecs.jpegxr_decode elif key == 50000 or key == 34926: # 34926 deprecated codec = imagecodecs.zstd_decode elif key == 50001 or key == 34927: # 34927 deprecated codec = imagecodecs.webp_decode else: try: msg = f'{TIFF.COMPRESSION(key)!r} not supported' except ValueError: msg = f'{key} is not a valid COMPRESSION' raise KeyError(msg) except AttributeError: raise KeyError( f'{TIFF.COMPRESSION(key)!r} ' "requires the 'imagecodecs' package" ) self._codecs[key] = codec return codec def __contains__(self, key): try: self[key] except KeyError: return False return True return DECOMPESSORS() def FRAME_ATTRS(): # attributes that a TiffFrame shares with its keyframe return { 'shape', 'ndim', 'size', 'dtype', 'axes', 'is_final', 'decode', } def FILE_FLAGS(): # TiffFile and TiffPage 'is_\*' attributes exclude = { 'reduced', 'mask', 'final', 'memmappable', 'contiguous', 'tiled', 'subsampled', } return { a[3:] for a in dir(TiffPage) if a[:3] == 'is_' and a[3:] not in exclude } def FILE_EXTENSIONS(): # TIFF file extensions return ( 'tif', 'tiff', 'ome.tif', 'lsm', 'stk', 'qpi', 'pcoraw', 'qptiff', 'gel', 'seq', 'svs', 'scn', 'zif', 'ndpi', 'bif', 'tf8', 'tf2', 'btf', ) def FILEOPEN_FILTER(): # string for use in Windows File Open box return [ (f'{ext.upper()} files', f'*.{ext}') for ext in TIFF.FILE_EXTENSIONS ] + [('allfiles', '*')] def AXES_LABELS(): # TODO: is there a standard for character axes labels? axes = { 'X': 'width', 'Y': 'height', 'Z': 'depth', 'S': 'sample', # rgb(a) 'I': 'series', # general sequence, plane, page, IFD 'T': 'time', 'C': 'channel', # color, emission wavelength 'A': 'angle', 'P': 'phase', # formerly F # P is Position in LSM! 'R': 'tile', # region, point, mosaic 'H': 'lifetime', # histogram 'E': 'lambda', # excitation wavelength 'L': 'exposure', # lux 'V': 'event', 'Q': 'other', 'M': 'mosaic', # LSM 6 } axes.update({v: k for k, v in axes.items()}) return axes def NDPI_TAGS(): # 65420 - 65458 Private Hamamatsu NDPI tags # TODO: obtain specification tags = {code: str(code) for code in range(65420, 65459)} tags.update({ 65420: 'FileFormat', 65421: 'Magnification', # SourceLens 65422: 'XOffsetFromSlideCenter', 65423: 'YOffsetFromSlideCenter', 65424: 'ZOffsetFromSlideCenter', # FocalPlane 65426: 'McuStarts', 65427: 'SlideLabel', 65428: 'AuthCode', # ? 65432: 'McuStartsHighBytes', 65434: 'Fluorescence', 65442: 'ScannerSerialNumber', 65447: 'BlankLines', 65449: 'Comments', # PropertyMap 65434: 'Fluorescence', }) return tags def EXIF_TAGS(): # 65000 - 65112 Photoshop Camera RAW EXIF tags tags = { 65000: 'OwnerName', 65001: 'SerialNumber', 65002: 'Lens', 65100: 'RawFile', 65101: 'Converter', 65102: 'WhiteBalance', 65105: 'Exposure', 65106: 'Shadows', 65107: 'Brightness', 65108: 'Contrast', 65109: 'Saturation', 65110: 'Sharpness', 65111: 'Smoothness', 65112: 'MoireFilter', } tags.update(reversed(TIFF.TAGS.items())) # TODO: rework this return tags def GPS_TAGS(): return { 0: 'GPSVersionID', 1: 'GPSLatitudeRef', 2: 'GPSLatitude', 3: 'GPSLongitudeRef', 4: 'GPSLongitude', 5: 'GPSAltitudeRef', 6: 'GPSAltitude', 7: 'GPSTimeStamp', 8: 'GPSSatellites', 9: 'GPSStatus', 10: 'GPSMeasureMode', 11: 'GPSDOP', 12: 'GPSSpeedRef', 13: 'GPSSpeed', 14: 'GPSTrackRef', 15: 'GPSTrack', 16: 'GPSImgDirectionRef', 17: 'GPSImgDirection', 18: 'GPSMapDatum', 19: 'GPSDestLatitudeRef', 20: 'GPSDestLatitude', 21: 'GPSDestLongitudeRef', 22: 'GPSDestLongitude', 23: 'GPSDestBearingRef', 24: 'GPSDestBearing', 25: 'GPSDestDistanceRef', 26: 'GPSDestDistance', 27: 'GPSProcessingMethod', 28: 'GPSAreaInformation', 29: 'GPSDateStamp', 30: 'GPSDifferential', 31: 'GPSHPositioningError', } def IOP_TAGS(): return { 1: 'InteroperabilityIndex', 2: 'InteroperabilityVersion', 4096: 'RelatedImageFileFormat', 4097: 'RelatedImageWidth', 4098: 'RelatedImageLength', } def GEO_KEYS(): return { 1024: 'GTModelTypeGeoKey', 1025: 'GTRasterTypeGeoKey', 1026: 'GTCitationGeoKey', 2048: 'GeographicTypeGeoKey', 2049: 'GeogCitationGeoKey', 2050: 'GeogGeodeticDatumGeoKey', 2051: 'GeogPrimeMeridianGeoKey', 2052: 'GeogLinearUnitsGeoKey', 2053: 'GeogLinearUnitSizeGeoKey', 2054: 'GeogAngularUnitsGeoKey', 2055: 'GeogAngularUnitsSizeGeoKey', 2056: 'GeogEllipsoidGeoKey', 2057: 'GeogSemiMajorAxisGeoKey', 2058: 'GeogSemiMinorAxisGeoKey', 2059: 'GeogInvFlatteningGeoKey', 2060: 'GeogAzimuthUnitsGeoKey', 2061: 'GeogPrimeMeridianLongGeoKey', 2062: 'GeogTOWGS84GeoKey', 3059: 'ProjLinearUnitsInterpCorrectGeoKey', # GDAL 3072: 'ProjectedCSTypeGeoKey', 3073: 'PCSCitationGeoKey', 3074: 'ProjectionGeoKey', 3075: 'ProjCoordTransGeoKey', 3076: 'ProjLinearUnitsGeoKey', 3077: 'ProjLinearUnitSizeGeoKey', 3078: 'ProjStdParallel1GeoKey', 3079: 'ProjStdParallel2GeoKey', 3080: 'ProjNatOriginLongGeoKey', 3081: 'ProjNatOriginLatGeoKey', 3082: 'ProjFalseEastingGeoKey', 3083: 'ProjFalseNorthingGeoKey', 3084: 'ProjFalseOriginLongGeoKey', 3085: 'ProjFalseOriginLatGeoKey', 3086: 'ProjFalseOriginEastingGeoKey', 3087: 'ProjFalseOriginNorthingGeoKey', 3088: 'ProjCenterLongGeoKey', 3089: 'ProjCenterLatGeoKey', 3090: 'ProjCenterEastingGeoKey', 3091: 'ProjFalseOriginNorthingGeoKey', 3092: 'ProjScaleAtNatOriginGeoKey', 3093: 'ProjScaleAtCenterGeoKey', 3094: 'ProjAzimuthAngleGeoKey', 3095: 'ProjStraightVertPoleLongGeoKey', 3096: 'ProjRectifiedGridAngleGeoKey', 4096: 'VerticalCSTypeGeoKey', 4097: 'VerticalCitationGeoKey', 4098: 'VerticalDatumGeoKey', 4099: 'VerticalUnitsGeoKey', } def GEO_CODES(): try: from .tifffile_geodb import GEO_CODES # delayed import except ImportError: try: from tifffile_geodb import GEO_CODES # delayed import except ImportError: GEO_CODES = {} return GEO_CODES def CZ_LSMINFO(): return [ ('MagicNumber', 'u4'), ('StructureSize', 'i4'), ('DimensionX', 'i4'), ('DimensionY', 'i4'), ('DimensionZ', 'i4'), ('DimensionChannels', 'i4'), ('DimensionTime', 'i4'), ('DataType', 'i4'), # DATATYPES ('ThumbnailX', 'i4'), ('ThumbnailY', 'i4'), ('VoxelSizeX', 'f8'), ('VoxelSizeY', 'f8'), ('VoxelSizeZ', 'f8'), ('OriginX', 'f8'), ('OriginY', 'f8'), ('OriginZ', 'f8'), ('ScanType', 'u2'), ('SpectralScan', 'u2'), ('TypeOfData', 'u4'), # TYPEOFDATA ('OffsetVectorOverlay', 'u4'), ('OffsetInputLut', 'u4'), ('OffsetOutputLut', 'u4'), ('OffsetChannelColors', 'u4'), ('TimeIntervall', 'f8'), ('OffsetChannelDataTypes', 'u4'), ('OffsetScanInformation', 'u4'), # SCANINFO ('OffsetKsData', 'u4'), ('OffsetTimeStamps', 'u4'), ('OffsetEventList', 'u4'), ('OffsetRoi', 'u4'), ('OffsetBleachRoi', 'u4'), ('OffsetNextRecording', 'u4'), # LSM 2.0 ends here ('DisplayAspectX', 'f8'), ('DisplayAspectY', 'f8'), ('DisplayAspectZ', 'f8'), ('DisplayAspectTime', 'f8'), ('OffsetMeanOfRoisOverlay', 'u4'), ('OffsetTopoIsolineOverlay', 'u4'), ('OffsetTopoProfileOverlay', 'u4'), ('OffsetLinescanOverlay', 'u4'), ('ToolbarFlags', 'u4'), ('OffsetChannelWavelength', 'u4'), ('OffsetChannelFactors', 'u4'), ('ObjectiveSphereCorrection', 'f8'), ('OffsetUnmixParameters', 'u4'), # LSM 3.2, 4.0 end here ('OffsetAcquisitionParameters', 'u4'), ('OffsetCharacteristics', 'u4'), ('OffsetPalette', 'u4'), ('TimeDifferenceX', 'f8'), ('TimeDifferenceY', 'f8'), ('TimeDifferenceZ', 'f8'), ('InternalUse1', 'u4'), ('DimensionP', 'i4'), ('DimensionM', 'i4'), ('DimensionsReserved', '16i4'), ('OffsetTilePositions', 'u4'), ('', '9u4'), # Reserved ('OffsetPositions', 'u4'), # ('', '21u4'), # must be 0 ] def CZ_LSMINFO_READERS(): # import functions for CZ_LSMINFO sub-records # TODO: read more CZ_LSMINFO sub-records return { 'ScanInformation': read_lsm_scaninfo, 'TimeStamps': read_lsm_timestamps, 'EventList': read_lsm_eventlist, 'ChannelColors': read_lsm_channelcolors, 'Positions': read_lsm_positions, 'TilePositions': read_lsm_positions, 'VectorOverlay': None, 'InputLut': read_lsm_lookuptable, 'OutputLut': read_lsm_lookuptable, 'TimeIntervall': None, 'ChannelDataTypes': read_lsm_channeldatatypes, 'KsData': None, 'Roi': None, 'BleachRoi': None, 'NextRecording': None, # read with TiffFile(fh, offset=) 'MeanOfRoisOverlay': None, 'TopoIsolineOverlay': None, 'TopoProfileOverlay': None, 'ChannelWavelength': read_lsm_channelwavelength, 'SphereCorrection': None, 'ChannelFactors': None, 'UnmixParameters': None, 'AcquisitionParameters': None, 'Characteristics': None, } def CZ_LSMINFO_SCANTYPE(): # map CZ_LSMINFO.ScanType to dimension order return { 0: 'XYZCT', # 'Stack' normal x-y-z-scan 1: 'XYZCT', # 'Z-Scan' x-z-plane Y=1 2: 'XYZCT', # 'Line' 3: 'XYTCZ', # 'Time Series Plane' time series x-y XYCTZ ? Z=1 4: 'XYZTC', # 'Time Series z-Scan' time series x-z 5: 'XYTCZ', # 'Time Series Mean-of-ROIs' 6: 'XYZTC', # 'Time Series Stack' time series x-y-z 7: 'XYCTZ', # Spline Scan 8: 'XYCZT', # Spline Plane x-z 9: 'XYTCZ', # Time Series Spline Plane x-z 10: 'XYZCT', # 'Time Series Point' point mode } def CZ_LSMINFO_DIMENSIONS(): # map dimension codes to CZ_LSMINFO attribute return { 'X': 'DimensionX', 'Y': 'DimensionY', 'Z': 'DimensionZ', 'C': 'DimensionChannels', 'T': 'DimensionTime', 'P': 'DimensionP', 'M': 'DimensionM', } def CZ_LSMINFO_DATATYPES(): # description of CZ_LSMINFO.DataType return { 0: 'varying data types', 1: '8 bit unsigned integer', 2: '12 bit unsigned integer', 5: '32 bit float', } def CZ_LSMINFO_TYPEOFDATA(): # description of CZ_LSMINFO.TypeOfData return { 0: 'Original scan data', 1: 'Calculated data', 2: '3D reconstruction', 3: 'Topography height map', } def CZ_LSMINFO_SCANINFO_ARRAYS(): return { 0x20000000: 'Tracks', 0x30000000: 'Lasers', 0x60000000: 'DetectionChannels', 0x80000000: 'IlluminationChannels', 0xA0000000: 'BeamSplitters', 0xC0000000: 'DataChannels', 0x11000000: 'Timers', 0x13000000: 'Markers', } def CZ_LSMINFO_SCANINFO_STRUCTS(): return { # 0x10000000: 'Recording', 0x40000000: 'Track', 0x50000000: 'Laser', 0x70000000: 'DetectionChannel', 0x90000000: 'IlluminationChannel', 0xB0000000: 'BeamSplitter', 0xD0000000: 'DataChannel', 0x12000000: 'Timer', 0x14000000: 'Marker', } def CZ_LSMINFO_SCANINFO_ATTRIBUTES(): return { # Recording 0x10000001: 'Name', 0x10000002: 'Description', 0x10000003: 'Notes', 0x10000004: 'Objective', 0x10000005: 'ProcessingSummary', 0x10000006: 'SpecialScanMode', 0x10000007: 'ScanType', 0x10000008: 'ScanMode', 0x10000009: 'NumberOfStacks', 0x1000000A: 'LinesPerPlane', 0x1000000B: 'SamplesPerLine', 0x1000000C: 'PlanesPerVolume', 0x1000000D: 'ImagesWidth', 0x1000000E: 'ImagesHeight', 0x1000000F: 'ImagesNumberPlanes', 0x10000010: 'ImagesNumberStacks', 0x10000011: 'ImagesNumberChannels', 0x10000012: 'LinscanXySize', 0x10000013: 'ScanDirection', 0x10000014: 'TimeSeries', 0x10000015: 'OriginalScanData', 0x10000016: 'ZoomX', 0x10000017: 'ZoomY', 0x10000018: 'ZoomZ', 0x10000019: 'Sample0X', 0x1000001A: 'Sample0Y', 0x1000001B: 'Sample0Z', 0x1000001C: 'SampleSpacing', 0x1000001D: 'LineSpacing', 0x1000001E: 'PlaneSpacing', 0x1000001F: 'PlaneWidth', 0x10000020: 'PlaneHeight', 0x10000021: 'VolumeDepth', 0x10000023: 'Nutation', 0x10000034: 'Rotation', 0x10000035: 'Precession', 0x10000036: 'Sample0time', 0x10000037: 'StartScanTriggerIn', 0x10000038: 'StartScanTriggerOut', 0x10000039: 'StartScanEvent', 0x10000040: 'StartScanTime', 0x10000041: 'StopScanTriggerIn', 0x10000042: 'StopScanTriggerOut', 0x10000043: 'StopScanEvent', 0x10000044: 'StopScanTime', 0x10000045: 'UseRois', 0x10000046: 'UseReducedMemoryRois', 0x10000047: 'User', 0x10000048: 'UseBcCorrection', 0x10000049: 'PositionBcCorrection1', 0x10000050: 'PositionBcCorrection2', 0x10000051: 'InterpolationY', 0x10000052: 'CameraBinning', 0x10000053: 'CameraSupersampling', 0x10000054: 'CameraFrameWidth', 0x10000055: 'CameraFrameHeight', 0x10000056: 'CameraOffsetX', 0x10000057: 'CameraOffsetY', 0x10000059: 'RtBinning', 0x1000005A: 'RtFrameWidth', 0x1000005B: 'RtFrameHeight', 0x1000005C: 'RtRegionWidth', 0x1000005D: 'RtRegionHeight', 0x1000005E: 'RtOffsetX', 0x1000005F: 'RtOffsetY', 0x10000060: 'RtZoom', 0x10000061: 'RtLinePeriod', 0x10000062: 'Prescan', 0x10000063: 'ScanDirectionZ', # Track 0x40000001: 'MultiplexType', # 0 After Line; 1 After Frame 0x40000002: 'MultiplexOrder', 0x40000003: 'SamplingMode', # 0 Sample; 1 Line Avg; 2 Frame Avg 0x40000004: 'SamplingMethod', # 1 Mean; 2 Sum 0x40000005: 'SamplingNumber', 0x40000006: 'Acquire', 0x40000007: 'SampleObservationTime', 0x4000000B: 'TimeBetweenStacks', 0x4000000C: 'Name', 0x4000000D: 'Collimator1Name', 0x4000000E: 'Collimator1Position', 0x4000000F: 'Collimator2Name', 0x40000010: 'Collimator2Position', 0x40000011: 'IsBleachTrack', 0x40000012: 'IsBleachAfterScanNumber', 0x40000013: 'BleachScanNumber', 0x40000014: 'TriggerIn', 0x40000015: 'TriggerOut', 0x40000016: 'IsRatioTrack', 0x40000017: 'BleachCount', 0x40000018: 'SpiCenterWavelength', 0x40000019: 'PixelTime', 0x40000021: 'CondensorFrontlens', 0x40000023: 'FieldStopValue', 0x40000024: 'IdCondensorAperture', 0x40000025: 'CondensorAperture', 0x40000026: 'IdCondensorRevolver', 0x40000027: 'CondensorFilter', 0x40000028: 'IdTransmissionFilter1', 0x40000029: 'IdTransmission1', 0x40000030: 'IdTransmissionFilter2', 0x40000031: 'IdTransmission2', 0x40000032: 'RepeatBleach', 0x40000033: 'EnableSpotBleachPos', 0x40000034: 'SpotBleachPosx', 0x40000035: 'SpotBleachPosy', 0x40000036: 'SpotBleachPosz', 0x40000037: 'IdTubelens', 0x40000038: 'IdTubelensPosition', 0x40000039: 'TransmittedLight', 0x4000003A: 'ReflectedLight', 0x4000003B: 'SimultanGrabAndBleach', 0x4000003C: 'BleachPixelTime', # Laser 0x50000001: 'Name', 0x50000002: 'Acquire', 0x50000003: 'Power', # DetectionChannel 0x70000001: 'IntegrationMode', 0x70000002: 'SpecialMode', 0x70000003: 'DetectorGainFirst', 0x70000004: 'DetectorGainLast', 0x70000005: 'AmplifierGainFirst', 0x70000006: 'AmplifierGainLast', 0x70000007: 'AmplifierOffsFirst', 0x70000008: 'AmplifierOffsLast', 0x70000009: 'PinholeDiameter', 0x7000000A: 'CountingTrigger', 0x7000000B: 'Acquire', 0x7000000C: 'PointDetectorName', 0x7000000D: 'AmplifierName', 0x7000000E: 'PinholeName', 0x7000000F: 'FilterSetName', 0x70000010: 'FilterName', 0x70000013: 'IntegratorName', 0x70000014: 'ChannelName', 0x70000015: 'DetectorGainBc1', 0x70000016: 'DetectorGainBc2', 0x70000017: 'AmplifierGainBc1', 0x70000018: 'AmplifierGainBc2', 0x70000019: 'AmplifierOffsetBc1', 0x70000020: 'AmplifierOffsetBc2', 0x70000021: 'SpectralScanChannels', 0x70000022: 'SpiWavelengthStart', 0x70000023: 'SpiWavelengthStop', 0x70000026: 'DyeName', 0x70000027: 'DyeFolder', # IlluminationChannel 0x90000001: 'Name', 0x90000002: 'Power', 0x90000003: 'Wavelength', 0x90000004: 'Aquire', 0x90000005: 'DetchannelName', 0x90000006: 'PowerBc1', 0x90000007: 'PowerBc2', # BeamSplitter 0xB0000001: 'FilterSet', 0xB0000002: 'Filter', 0xB0000003: 'Name', # DataChannel 0xD0000001: 'Name', 0xD0000003: 'Acquire', 0xD0000004: 'Color', 0xD0000005: 'SampleType', 0xD0000006: 'BitsPerSample', 0xD0000007: 'RatioType', 0xD0000008: 'RatioTrack1', 0xD0000009: 'RatioTrack2', 0xD000000A: 'RatioChannel1', 0xD000000B: 'RatioChannel2', 0xD000000C: 'RatioConst1', 0xD000000D: 'RatioConst2', 0xD000000E: 'RatioConst3', 0xD000000F: 'RatioConst4', 0xD0000010: 'RatioConst5', 0xD0000011: 'RatioConst6', 0xD0000012: 'RatioFirstImages1', 0xD0000013: 'RatioFirstImages2', 0xD0000014: 'DyeName', 0xD0000015: 'DyeFolder', 0xD0000016: 'Spectrum', 0xD0000017: 'Acquire', # Timer 0x12000001: 'Name', 0x12000002: 'Description', 0x12000003: 'Interval', 0x12000004: 'TriggerIn', 0x12000005: 'TriggerOut', 0x12000006: 'ActivationTime', 0x12000007: 'ActivationNumber', # Marker 0x14000001: 'Name', 0x14000002: 'Description', 0x14000003: 'TriggerIn', 0x14000004: 'TriggerOut', } def CZ_LSM_LUTTYPE(): class CZ_LSM_LUTTYPE(enum.IntEnum): NORMAL = 0 ORIGINAL = 1 RAMP = 2 POLYLINE = 3 SPLINE = 4 GAMMA = 5 return CZ_LSM_LUTTYPE def CZ_LSM_SUBBLOCK_TYPE(): class CZ_LSM_SUBBLOCK_TYPE(enum.IntEnum): END = 0 GAMMA = 1 BRIGHTNESS = 2 CONTRAST = 3 RAMP = 4 KNOTS = 5 PALETTE_12_TO_12 = 6 return CZ_LSM_SUBBLOCK_TYPE def NIH_IMAGE_HEADER(): return [ ('FileID', 'a8'), ('nLines', 'i2'), ('PixelsPerLine', 'i2'), ('Version', 'i2'), ('OldLutMode', 'i2'), ('OldnColors', 'i2'), ('Colors', 'u1', (3, 32)), ('OldColorStart', 'i2'), ('ColorWidth', 'i2'), ('ExtraColors', 'u2', (6, 3)), ('nExtraColors', 'i2'), ('ForegroundIndex', 'i2'), ('BackgroundIndex', 'i2'), ('XScale', 'f8'), ('Unused2', 'i2'), ('Unused3', 'i2'), ('UnitsID', 'i2'), # NIH_UNITS_TYPE ('p1', [('x', 'i2'), ('y', 'i2')]), ('p2', [('x', 'i2'), ('y', 'i2')]), ('CurveFitType', 'i2'), # NIH_CURVEFIT_TYPE ('nCoefficients', 'i2'), ('Coeff', 'f8', 6), ('UMsize', 'u1'), ('UM', 'a15'), ('UnusedBoolean', 'u1'), ('BinaryPic', 'b1'), ('SliceStart', 'i2'), ('SliceEnd', 'i2'), ('ScaleMagnification', 'f4'), ('nSlices', 'i2'), ('SliceSpacing', 'f4'), ('CurrentSlice', 'i2'), ('FrameInterval', 'f4'), ('PixelAspectRatio', 'f4'), ('ColorStart', 'i2'), ('ColorEnd', 'i2'), ('nColors', 'i2'), ('Fill1', '3u2'), ('Fill2', '3u2'), ('Table', 'u1'), # NIH_COLORTABLE_TYPE ('LutMode', 'u1'), # NIH_LUTMODE_TYPE ('InvertedTable', 'b1'), ('ZeroClip', 'b1'), ('XUnitSize', 'u1'), ('XUnit', 'a11'), ('StackType', 'i2'), # NIH_STACKTYPE_TYPE # ('UnusedBytes', 'u1', 200) ] def NIH_COLORTABLE_TYPE(): return ( 'CustomTable', 'AppleDefault', 'Pseudo20', 'Pseudo32', 'Rainbow', 'Fire1', 'Fire2', 'Ice', 'Grays', 'Spectrum', ) def NIH_LUTMODE_TYPE(): return ( 'PseudoColor', 'OldAppleDefault', 'OldSpectrum', 'GrayScale', 'ColorLut', 'CustomGrayscale', ) def NIH_CURVEFIT_TYPE(): return ( 'StraightLine', 'Poly2', 'Poly3', 'Poly4', 'Poly5', 'ExpoFit', 'PowerFit', 'LogFit', 'RodbardFit', 'SpareFit1', 'Uncalibrated', 'UncalibratedOD', ) def NIH_UNITS_TYPE(): return ( 'Nanometers', 'Micrometers', 'Millimeters', 'Centimeters', 'Meters', 'Kilometers', 'Inches', 'Feet', 'Miles', 'Pixels', 'OtherUnits', ) def TVIPS_HEADER_V1(): # TVIPS TemData structure from EMMENU Help file return [ ('Version', 'i4'), ('CommentV1', 'a80'), ('HighTension', 'i4'), ('SphericalAberration', 'i4'), ('IlluminationAperture', 'i4'), ('Magnification', 'i4'), ('PostMagnification', 'i4'), ('FocalLength', 'i4'), ('Defocus', 'i4'), ('Astigmatism', 'i4'), ('AstigmatismDirection', 'i4'), ('BiprismVoltage', 'i4'), ('SpecimenTiltAngle', 'i4'), ('SpecimenTiltDirection', 'i4'), ('IlluminationTiltDirection', 'i4'), ('IlluminationTiltAngle', 'i4'), ('ImageMode', 'i4'), ('EnergySpread', 'i4'), ('ChromaticAberration', 'i4'), ('ShutterType', 'i4'), ('DefocusSpread', 'i4'), ('CcdNumber', 'i4'), ('CcdSize', 'i4'), ('OffsetXV1', 'i4'), ('OffsetYV1', 'i4'), ('PhysicalPixelSize', 'i4'), ('Binning', 'i4'), ('ReadoutSpeed', 'i4'), ('GainV1', 'i4'), ('SensitivityV1', 'i4'), ('ExposureTimeV1', 'i4'), ('FlatCorrected', 'i4'), ('DeadPxCorrected', 'i4'), ('ImageMean', 'i4'), ('ImageStd', 'i4'), ('DisplacementX', 'i4'), ('DisplacementY', 'i4'), ('DateV1', 'i4'), ('TimeV1', 'i4'), ('ImageMin', 'i4'), ('ImageMax', 'i4'), ('ImageStatisticsQuality', 'i4'), ] def TVIPS_HEADER_V2(): return [ ('ImageName', 'V160'), # utf16 ('ImageFolder', 'V160'), ('ImageSizeX', 'i4'), ('ImageSizeY', 'i4'), ('ImageSizeZ', 'i4'), ('ImageSizeE', 'i4'), ('ImageDataType', 'i4'), ('Date', 'i4'), ('Time', 'i4'), ('Comment', 'V1024'), ('ImageHistory', 'V1024'), ('Scaling', '16f4'), ('ImageStatistics', '16c16'), ('ImageType', 'i4'), ('ImageDisplaType', 'i4'), ('PixelSizeX', 'f4'), # distance between two px in x, [nm] ('PixelSizeY', 'f4'), # distance between two px in y, [nm] ('ImageDistanceZ', 'f4'), ('ImageDistanceE', 'f4'), ('ImageMisc', '32f4'), ('TemType', 'V160'), ('TemHighTension', 'f4'), ('TemAberrations', '32f4'), ('TemEnergy', '32f4'), ('TemMode', 'i4'), ('TemMagnification', 'f4'), ('TemMagnificationCorrection', 'f4'), ('PostMagnification', 'f4'), ('TemStageType', 'i4'), ('TemStagePosition', '5f4'), # x, y, z, a, b ('TemImageShift', '2f4'), ('TemBeamShift', '2f4'), ('TemBeamTilt', '2f4'), ('TilingParameters', '7f4'), # 0: tiling? 1:x 2:y 3: max x # 4: max y 5: overlap x 6: overlap y ('TemIllumination', '3f4'), # 0: spotsize 1: intensity ('TemShutter', 'i4'), ('TemMisc', '32f4'), ('CameraType', 'V160'), ('PhysicalPixelSizeX', 'f4'), ('PhysicalPixelSizeY', 'f4'), ('OffsetX', 'i4'), ('OffsetY', 'i4'), ('BinningX', 'i4'), ('BinningY', 'i4'), ('ExposureTime', 'f4'), ('Gain', 'f4'), ('ReadoutRate', 'f4'), ('FlatfieldDescription', 'V160'), ('Sensitivity', 'f4'), ('Dose', 'f4'), ('CamMisc', '32f4'), ('FeiMicroscopeInformation', 'V1024'), ('FeiSpecimenInformation', 'V1024'), ('Magic', 'u4'), ] def MM_HEADER(): # Olympus FluoView MM_Header MM_DIMENSION = [ ('Name', 'a16'), ('Size', 'i4'), ('Origin', 'f8'), ('Resolution', 'f8'), ('Unit', 'a64'), ] return [ ('HeaderFlag', 'i2'), ('ImageType', 'u1'), ('ImageName', 'a257'), ('OffsetData', 'u4'), ('PaletteSize', 'i4'), ('OffsetPalette0', 'u4'), ('OffsetPalette1', 'u4'), ('CommentSize', 'i4'), ('OffsetComment', 'u4'), ('Dimensions', MM_DIMENSION, 10), ('OffsetPosition', 'u4'), ('MapType', 'i2'), ('MapMin', 'f8'), ('MapMax', 'f8'), ('MinValue', 'f8'), ('MaxValue', 'f8'), ('OffsetMap', 'u4'), ('Gamma', 'f8'), ('Offset', 'f8'), ('GrayChannel', MM_DIMENSION), ('OffsetThumbnail', 'u4'), ('VoiceField', 'i4'), ('OffsetVoiceField', 'u4'), ] def MM_DIMENSIONS(): # map FluoView MM_Header.Dimensions to axes characters return { 'X': 'X', 'Y': 'Y', 'Z': 'Z', 'T': 'T', 'CH': 'C', 'WAVELENGTH': 'C', 'TIME': 'T', 'XY': 'R', 'EVENT': 'V', 'EXPOSURE': 'L', } def UIC_TAGS(): # map Universal Imaging Corporation MetaMorph internal tag ids to # name and type from fractions import Fraction # delayed import return [ ('AutoScale', int), ('MinScale', int), ('MaxScale', int), ('SpatialCalibration', int), ('XCalibration', Fraction), ('YCalibration', Fraction), ('CalibrationUnits', str), ('Name', str), ('ThreshState', int), ('ThreshStateRed', int), ('tagid_10', None), # undefined ('ThreshStateGreen', int), ('ThreshStateBlue', int), ('ThreshStateLo', int), ('ThreshStateHi', int), ('Zoom', int), ('CreateTime', julian_datetime), ('LastSavedTime', julian_datetime), ('currentBuffer', int), ('grayFit', None), ('grayPointCount', None), ('grayX', Fraction), ('grayY', Fraction), ('grayMin', Fraction), ('grayMax', Fraction), ('grayUnitName', str), ('StandardLUT', int), ('wavelength', int), ('StagePosition', '(%i,2,2)u4'), # N xy positions as fract ('CameraChipOffset', '(%i,2,2)u4'), # N xy offsets as fract ('OverlayMask', None), ('OverlayCompress', None), ('Overlay', None), ('SpecialOverlayMask', None), ('SpecialOverlayCompress', None), ('SpecialOverlay', None), ('ImageProperty', read_uic_image_property), ('StageLabel', '%ip'), # N str ('AutoScaleLoInfo', Fraction), ('AutoScaleHiInfo', Fraction), ('AbsoluteZ', '(%i,2)u4'), # N fractions ('AbsoluteZValid', '(%i,)u4'), # N long ('Gamma', 'I'), # 'I' uses offset ('GammaRed', 'I'), ('GammaGreen', 'I'), ('GammaBlue', 'I'), ('CameraBin', '2I'), ('NewLUT', int), ('ImagePropertyEx', None), ('PlaneProperty', int), ('UserLutTable', '(256,3)u1'), ('RedAutoScaleInfo', int), ('RedAutoScaleLoInfo', Fraction), ('RedAutoScaleHiInfo', Fraction), ('RedMinScaleInfo', int), ('RedMaxScaleInfo', int), ('GreenAutoScaleInfo', int), ('GreenAutoScaleLoInfo', Fraction), ('GreenAutoScaleHiInfo', Fraction), ('GreenMinScaleInfo', int), ('GreenMaxScaleInfo', int), ('BlueAutoScaleInfo', int), ('BlueAutoScaleLoInfo', Fraction), ('BlueAutoScaleHiInfo', Fraction), ('BlueMinScaleInfo', int), ('BlueMaxScaleInfo', int), # ('OverlayPlaneColor', read_uic_overlay_plane_color), ] def PILATUS_HEADER(): # PILATUS CBF Header Specification, Version 1.4 # map key to [value_indices], type return { 'Detector': ([slice(1, None)], str), 'Pixel_size': ([1, 4], float), 'Silicon': ([3], float), 'Exposure_time': ([1], float), 'Exposure_period': ([1], float), 'Tau': ([1], float), 'Count_cutoff': ([1], int), 'Threshold_setting': ([1], float), 'Gain_setting': ([1, 2], str), 'N_excluded_pixels': ([1], int), 'Excluded_pixels': ([1], str), 'Flat_field': ([1], str), 'Trim_file': ([1], str), 'Image_path': ([1], str), # optional 'Wavelength': ([1], float), 'Energy_range': ([1, 2], float), 'Detector_distance': ([1], float), 'Detector_Voffset': ([1], float), 'Beam_xy': ([1, 2], float), 'Flux': ([1], str), 'Filter_transmission': ([1], float), 'Start_angle': ([1], float), 'Angle_increment': ([1], float), 'Detector_2theta': ([1], float), 'Polarization': ([1], float), 'Alpha': ([1], float), 'Kappa': ([1], float), 'Phi': ([1], float), 'Phi_increment': ([1], float), 'Chi': ([1], float), 'Chi_increment': ([1], float), 'Oscillation_axis': ([slice(1, None)], str), 'N_oscillations': ([1], int), 'Start_position': ([1], float), 'Position_increment': ([1], float), 'Shutter_time': ([1], float), 'Omega': ([1], float), 'Omega_increment': ([1], float), } def ALLOCATIONGRANULARITY(): # alignment for writing contiguous data to TIFF import mmap # delayed import return mmap.ALLOCATIONGRANULARITY def MAXWORKERS(): # half of CPU cores import multiprocessing # delayed import return max(multiprocessing.cpu_count() // 2, 1) def read_tags(fh, byteorder, offsetsize, tagnames, customtags=None, maxifds=None): """Read tags from chain of IFDs and return as list of dicts. The file handle position must be at a valid IFD header. Does not work with NDPI. """ if offsetsize == 4: offsetformat = byteorder + 'I' tagnosize = 2 tagnoformat = byteorder + 'H' tagsize = 12 tagformat1 = byteorder + 'HH' tagformat2 = byteorder + 'I4s' elif offsetsize == 8: offsetformat = byteorder + 'Q' tagnosize = 8 tagnoformat = byteorder + 'Q' tagsize = 20 tagformat1 = byteorder + 'HH' tagformat2 = byteorder + 'Q8s' else: raise ValueError('invalid offset size') if customtags is None: customtags = {} if maxifds is None: maxifds = 2**32 result = [] unpack = struct.unpack offset = fh.tell() while len(result) < maxifds: # loop over IFDs try: tagno = unpack(tagnoformat, fh.read(tagnosize))[0] if tagno > 4096: raise TiffFileError('suspicious number of tags') except Exception: log_warning(f'read_tags: corrupted tag list at offset {offset}') break tags = {} data = fh.read(tagsize * tagno) pos = fh.tell() index = 0 for _ in range(tagno): code, type_ = unpack(tagformat1, data[index:index + 4]) count, value = unpack(tagformat2, data[index + 4: index + tagsize]) index += tagsize name = tagnames.get(code, str(code)) try: dtype = TIFF.DATA_FORMATS[type_] except KeyError: raise TiffFileError(f'unknown tag data type {type_}') fmt = '{}{}{}'.format(byteorder, count * int(dtype[0]), dtype[1]) size = struct.calcsize(fmt) if size > offsetsize or code in customtags: offset = unpack(offsetformat, value)[0] if offset < 8 or offset > fh.size - size: raise TiffFileError(f'invalid tag value offset {offset}') fh.seek(offset) if code in customtags: readfunc = customtags[code][1] value = readfunc(fh, byteorder, dtype, count, offsetsize) elif type_ == 7 or (count > 1 and dtype[-1] == 'B'): value = read_bytes(fh, byteorder, dtype, count, offsetsize) elif code in tagnames or dtype[-1] == 's': value = unpack(fmt, fh.read(size)) else: value = read_numpy(fh, byteorder, dtype, count, offsetsize) elif dtype[-1] == 'B' or type_ == 7: value = value[:size] else: value = unpack(fmt, value[:size]) if code not in customtags and code not in TIFF.TAG_TUPLE: if len(value) == 1: value = value[0] if type_ != 7 and dtype[-1] == 's' and isinstance(value, bytes): # TIFF ASCII fields can contain multiple strings, # each terminated with a NUL try: value = bytes2str(stripnull(value, first=False).strip()) except UnicodeDecodeError: log_warning( 'read_tags: coercing invalid ASCII to bytes ' f'(tag {code})' ) tags[name] = value result.append(tags) # read offset to next page fh.seek(pos) offset = unpack(offsetformat, fh.read(offsetsize))[0] if offset == 0: break if offset >= fh.size: log_warning(f'read_tags: invalid page offset ({offset})') break fh.seek(offset) if result and maxifds == 1: result = result[0] return result def read_exif_ifd(fh, byteorder, dtype, count, offsetsize): """Read EXIF tags from file and return as dict.""" exif = read_tags(fh, byteorder, offsetsize, TIFF.EXIF_TAGS, maxifds=1) for name in ('ExifVersion', 'FlashpixVersion'): try: exif[name] = bytes2str(exif[name]) except Exception: pass if 'UserComment' in exif: idcode = exif['UserComment'][:8] try: if idcode == b'ASCII\x00\x00\x00': exif['UserComment'] = bytes2str(exif['UserComment'][8:]) elif idcode == b'UNICODE\x00': exif['UserComment'] = exif['UserComment'][8:].decode('utf-16') except Exception: pass return exif def read_gps_ifd(fh, byteorder, dtype, count, offsetsize): """Read GPS tags from file and return as dict.""" return read_tags(fh, byteorder, offsetsize, TIFF.GPS_TAGS, maxifds=1) def read_interoperability_ifd(fh, byteorder, dtype, count, offsetsize): """Read Interoperability tags from file and return as dict.""" tag_names = {1: 'InteroperabilityIndex'} return read_tags(fh, byteorder, offsetsize, tag_names, maxifds=1) def read_bytes(fh, byteorder, dtype, count, offsetsize): """Read tag data from file and return as bytes.""" dtype = 'B' if dtype[-1] == 's' else byteorder + dtype[-1] count *= numpy.dtype(dtype).itemsize data = fh.read(count) if len(data) != count: log_warning( f'read_bytes: failed to read all bytes ({len(data)} < {count})' ) return data def read_utf8(fh, byteorder, dtype, count, offsetsize): """Read tag data from file and return as unicode string.""" return fh.read(count).decode() def read_numpy(fh, byteorder, dtype, count, offsetsize): """Read tag data from file and return as numpy array.""" dtype = 'b' if dtype[-1] == 's' else byteorder + dtype[-1] return fh.read_array(dtype, count) def read_colormap(fh, byteorder, dtype, count, offsetsize): """Read ColorMap data from file and return as numpy array.""" cmap = fh.read_array(byteorder + dtype[-1], count) cmap.shape = (3, -1) return cmap def read_json(fh, byteorder, dtype, count, offsetsize): """Read JSON tag data from file and return as object.""" data = fh.read(count) try: return json.loads(stripnull(data).decode()) except ValueError: log_warning('read_json: invalid JSON') def read_mm_header(fh, byteorder, dtype, count, offsetsize): """Read FluoView mm_header tag from file and return as dict.""" mmh = fh.read_record(TIFF.MM_HEADER, byteorder=byteorder) mmh = recarray2dict(mmh) mmh['Dimensions'] = [ (bytes2str(d[0]).strip(), d[1], d[2], d[3], bytes2str(d[4]).strip()) for d in mmh['Dimensions']] d = mmh['GrayChannel'] mmh['GrayChannel'] = ( bytes2str(d[0]).strip(), d[1], d[2], d[3], bytes2str(d[4]).strip() ) return mmh def read_mm_stamp(fh, byteorder, dtype, count, offsetsize): """Read FluoView mm_stamp tag from file and return as numpy.ndarray.""" return fh.read_array(byteorder + 'f8', 8) def read_uic1tag(fh, byteorder, dtype, count, offsetsize, planecount=None): """Read MetaMorph STK UIC1Tag from file and return as dict. Return empty dictionary if planecount is unknown. """ if dtype not in ('2I', '1I') or byteorder != '<': raise ValueError('invalid UIC1Tag') result = {} if dtype == '2I': # pre MetaMorph 2.5 (not tested) values = fh.read_array(' structure_size: break lsminfo.append((name, dtype)) else: lsminfo = TIFF.CZ_LSMINFO lsminfo = fh.read_record(lsminfo, byteorder=byteorder) lsminfo = recarray2dict(lsminfo) # read LSM info subrecords at offsets for name, reader in TIFF.CZ_LSMINFO_READERS.items(): if reader is None: continue offset = lsminfo.get('Offset' + name, 0) if offset < 8: continue fh.seek(offset) try: lsminfo[name] = reader(fh) except ValueError: pass return lsminfo def read_lsm_channeldatatypes(fh): """Read LSM channel data type.""" size = struct.unpack(' 0: esize, etime, etype = struct.unpack(' 4: size = struct.unpack(' 1 else {} return frame_data, roi_data def read_micromanager_metadata(fh): """Read MicroManager non-TIFF settings from open file and return as dict. The settings can be used to read image data without parsing the TIFF file. """ fh.seek(0) try: byteorder = {b'II': '<', b'MM': '>'}[fh.read(2)] except IndexError: raise ValueError('not a MicroManager TIFF file') result = {} fh.seek(8) ( index_header, index_offset, display_header, display_offset, comments_header, comments_offset, summary_header, summary_length ) = struct.unpack(byteorder + 'IIIIIIII', fh.read(32)) if summary_header == 2355492: result['Summary'] = read_json( fh, byteorder, None, summary_length, None ) else: log_warning('invalid MicroManager summary header') if index_header == 54773648: fh.seek(index_offset) header, count = struct.unpack(byteorder + 'II', fh.read(8)) if header == 3453623: data = struct.unpack( byteorder + 'IIIII' * count, fh.read(20 * count) ) result['IndexMap'] = { 'Channel': data[::5], 'Slice': data[1::5], 'Frame': data[2::5], 'Position': data[3::5], 'Offset': data[4::5], } else: log_warning('invalid MicroManager index header') else: log_warning('invalid MicroManager index header') if display_header == 483765892: fh.seek(display_offset) header, count = struct.unpack(byteorder + 'II', fh.read(8)) if header == 347834724: result['DisplaySettings'] = read_json( fh, byteorder, None, count, None ) else: log_warning('invalid MicroManager display header') else: log_warning('invalid MicroManager display header') if comments_header == 99384722: fh.seek(comments_offset) header, count = struct.unpack(byteorder + 'II', fh.read(8)) if header == 84720485: result['Comments'] = read_json(fh, byteorder, None, count, None) else: log_warning('invalid MicroManager comments header') else: log_warning('invalid MicroManager comments header') return result def read_metaseries_catalog(fh): """Read MetaSeries non-TIFF hint catalog from file. Raise ValueError if the file does not contain a valid hint catalog. """ # TODO: implement read_metaseries_catalog raise NotImplementedError() def imagej_metadata_tag(metadata, byteorder): """Return IJMetadata and IJMetadataByteCounts tags from metadata dict. The tags can be passed to TiffWriter.save() as extratags. The metadata dict may contain the following keys and values: Info : str Human-readable information as string. Labels : sequence of str Human-readable labels for each channel. Ranges : sequence of doubles Lower and upper values for each channel. LUTs : sequence of (3, 256) uint8 ndarrays Color palettes for each channel. Plot : bytes Undocumented ImageJ internal format. ROI: bytes Undocumented ImageJ internal region of interest format. Overlays : bytes Undocumented ImageJ internal format. """ if not metadata: return () header = [{'>': b'IJIJ', '<': b'JIJI'}[byteorder]] bytecounts = [0] body = [] def _string(data, byteorder): return data.encode('utf-16' + {'>': 'be', '<': 'le'}[byteorder]) def _doubles(data, byteorder): return struct.pack(byteorder + ('d' * len(data)), *data) def _ndarray(data, byteorder): return data.tobytes() def _bytes(data, byteorder): return data metadata_types = ( ('Info', b'info', _string), ('Labels', b'labl', _string), ('Ranges', b'rang', _doubles), ('LUTs', b'luts', _ndarray), ('Plot', b'plot', _bytes), ('ROI', b'roi ', _bytes), ('Overlays', b'over', _bytes), ) for key, mtype, func in metadata_types: if key.lower() in metadata: key = key.lower() elif key not in metadata: continue if byteorder == '<': mtype = mtype[::-1] values = metadata[key] if isinstance(values, list): count = len(values) else: values = [values] count = 1 header.append(mtype + struct.pack(byteorder + 'I', count)) for value in values: data = func(value, byteorder) body.append(data) bytecounts.append(len(data)) if not body: return () body = b''.join(body) header = b''.join(header) data = header + body bytecounts[0] = len(header) bytecounts = struct.pack(byteorder + ('I' * len(bytecounts)), *bytecounts) return ( (50839, 'B', len(data), data, True), (50838, 'I', len(bytecounts) // 4, bytecounts, True) ) def imagej_metadata(data, bytecounts, byteorder): """Return IJMetadata tag value as dict. The 'Info' string can have multiple formats, e.g. OIF or ScanImage, that might be parsed into dicts using the matlabstr2py or oiffile.SettingsFile functions. 'ROI' and 'Overlays' are returned as bytes, which can be parsed with the ImagejRoi.frombytes() function of the roifile package. """ def _string(data, byteorder): return data.decode('utf-16' + {'>': 'be', '<': 'le'}[byteorder]) def _doubles(data, byteorder): return struct.unpack(byteorder + ('d' * (len(data) // 8)), data) def _lut(data, byteorder): return numpy.frombuffer(data, 'uint8').reshape(-1, 256) def _bytes(data, byteorder): return data # big-endian metadata_types = { b'info': ('Info', _string), b'labl': ('Labels', _string), b'rang': ('Ranges', _doubles), b'luts': ('LUTs', _lut), b'plot': ('Plot', _bytes), b'roi ': ('ROI', _bytes), b'over': ('Overlays', _bytes), } # little-endian metadata_types.update({k[::-1]: v for k, v in metadata_types.items()}) if not bytecounts: raise ValueError('no ImageJ metadata') if not data[:4] in (b'IJIJ', b'JIJI'): raise ValueError('invalid ImageJ metadata') header_size = bytecounts[0] if header_size < 12 or header_size > 804: raise ValueError('invalid ImageJ metadata header size') ntypes = (header_size - 4) // 8 header = struct.unpack(byteorder + '4sI' * ntypes, data[4: 4 + ntypes * 8]) pos = 4 + ntypes * 8 counter = 0 result = {} for mtype, count in zip(header[::2], header[1::2]): values = [] name, func = metadata_types.get(mtype, (bytes2str(mtype), read_bytes)) for _ in range(count): counter += 1 pos1 = pos + bytecounts[counter] values.append(func(data[pos:pos1], byteorder)) pos = pos1 result[name.strip()] = values[0] if count == 1 else values return result def imagej_description_metadata(description): """Return metatata from ImageJ image description as dict. Raise ValueError if not a valid ImageJ description. >>> description = 'ImageJ=1.11a\\nimages=510\\nhyperstack=true\\n' >>> imagej_description_metadata(description) # doctest: +SKIP {'ImageJ': '1.11a', 'images': 510, 'hyperstack': True} """ def _bool(val): return {'true': True, 'false': False}[val.lower()] result = {} for line in description.splitlines(): try: key, val = line.split('=') except Exception: continue key = key.strip() val = val.strip() for dtype in (int, float, _bool): try: val = dtype(val) break except Exception: pass result[key] = val if 'ImageJ' not in result: raise ValueError('not an ImageJ image description') return result def imagej_description(shape, rgb=None, colormaped=False, version=None, hyperstack=None, mode=None, loop=None, **kwargs): """Return ImageJ image description from data shape. ImageJ can handle up to 6 dimensions in order TZCYXS. >>> imagej_description((51, 5, 2, 196, 171)) # doctest: +SKIP ImageJ=1.11a images=510 channels=2 slices=5 frames=51 hyperstack=true mode=grayscale loop=false """ if colormaped: raise NotImplementedError('ImageJ colormapping not supported') if version is None: version = kwargs.pop('ImageJ', '1.11a') shape = imagej_shape(shape, rgb=rgb) rgb = shape[-1] in (3, 4) append = [] result = [f'ImageJ={version}'] result.append(f'images={product(shape[:-3])}') if hyperstack is None: hyperstack = True append.append('hyperstack=true') else: append.append(f'hyperstack={bool(hyperstack)}') if shape[2] > 1: result.append(f'channels={shape[2]}') if mode is None and not rgb: mode = 'grayscale' if hyperstack and mode: append.append(f'mode={mode}') if shape[1] > 1: result.append(f'slices={shape[1]}') if shape[0] > 1: result.append(f'frames={shape[0]}') if loop is None: append.append('loop=false') if loop is not None: append.append(f'loop={bool(loop)}'.lower()) for key, value in kwargs.items(): if key not in ('images', 'channels', 'slices', 'frames'): append.append(f'{key.lower()}={value}') return '\n'.join(result + append + ['']) def imagej_shape(shape, rgb=None): """Return shape normalized to 6D ImageJ hyperstack TZCYXS. Raise ValueError if not a valid ImageJ hyperstack shape. >>> imagej_shape((2, 3, 4, 5, 3), False) (2, 3, 4, 5, 3, 1) """ shape = tuple(int(i) for i in shape) ndim = len(shape) if 1 > ndim > 6: raise ValueError('invalid ImageJ hyperstack: not 2 to 6 dimensional') if rgb is None: rgb = shape[-1] in (3, 4) and ndim > 2 if rgb and shape[-1] not in (3, 4): raise ValueError('invalid ImageJ hyperstack: not a RGB image') if not rgb and ndim == 6 and shape[-1] != 1: raise ValueError('invalid ImageJ hyperstack: not a non-RGB image') if rgb or shape[-1] == 1: return (1, ) * (6 - ndim) + shape return (1, ) * (5 - ndim) + shape + (1,) def json_description(shape, **metadata): """Return JSON image description from data shape and other metadata. Return UTF-8 encoded JSON. >>> json_description((256, 256, 3), axes='YXS') # doctest: +SKIP b'{"shape": [256, 256, 3], "axes": "YXS"}' """ metadata.update(shape=shape) return json.dumps(metadata) # .encode() def json_description_metadata(description): """Return metatata from JSON formated image description as dict. Raise ValuError if description is of unknown format. >>> description = '{"shape": [256, 256, 3], "axes": "YXS"}' >>> json_description_metadata(description) # doctest: +SKIP {'shape': [256, 256, 3], 'axes': 'YXS'} >>> json_description_metadata('shape=(256, 256, 3)') {'shape': (256, 256, 3)} """ if description[:6] == 'shape=': # old-style 'shaped' description; not JSON shape = tuple(int(i) for i in description[7:-1].split(',')) return dict(shape=shape) if description[:1] == '{' and description[-1:] == '}': # JSON description return json.loads(description) raise ValueError('invalid JSON image description', description) def fluoview_description_metadata(description, ignoresections=None): """Return metatata from FluoView image description as dict. The FluoView image description format is unspecified. Expect failures. >>> descr = ('[Intensity Mapping]\\nMap Ch0: Range=00000 to 02047\\n' ... '[Intensity Mapping End]') >>> fluoview_description_metadata(descr) {'Intensity Mapping': {'Map Ch0: Range': '00000 to 02047'}} """ if not description.startswith('['): raise ValueError('invalid FluoView image description') if ignoresections is None: ignoresections = {'Region Info (Fields)', 'Protocol Description'} result = {} sections = [result] comment = False for line in description.splitlines(): if not comment: line = line.strip() if not line: continue if line[0] == '[': if line[-5:] == ' End]': # close section del sections[-1] section = sections[-1] name = line[1:-5] if comment: section[name] = '\n'.join(section[name]) if name[:4] == 'LUT ': a = numpy.array(section[name], dtype='uint8') a.shape = -1, 3 section[name] = a continue # new section comment = False name = line[1:-1] if name[:4] == 'LUT ': section = [] elif name in ignoresections: section = [] comment = True else: section = {} sections.append(section) result[name] = section continue # add entry if comment: section.append(line) continue line = line.split('=', 1) if len(line) == 1: section[line[0].strip()] = None continue key, value = line if key[:4] == 'RGB ': section.extend(int(rgb) for rgb in value.split()) else: section[key.strip()] = astype(value.strip()) return result def pilatus_description_metadata(description): """Return metatata from Pilatus image description as dict. Return metadata from Pilatus pixel array detectors by Dectris, created by camserver or TVX software. >>> pilatus_description_metadata('# Pixel_size 172e-6 m x 172e-6 m') {'Pixel_size': (0.000172, 0.000172)} """ result = {} if not description.startswith('# '): return result for c in '#:=,()': description = description.replace(c, ' ') for line in description.split('\n'): if line[:2] != ' ': continue line = line.split() name = line[0] if line[0] not in TIFF.PILATUS_HEADER: try: result['DateTime'] = datetime.datetime.strptime( ' '.join(line), '%Y-%m-%dT%H %M %S.%f') except Exception: result[name] = ' '.join(line[1:]) continue indices, dtype = TIFF.PILATUS_HEADER[line[0]] if isinstance(indices[0], slice): # assumes one slice values = line[indices[0]] else: values = [line[i] for i in indices] if dtype is float and values[0] == 'not': values = ['NaN'] values = tuple(dtype(v) for v in values) if dtype == str: values = ' '.join(values) elif len(values) == 1: values = values[0] result[name] = values return result def svs_description_metadata(description): """Return metatata from Aperio image description as dict. The Aperio image description format is unspecified. Expect failures. >>> svs_description_metadata('Aperio Image Library v1.0') {'Aperio Image Library': 'v1.0'} """ if not description.startswith('Aperio '): raise ValueError('invalid Aperio image description') result = {} lines = description.split('\n') key, value = lines[0].strip().rsplit(None, 1) # 'Aperio Image Library' result[key.strip()] = value.strip() if len(lines) == 1: return result items = lines[1].split('|') result[''] = items[0].strip() # TODO: parse this? for item in items[1:]: key, value = item.split(' = ') result[key.strip()] = astype(value.strip()) return result def stk_description_metadata(description): """Return metadata from MetaMorph image description as list of dict. The MetaMorph image description format is unspecified. Expect failures. """ description = description.strip() if not description: return [] try: description = bytes2str(description) except UnicodeDecodeError as exc: log_warning( f'stk_description_metadata: {exc.__class__.__name__}: {exc}' ) return [] result = [] for plane in description.split('\x00'): d = {} for line in plane.split('\r\n'): line = line.split(':', 1) if len(line) > 1: name, value = line d[name.strip()] = astype(value.strip()) else: value = line[0].strip() if value: if '' in d: d[''].append(value) else: d[''] = [value] result.append(d) return result def metaseries_description_metadata(description): """Return metatata from MetaSeries image description as dict.""" if not description.startswith(''): raise ValueError('invalid MetaSeries image description') from xml.etree import ElementTree as etree # delayed import root = etree.fromstring(description) types = { 'float': float, 'int': int, 'bool': lambda x: asbool(x, 'on', 'off'), } def parse(root, result): # recursive for child in root: attrib = child.attrib if not attrib: result[child.tag] = parse(child, {}) continue if 'id' in attrib: i = attrib['id'] t = attrib['type'] v = attrib['value'] if t in types: result[i] = types[t](v) else: result[i] = v return result adict = parse(root, {}) if 'Description' in adict: adict['Description'] = adict['Description'].replace(' ', '\n') return adict def scanimage_description_metadata(description): """Return metatata from ScanImage image description as dict.""" return matlabstr2py(description) def scanimage_artist_metadata(artist): """Return metatata from ScanImage artist tag as dict.""" try: return json.loads(artist) except ValueError as exc: log_warning( f'scanimage_artist_metadata: {exc.__class__.__name__}: {exc}' ) def olympusini_metadata(inistr): """Return OlympusSIS metadata from INI string. No documentation is available. """ def keyindex(key): # split key into name and index index = 0 i = len(key.rstrip('0123456789')) if i < len(key): index = int(key[i:]) - 1 key = key[:i] return key, index result = {} bands = [] zpos = None tpos = None for line in inistr.splitlines(): line = line.strip() if line == '' or line[0] == ';': continue if line[0] == '[' and line[-1] == ']': section_name = line[1:-1] result[section_name] = section = {} if section_name == 'Dimension': result['axes'] = axes = [] result['shape'] = shape = [] elif section_name == 'ASD': result[section_name] = [] elif section_name == 'Z': if 'Dimension' in result: result[section_name]['ZPos'] = zpos = [] elif section_name == 'Time': if 'Dimension' in result: result[section_name]['TimePos'] = tpos = [] elif section_name == 'Band': nbands = result['Dimension']['Band'] bands = [{'LUT': []} for _ in range(nbands)] result[section_name] = bands iband = 0 else: key, value = line.split('=') if value.strip() == '': value = None elif ',' in value: value = tuple(astype(v) for v in value.split(',')) else: value = astype(value) if section_name == 'Dimension': section[key] = value axes.append(key) shape.append(value) elif section_name == 'ASD': if key == 'Count': result['ASD'] = [{}] * value else: key, index = keyindex(key) result['ASD'][index][key] = value elif section_name == 'Band': if key[:3] == 'LUT': lut = bands[iband]['LUT'] value = struct.pack(' 1: axes.append(sisaxes.get(x, x[0].upper())) shape.append(i) result['axes'] = ''.join(axes) result['shape'] = tuple(shape) try: result['Z']['ZPos'] = numpy.array( result['Z']['ZPos'][:result['Dimension']['Z']], 'float64') except Exception: pass try: result['Time']['TimePos'] = numpy.array( result['Time']['TimePos'][:result['Dimension']['Time']], 'int32') except Exception: pass for band in bands: band['LUT'] = numpy.array(band['LUT'], 'uint8') return result def unpack_rgb(data, dtype=None, bitspersample=None, rescale=True): """Return array from bytes containing packed samples. Use to unpack RGB565 or RGB555 to RGB888 format. Works on little-endian platforms only. Parameters ---------- data : byte str The data to be decoded. Samples in each pixel are stored consecutively. Pixels are aligned to 8, 16, or 32 bit boundaries. dtype : numpy.dtype The sample data type. The byteorder applies also to the data stream. bitspersample : tuple Number of bits for each sample in a pixel. rescale : bool Upscale samples to the number of bits in dtype. Returns ------- numpy.ndarray Flattened array of unpacked samples of native dtype. Examples -------- >>> data = struct.pack('BBBB', 0x21, 0x08, 0xff, 0xff) >>> print(unpack_rgb(data, '>> print(unpack_rgb(data, '>> print(unpack_rgb(data, '= bits) data = numpy.frombuffer(data, dtype.byteorder + dt) result = numpy.empty((data.size, len(bitspersample)), dtype.char) for i, bps in enumerate(bitspersample): t = data >> int(numpy.sum(bitspersample[i + 1:])) t &= int('0b' + '1' * bps, 2) if rescale: o = ((dtype.itemsize * 8) // bps + 1) * bps if o > data.dtype.itemsize * 8: t = t.astype('I') t *= (2**o - 1) // (2**bps - 1) t //= 2**(o - (dtype.itemsize * 8)) result[:, i] = t return result.reshape(-1) if imagecodecs is None: import zlib import lzma def zlib_encode(data, level=6, out=None): """Compress Zlib DEFLATE.""" return zlib.compress(data, level) def zlib_decode(data, out=None): """Decompress Zlib DEFLATE.""" return zlib.decompress(data) def lzma_encode(data, level=None, out=None): """Compress LZMA.""" return lzma.compress(data) def lzma_decode(data, out=None): """Decompress LZMA.""" return lzma.decompress(data) def delta_encode(data, axis=-1, out=None): """Encode Delta.""" if isinstance(data, (bytes, bytearray)): data = numpy.frombuffer(data, dtype='u1') diff = numpy.diff(data, axis=0) return numpy.insert(diff, 0, data[0]).tobytes() dtype = data.dtype if dtype.kind == 'f': data = data.view(f'u{dtype.itemsize}') diff = numpy.diff(data, axis=axis) key = [slice(None)] * data.ndim key[axis] = 0 diff = numpy.insert(diff, 0, data[tuple(key)], axis=axis) if dtype.kind == 'f': return diff.view(dtype) return diff def delta_decode(data, axis=-1, out=None): """Decode Delta.""" if out is not None and not out.flags.writeable: out = None if isinstance(data, (bytes, bytearray)): data = numpy.frombuffer(data, dtype='u1') return numpy.cumsum(data, axis=0, dtype='u1', out=out).tobytes() if data.dtype.kind == 'f': view = data.view(f'u{data.dtype.itemsize}') view = numpy.cumsum(view, axis=axis, dtype=view.dtype) return view.view(data.dtype) return numpy.cumsum(data, axis=axis, dtype=data.dtype, out=out) def bitorder_decode(data, out=None, _bitorder=[]): """Reverse bits in each byte of bytes or numpy array. Decode data where pixels with lower column values are stored in the lower-order bits of the bytes (TIFF FillOrder is LSB2MSB). Parameters ---------- data : bytes or ndarray The data to be bit reversed. If bytes, a new bit-reversed bytes is returned. Numpy arrays are bit-reversed in-place. Examples -------- >>> bitorder_decode(b'\\x01\\x64') b'\\x80&' >>> data = numpy.array([1, 666], dtype='uint16') >>> bitorder_decode(data) >>> data array([ 128, 16473], dtype=uint16) """ if not _bitorder: _bitorder.append( b'\x00\x80@\xc0 \xa0`\xe0\x10\x90P\xd00\xb0p\xf0\x08\x88H' b'\xc8(\xa8h\xe8\x18\x98X\xd88\xb8x\xf8\x04\x84D\xc4$\xa4d' b'\xe4\x14\x94T\xd44\xb4t\xf4\x0c\x8cL\xcc,\xacl\xec\x1c\x9c' b'\\\xdc<\xbc|\xfc\x02\x82B\xc2"\xa2b\xe2\x12\x92R\xd22' b'\xb2r\xf2\n\x8aJ\xca*\xaaj\xea\x1a\x9aZ\xda:\xbaz\xfa' b'\x06\x86F\xc6&\xa6f\xe6\x16\x96V\xd66\xb6v\xf6\x0e\x8eN' b'\xce.\xaen\xee\x1e\x9e^\xde>\xbe~\xfe\x01\x81A\xc1!\xa1a' b'\xe1\x11\x91Q\xd11\xb1q\xf1\t\x89I\xc9)\xa9i\xe9\x19' b'\x99Y\xd99\xb9y\xf9\x05\x85E\xc5%\xa5e\xe5\x15\x95U\xd55' b'\xb5u\xf5\r\x8dM\xcd-\xadm\xed\x1d\x9d]\xdd=\xbd}\xfd' b'\x03\x83C\xc3#\xa3c\xe3\x13\x93S\xd33\xb3s\xf3\x0b\x8bK' b'\xcb+\xabk\xeb\x1b\x9b[\xdb;\xbb{\xfb\x07\x87G\xc7\'\xa7g' b'\xe7\x17\x97W\xd77\xb7w\xf7\x0f\x8fO\xcf/\xafo\xef\x1f\x9f_' b'\xdf?\xbf\x7f\xff') _bitorder.append(numpy.frombuffer(_bitorder[0], dtype='uint8')) try: view = data.view('uint8') numpy.take(_bitorder[1], view, out=view) return data except AttributeError: return data.translate(_bitorder[0]) except ValueError: raise NotImplementedError('slices of arrays not supported') return None def packints_encode(data, bitspersample, axis=-1, out=None): """Tightly pack integers.""" raise NotImplementedError('packints_encode') def packints_decode(data, dtype, bitspersample, runlen=0, out=None): """Decompress bytes to array of integers. This implementation only handles itemsizes 1, 8, 16, 32, and 64 bits. Install the imagecodecs package for decoding other integer sizes. Parameters ---------- data : byte str Data to decompress. dtype : numpy.dtype or str A numpy boolean or integer type. bitspersample : int Number of bits per integer. runlen : int Number of consecutive integers, after which to start at next byte. Examples -------- >>> packints_decode(b'a', 'B', 1) array([0, 1, 1, 0, 0, 0, 0, 1], dtype=uint8) """ if bitspersample == 1: # bitarray data = numpy.frombuffer(data, '|B') data = numpy.unpackbits(data) if runlen % 8: data = data.reshape(-1, runlen + (8 - runlen % 8)) data = data[:, :runlen].reshape(-1) return data.astype(dtype) if bitspersample in (8, 16, 32, 64): return numpy.frombuffer(data, dtype) raise NotImplementedError( f'unpacking {bitspersample}-bit integers ' f'to {numpy.dtype(dtype)} not supported' ) def packbits_decode(encoded, out=None): r"""Decompress PackBits encoded byte string. >>> packbits_decode(b'\x80\x80') # NOP b'' >>> packbits_decode(b'\x02123') b'123' >>> packbits_decode( ... b'\xfe\xaa\x02\x80\x00\x2a\xfd\xaa\x03\x80\x00\x2a\x22\xf7\xaa' ... )[:-5] b'\xaa\xaa\xaa\x80\x00*\xaa\xaa\xaa\xaa\x80\x00*"\xaa\xaa\xaa\xaa\xaa' """ out = [] out_extend = out.extend i = 0 try: while True: n = ord(encoded[i:i + 1]) + 1 i += 1 if n > 129: # replicate out_extend(encoded[i:i + 1] * (258 - n)) i += 1 elif n < 129: # literal out_extend(encoded[i:i + n]) i += n except TypeError: pass return bytes(out) else: bitorder_decode = imagecodecs.bitorder_decode # noqa packints_decode = imagecodecs.packints_decode # noqa packints_encode = imagecodecs.packints_encode # noqa def apply_colormap(image, colormap, contig=True): """Return palette-colored image. The image values are used to index the colormap on axis 1. The returned image is of shape image.shape+colormap.shape[0] and dtype colormap.dtype. Parameters ---------- image : numpy.ndarray Indexes into the colormap. colormap : numpy.ndarray RGB lookup table aka palette of shape (3, 2**bits_per_sample). contig : bool If True, return a contiguous array. Examples -------- >>> image = numpy.arange(256, dtype='uint8') >>> colormap = numpy.vstack([image, image, image]).astype('uint16') * 256 >>> apply_colormap(image, colormap)[-1] array([65280, 65280, 65280], dtype=uint16) """ image = numpy.take(colormap, image, axis=1) image = numpy.rollaxis(image, 0, image.ndim) if contig: image = numpy.ascontiguousarray(image) return image def parse_filenames(files, pattern, axesorder=None): """Return shape and axes from sequence of file names matching pattern. >>> parse_filenames(['c1001.ext', 'c2002.ext'], ... r'([^\\d])(\\d)(?P\\d+)\\.ext') ('ct', (2, 2), [(1, 1), (2, 2)], (1, 1)) """ if not pattern: raise ValueError('invalid pattern') pattern = re.compile(pattern, re.IGNORECASE | re.VERBOSE) def parse(fname, pattern=pattern): # return axes and indices from file name # fname = os.path.split(fname)[-1] axes = [] indices = [] groupindex = {v: k for k, v in pattern.groupindex.items()} match = pattern.search(fname) if not match: raise ValueError('pattern does not match file name') ax = None for i, m in enumerate(match.groups()): if m is None: continue if i + 1 in groupindex: ax = groupindex[i + 1] # names axis if not m[0].isdigit(): m = ord(m) # index letter to number if m < 65 or m > 122: raise ValueError(f'invalid index {m!r}') elif m[0].isalpha(): ax = m # axis letter for next index continue if ax is None: ax = 'Q' # no preceding axis letter try: m = int(m) except Exception: raise ValueError(f'invalid index {m!r}') indices.append(m) axes.append(ax) ax = None return ''.join(axes), tuple(indices) files = [os.path.normpath(f) for f in files] if len(files) == 1: prefix = os.path.dirname(files[0]) else: prefix = os.path.commonpath(files) prefix = len(prefix) axes = None indices = [] for fname in files: ax, idx = parse(fname[prefix:]) if axes is None: axes = ax if ( axesorder is not None and ( len(axesorder) != len(axes) or any(i not in axesorder for i in range(len(axes)))) ): raise ValueError('invalid axisorder') elif axes != ax: raise ValueError('axes do not match within image sequence') if axesorder is not None: idx = tuple(idx[i] for i in axesorder) indices.append(idx) if axesorder is not None: axes = ''.join(axes[i] for i in axesorder) shape = tuple(numpy.max(indices, axis=0)) startindex = tuple(numpy.min(indices, axis=0)) shape = tuple(i - j + 1 for i, j in zip(shape, startindex)) # if product(shape) != len(files): # raise VaueError('files are missing') return axes, shape, indices, startindex def iter_images(data): """Return iterator over pages in data array of normalized shape.""" for image in data: yield image def iter_tiles(data, tile, tiles): """Return iterator over tiles in data array of normalized shape.""" shape = data.shape chunk = numpy.empty(tile + (shape[-1],), dtype=data.dtype) if not 1 < len(tile) < 4: raise ValueError('invalid tile shape') if len(tile) == 2: for page in data: for plane in page: for ty in range(tiles[0]): for tx in range(tiles[1]): c1 = min(tile[0], shape[3] - ty * tile[0]) c2 = min(tile[1], shape[4] - tx * tile[1]) chunk[c1:, c2:] = 0 chunk[:c1, :c2] = plane[ 0, ty * tile[0]: ty * tile[0] + c1, tx * tile[1]: tx * tile[1] + c2, ] yield chunk else: for page in data: for plane in page: for tz in range(tiles[0]): for ty in range(tiles[1]): for tx in range(tiles[2]): c0 = min(tile[0], shape[2] - tz * tile[0]) c1 = min(tile[1], shape[3] - ty * tile[1]) c2 = min(tile[2], shape[4] - tx * tile[2]) chunk[c0:, c1:, c2:] = 0 chunk[:c0, :c1, :c2] = plane[ tz * tile[0]: tz * tile[0] + c0, ty * tile[1]: ty * tile[1] + c1, tx * tile[2]: tx * tile[2] + c2, ] if tile[0] == 1: # squeeze for image compressors yield chunk[0] else: yield chunk def reorient(image, orientation): """Return reoriented view of image array. Parameters ---------- image : numpy.ndarray Non-squeezed output of asarray() functions. Axes -3 and -2 must be image length and width respectively. orientation : int or str One of TIFF.ORIENTATION names or values. """ orient = TIFF.ORIENTATION orientation = enumarg(orient, orientation) if orientation == orient.TOPLEFT: return image if orientation == orient.TOPRIGHT: return image[..., ::-1, :] if orientation == orient.BOTLEFT: return image[..., ::-1, :, :] if orientation == orient.BOTRIGHT: return image[..., ::-1, ::-1, :] if orientation == orient.LEFTTOP: return numpy.swapaxes(image, -3, -2) if orientation == orient.RIGHTTOP: return numpy.swapaxes(image, -3, -2)[..., ::-1, :] if orientation == orient.RIGHTBOT: return numpy.swapaxes(image, -3, -2)[..., ::-1, :, :] if orientation == orient.LEFTBOT: return numpy.swapaxes(image, -3, -2)[..., ::-1, ::-1, :] return image def repeat_nd(a, repeats): """Return read-only view into input array with elements repeated. Zoom nD image by integer factors using nearest neighbor interpolation (box filter). Parameters ---------- a : array-like Input array. repeats : sequence of int The number of repetitions to apply along each dimension of input array. Examples -------- >>> repeat_nd([[1, 2], [3, 4]], (2, 2)) array([[1, 1, 2, 2], [1, 1, 2, 2], [3, 3, 4, 4], [3, 3, 4, 4]]) """ a = numpy.asarray(a) reshape = [] shape = [] strides = [] for i, j, k in zip(a.strides, a.shape, repeats): shape.extend((j, k)) strides.extend((i, 0)) reshape.append(j * k) return numpy.lib.stride_tricks.as_strided( a, shape, strides, writeable=False).reshape(reshape) def reshape_nd(data_or_shape, ndim): """Return image array or shape with at least ndim dimensions. Prepend 1s to image shape as necessary. >>> reshape_nd(numpy.empty(0), 1).shape (0,) >>> reshape_nd(numpy.empty(1), 2).shape (1, 1) >>> reshape_nd(numpy.empty((2, 3)), 3).shape (1, 2, 3) >>> reshape_nd(numpy.empty((3, 4, 5)), 3).shape (3, 4, 5) >>> reshape_nd((2, 3), 3) (1, 2, 3) """ is_shape = isinstance(data_or_shape, tuple) shape = data_or_shape if is_shape else data_or_shape.shape if len(shape) >= ndim: return data_or_shape shape = (1,) * (ndim - len(shape)) + shape return shape if is_shape else data_or_shape.reshape(shape) def squeeze_axes(shape, axes, skip=None): """Return shape and axes with single-dimensional entries removed. Remove unused dimensions unless their axes are listed in 'skip'. >>> squeeze_axes((5, 1, 2, 1, 1), 'TZYXC') ((5, 2, 1), 'TYX') """ if len(shape) != len(axes): raise ValueError('dimensions of axes and shape do not match') if skip is None: skip = 'XY' shape, axes = zip(*(i for i in zip(shape, axes) if i[0] > 1 or i[1] in skip)) return tuple(shape), ''.join(axes) def transpose_axes(image, axes, asaxes=None): """Return image with its axes permuted to match specified axes. A view is returned if possible. >>> transpose_axes(numpy.zeros((2, 3, 4, 5)), 'TYXC', asaxes='CTZYX').shape (5, 2, 1, 3, 4) """ for ax in axes: if ax not in asaxes: raise ValueError(f'unknown axis {ax}') # add missing axes to image if asaxes is None: asaxes = 'CTZYX' shape = image.shape for ax in reversed(asaxes): if ax not in axes: axes = ax + axes shape = (1,) + shape image = image.reshape(shape) # transpose axes image = image.transpose([axes.index(ax) for ax in asaxes]) return image def reshape_axes(axes, shape, newshape, unknown=None): """Return axes matching new shape. By default, unknown dimensions are labelled 'Q'. >>> reshape_axes('YXS', (219, 301, 1), (219, 301)) 'YX' >>> reshape_axes('IYX', (12, 219, 301), (3, 4, 219, 1, 301, 1)) 'QQYQXQ' """ shape = tuple(shape) newshape = tuple(newshape) if len(axes) != len(shape): raise ValueError('axes do not match shape') size = product(shape) newsize = product(newshape) if size != newsize: raise ValueError(f'cannot reshape {shape} to {newshape}') if not axes or not newshape: return '' lendiff = max(0, len(shape) - len(newshape)) if lendiff: newshape = newshape + (1,) * lendiff i = len(shape) - 1 prodns = 1 prods = 1 result = [] for ns in newshape[:: -1]: prodns *= ns while i > 0 and shape[i] == 1 and ns != 1: i -= 1 if ns == shape[i] and prodns == prods * shape[i]: prods *= shape[i] result.append(axes[i]) i -= 1 elif unknown: result.append(unknown) else: unknown = 'Q' result.append(unknown) return ''.join(reversed(result[lendiff:])) def subresolution(a, b, p=2, n=16): """Return level of subresolution of series or page b vs a.""" if a.axes != b.axes or a.dtype != b.dtype: return None level = None for ax, i, j in zip(a.axes.lower(), a.shape, b.shape): if ax in 'xyz': if level is None: for r in range(n): d = p ** r if d > i: return None if abs((i / d) - j) < 1.0: level = r break else: return None else: d = p ** level if d > i: return None if abs((i / d) - j) >= 1.0: return None elif i != j: return None return level def pyramidize_series(series, isreduced=False): """Pyramidize list of TiffPageSeries in-place. TiffPageSeries that are a subresolution of another TiffPageSeries are appended to the other's TiffPageSeries levels and removed from the list. Levels are to be ordered by size using the same downsampling factor. TiffPageSeries of subifds cannot be pyramid top levels. """ samplingfactors = (2, 3, 4) i = 0 while i < len(series): a = series[i] p = None j = i + 1 if isinstance(a.keyframe.index, tuple): # subifds cannot be pyramid top levels i += 1 continue while j < len(series): b = series[j] if isreduced and not b.keyframe.is_reduced: # pyramid levels must be reduced j += 1 continue # not a pyramid level if p is None: for f in samplingfactors: if subresolution(a.levels[-1], b, p=f) == 1: p = f break # not a pyramid level else: j += 1 continue # not a pyramid level elif subresolution(a.levels[-1], b, p=p) != 1: j += 1 continue a.levels.append(b) del series[j] i += 1 def stack_pages(pages, out=None, maxworkers=None, **kwargs): """Read data from sequence of TiffPage and stack them vertically. Additional parameters are passsed to the TiffPage.asarray function. """ npages = len(pages) if npages == 0: raise ValueError('no pages') if npages == 1: kwargs['maxworkers'] = maxworkers return pages[0].asarray(out=out, **kwargs) page0 = next(p.keyframe for p in pages if p is not None) shape = (npages,) + page0.shape dtype = page0.dtype out = create_output(out, shape, dtype) # TODO: benchmark and optimize this if maxworkers is None or maxworkers < 1: # auto-detect page_maxworkers = page0.maxworkers maxworkers = min(npages, TIFF.MAXWORKERS) if maxworkers == 1 or page0.is_contiguous: maxworkers = page_maxworkers = 1 elif npages < 3: maxworkers = 1 elif ( page_maxworkers <= 2 and page0.compression == 1 and page0.fillorder == 1 and page0.predictor == 1 ): maxworkers = 1 elif page0.compression == 5 and page0._offsetscounts[1][0] < 8192: # disable for small LZW compressed segments maxworkers = page_maxworkers = 1 else: page_maxworkers = 1 elif maxworkers == 1: maxworkers = page_maxworkers = 1 elif npages > maxworkers or page0.maxworkers < 2: page_maxworkers = 1 else: page_maxworkers = maxworkers maxworkers = 1 kwargs['maxworkers'] = page_maxworkers page0.parent.filehandle.lock = maxworkers > 1 or page_maxworkers > 1 filecache = OpenFileCache(size=max(4, maxworkers), lock=page0.parent.filehandle.lock) def func(page, index, out=out, filecache=filecache, kwargs=kwargs): # read, decode, and copy page data if page is not None: filecache.open(page.parent.filehandle) page.asarray(lock=filecache.lock, reopen=False, out=out[index], **kwargs) filecache.close(page.parent.filehandle) if maxworkers < 2: for i, page in enumerate(pages): func(page, i) else: page0.decode # init TiffPage.decode function with ThreadPoolExecutor(maxworkers) as executor: for _ in executor.map(func, pages, range(npages)): pass filecache.clear() page0.parent.filehandle.lock = None return out def create_output(out, shape, dtype, mode='w+', suffix=None): """Return numpy array where image data of shape and dtype can be copied. The 'out' parameter may have the following values or types: None An empty array of shape and dtype is created and returned. numpy.ndarray An existing writable array of compatible dtype and shape. A view of the same array is returned after verification. 'memmap' or 'memmap:tempdir' A memory-map to an array stored in a temporary binary file on disk is created and returned. str or open file The file name or file object used to create a memory-map to an array stored in a binary file on disk. The created memory-mapped array is returned. """ if out is None: return numpy.zeros(shape, dtype) if isinstance(out, str) and out[:6] == 'memmap': import tempfile tempdir = out[7:] if len(out) > 7 else None if suffix is None: suffix = '.memmap' with tempfile.NamedTemporaryFile(dir=tempdir, suffix=suffix) as fh: return numpy.memmap(fh, shape=shape, dtype=dtype, mode=mode) if isinstance(out, numpy.ndarray): if product(shape) != product(out.shape): raise ValueError('incompatible output shape') if not numpy.can_cast(dtype, out.dtype): raise ValueError('incompatible output dtype') return out.reshape(shape) return numpy.memmap(out, shape=shape, dtype=dtype, mode=mode) def matlabstr2py(string): """Return Python object from Matlab string representation. Return str, bool, int, float, list (Matlab arrays or cells), or dict (Matlab structures) types. Use to access ScanImage metadata. >>> matlabstr2py('1') 1 >>> matlabstr2py("['x y z' true false; 1 2.0 -3e4; NaN Inf @class]") [['x y z', True, False], [1, 2.0, -30000.0], [nan, inf, '@class']] >>> d = matlabstr2py("SI.hChannels.channelType = {'stripe' 'stripe'}\\n" ... "SI.hChannels.channelsActive = 2") >>> d['SI.hChannels.channelType'] ['stripe', 'stripe'] """ # TODO: handle invalid input # TODO: review unboxing of multidimensional arrays def lex(s): # return sequence of tokens from matlab string representation tokens = ['['] while True: t, i = next_token(s) if t is None: break if t == ';': tokens.extend((']', '[')) elif t == '[': tokens.extend(('[', '[')) elif t == ']': tokens.extend((']', ']')) else: tokens.append(t) s = s[i:] tokens.append(']') return tokens def next_token(s): # return next token in matlab string length = len(s) if length == 0: return None, 0 i = 0 while i < length and s[i] == ' ': i += 1 if i == length: return None, i if s[i] in '{[;]}': return s[i], i + 1 if s[i] == "'": j = i + 1 while j < length and s[j] != "'": j += 1 return s[i: j + 1], j + 1 if s[i] == '<': j = i + 1 while j < length and s[j] != '>': j += 1 return s[i: j + 1], j + 1 j = i while j < length and not s[j] in ' {[;]}': j += 1 return s[i:j], j def value(s, fail=False): # return Python value of token s = s.strip() if not s: return s if len(s) == 1: try: return int(s) except Exception: if fail: raise ValueError() return s if s[0] == "'": if fail and s[-1] != "'" or "'" in s[1:-1]: raise ValueError() return s[1:-1] if s[0] == '<': if fail and s[-1] != '>' or '<' in s[1:-1]: raise ValueError() return s if fail and any(i in s for i in " ';[]{}"): raise ValueError() if s[0] == '@': return s if s in ('true', 'True'): return True if s in ('false', 'False'): return False if s[:6] == 'zeros(': return numpy.zeros([int(i) for i in s[6:-1].split(',')]).tolist() if s[:5] == 'ones(': return numpy.ones([int(i) for i in s[5:-1].split(',')]).tolist() if '.' in s or 'e' in s: try: return float(s) except Exception: pass try: return int(s) except Exception: pass try: return float(s) # nan, inf except Exception: if fail: raise ValueError() return s def parse(s): # return Python value from string representation of Matlab value s = s.strip() try: return value(s, fail=True) except ValueError: pass result = add2 = [] levels = [add2] for t in lex(s): if t in '[{': add2 = [] levels.append(add2) elif t in ']}': x = levels.pop() if len(x) == 1 and isinstance(x[0], (list, str)): x = x[0] add2 = levels[-1] add2.append(x) else: add2.append(value(t)) if len(result) == 1 and isinstance(result[0], (list, str)): result = result[0] return result if '\r' in string or '\n' in string: # structure d = {} for line in string.splitlines(): line = line.strip() if not line or line[0] == '%': continue k, v = line.split('=', 1) k = k.strip() if any(c in k for c in " ';[]{}<>"): continue d[k] = parse(v) return d return parse(string) def stripnull(string, null=b'\x00', first=True): """Return string truncated at first null character. Clean NULL terminated C strings. For unicode strings use null='\\0'. >>> stripnull(b'string\\x00\\x00') b'string' >>> stripnull(b'string\\x00string\\x00\\x00', first=False) b'string\\x00string' >>> stripnull('string\\x00', null='\\0') 'string' """ if first: i = string.find(null) return string if i < 0 else string[:i] null = null[0] i = len(string) while i: i -= 1 if string[i] != null: break else: i = -1 return string[: i + 1] def stripascii(string): """Return string truncated at last byte that is 7-bit ASCII. Clean NULL separated and terminated TIFF strings. >>> stripascii(b'string\\x00string\\n\\x01\\x00') b'string\\x00string\\n' >>> stripascii(b'\\x00') b'' """ # TODO: pythonize this i = len(string) while i: i -= 1 if 8 < string[i] < 127: break else: i = -1 return string[: i + 1] def asbool(value, true=None, false=None): """Return string as bool if possible, else raise TypeError. >>> asbool(b' False ') False >>> asbool('ON', ['on'], ['off']) True """ value = value.strip().lower() isbytes = False if true is None: if isinstance(value, bytes): if value == b'true': return True isbytes = True elif value == 'true': return True if false is None: if isbytes or isinstance(value, bytes): if value == b'false': return False elif value == 'false': return False if value in true: return True if value in false: return False raise TypeError() def astype(value, types=None): """Return argument as one of types if possible. >>> astype('42') 42 >>> astype('3.14') 3.14 >>> astype('True') True >>> astype(b'Neee-Wom') 'Neee-Wom' """ if types is None: types = int, float, asbool, bytes2str for typ in types: try: return typ(value) except (ValueError, AttributeError, TypeError, UnicodeEncodeError): pass return value def format_size(size, threshold=1536): """Return file size as string from byte size. >>> format_size(1234) '1234 B' >>> format_size(12345678901) '11.50 GiB' """ if size < threshold: return f'{size} B' for unit in ('KiB', 'MiB', 'GiB', 'TiB', 'PiB'): size /= 1024.0 if size < threshold: return f'{size:.2f} {unit}' return 'ginormous' def identityfunc(arg, *args, **kwargs): """Single argument identity function. >>> identityfunc('arg') 'arg' """ return arg def nullfunc(*args, **kwargs): """Null function. >>> nullfunc('arg', kwarg='kwarg') """ return def sequence(value): """Return tuple containing value if value is not a tuple or list. >>> sequence(1) (1,) >>> sequence([1]) [1] >>> sequence('ab') ('ab',) """ return value if isinstance(value, (tuple, list)) else (value,) def product(iterable): """Return product of sequence of numbers. Equivalent of functools.reduce(operator.mul, iterable, 1). Multiplying numpy integers might overflow. >>> product([2**8, 2**30]) 274877906944 >>> product([]) 1 """ prod = 1 for i in iterable: prod *= i return prod def natural_sorted(iterable): """Return human sorted list of strings. E.g. for sorting file names. >>> natural_sorted(['f1', 'f2', 'f10']) ['f1', 'f2', 'f10'] """ def sortkey(x): return [(int(c) if c.isdigit() else c) for c in re.split(numbers, x)] numbers = re.compile(r'(\d+)') return sorted(iterable, key=sortkey) def epics_datetime(sec, nsec): """Return datetime object from epicsTSSec and epicsTSNsec tag values.""" return datetime.datetime.fromtimestamp(sec + 631152000 + nsec / 1e9) def excel_datetime(timestamp, epoch=None): """Return datetime object from timestamp in Excel serial format. Convert LSM time stamps. >>> excel_datetime(40237.029999999795) datetime.datetime(2010, 2, 28, 0, 43, 11, 999982) """ if epoch is None: epoch = datetime.datetime.fromordinal(693594) return epoch + datetime.timedelta(timestamp) def julian_datetime(julianday, milisecond=0): """Return datetime from days since 1/1/4713 BC and ms since midnight. Convert Julian dates according to MetaMorph. >>> julian_datetime(2451576, 54362783) datetime.datetime(2000, 2, 2, 15, 6, 2, 783) """ if julianday <= 1721423: # no datetime before year 1 return None a = julianday + 1 if a > 2299160: alpha = math.trunc((a - 1867216.25) / 36524.25) a += 1 + alpha - alpha // 4 b = a + (1524 if a > 1721423 else 1158) c = math.trunc((b - 122.1) / 365.25) d = math.trunc(365.25 * c) e = math.trunc((b - d) / 30.6001) day = b - d - math.trunc(30.6001 * e) month = e - (1 if e < 13.5 else 13) year = c - (4716 if month > 2.5 else 4715) hour, milisecond = divmod(milisecond, 1000 * 60 * 60) minute, milisecond = divmod(milisecond, 1000 * 60) second, milisecond = divmod(milisecond, 1000) return datetime.datetime(year, month, day, hour, minute, second, milisecond) def byteorder_isnative(byteorder): """Return if byteorder matches the system's byteorder. >>> byteorder_isnative('=') True """ if byteorder in ('=', sys.byteorder): return True keys = {'big': '>', 'little': '<'} return keys.get(byteorder, byteorder) == keys[sys.byteorder] def byteorder_compare(byteorder, byteorder2): """Return if byteorders match. >>> byteorder_compare('<', '<') True >>> byteorder_compare('>', '<') False """ if byteorder == byteorder2 or byteorder == '|' or byteorder2 == '|': return True if byteorder == '=': byteorder = {'big': '>', 'little': '<'}[sys.byteorder] elif byteorder2 == '=': byteorder2 = {'big': '>', 'little': '<'}[sys.byteorder] return byteorder == byteorder2 def recarray2dict(recarray): """Return numpy.recarray as dict.""" # TODO: subarrays result = {} for descr, value in zip(recarray.dtype.descr, recarray): name, dtype = descr[:2] if dtype[1] == 'S': value = bytes2str(stripnull(value)) elif value.ndim < 2: value = value.tolist() result[name] = value return result def xml2dict(xml, sanitize=True, prefix=None): """Return XML as dict. >>> xml2dict('1') {'root': {'key': 1, 'attr': 'name'}} >>> xml2dict('3.5322') {'level1': {'level2': 3.5322}} """ from xml.etree import ElementTree as etree # delayed import at = tx = '' if prefix: at, tx = prefix def astype(value): # return string value as int, float, bool, or unchanged if not isinstance(value, (str, bytes)): return value for t in (int, float, asbool): try: return t(value) except Exception: pass return value def etree2dict(t): # adapted from https://stackoverflow.com/a/10077069/453463 key = t.tag if sanitize: key = key.rsplit('}', 1)[-1] d = {key: {} if t.attrib else None} children = list(t) if children: dd = collections.defaultdict(list) for dc in map(etree2dict, children): for k, v in dc.items(): dd[k].append(astype(v)) d = {key: {k: astype(v[0]) if len(v) == 1 else astype(v) for k, v in dd.items()}} if t.attrib: d[key].update((at + k, astype(v)) for k, v in t.attrib.items()) if t.text: text = t.text.strip() if children or t.attrib: if text: d[key][tx + 'value'] = astype(text) else: d[key] = astype(text) return d return etree2dict(etree.fromstring(xml)) def hexdump(bytestr, width=75, height=24, snipat=-2, modulo=2, ellipsis=None): """Return hexdump representation of bytes. >>> hexdump(binascii.unhexlify('49492a00080000000e00fe0004000100')) '49 49 2a 00 08 00 00 00 0e 00 fe 00 04 00 01 00 II*.............' """ size = len(bytestr) if size < 1 or width < 2 or height < 1: return '' if height == 1: addr = b'' bytesperline = min(modulo * (((width - len(addr)) // 4) // modulo), size) if bytesperline < 1: return '' nlines = 1 else: addr = b'%%0%ix: ' % len(b'%x' % size) bytesperline = min(modulo * (((width - len(addr % 1)) // 4) // modulo), size) if bytesperline < 1: return '' width = 3 * bytesperline + len(addr % 1) nlines = (size - 1) // bytesperline + 1 if snipat is None or snipat == 1: snipat = height elif 0 < abs(snipat) < 1: snipat = int(math.floor(height * snipat)) if snipat < 0: snipat += height if height == 1 or nlines == 1: blocks = [(0, bytestr[:bytesperline])] addr = b'' height = 1 width = 3 * bytesperline elif height is None or nlines <= height: blocks = [(0, bytestr)] elif snipat <= 0: start = bytesperline * (nlines - height) blocks = [(start, bytestr[start:])] # (start, None) elif snipat >= height or height < 3: end = bytesperline * height blocks = [(0, bytestr[:end])] # (end, None) else: end1 = bytesperline * snipat end2 = bytesperline * (height - snipat - 1) blocks = [ (0, bytestr[:end1]), (size - end1 - end2, None), (size - end2, bytestr[size - end2:]), ] ellipsis = b'...' if ellipsis is None else ellipsis.encode('cp1252') result = [] for start, bytestr in blocks: if bytestr is None: result.append(ellipsis) # 'skip %i bytes' % start) continue hexstr = binascii.hexlify(bytestr) strstr = re.sub(br'[^\x20-\x7f]', b'.', bytestr) for i in range(0, len(bytestr), bytesperline): h = hexstr[2 * i: 2 * i + bytesperline * 2] r = (addr % (i + start)) if height > 1 else addr r += b' '.join(h[i: i + 2] for i in range(0, 2 * bytesperline, 2)) r += b' ' * (width - len(r)) r += strstr[i: i + bytesperline] result.append(r) result = b'\n'.join(result) result = result.decode('ascii') return result def isprintable(string): """Return if all characters in string are printable. >>> isprintable('abc') True >>> isprintable(b'\01') False """ string = string.strip() if not string: return True try: return string.isprintable() except Exception: pass try: return string.decode().isprintable() except Exception: pass def clean_whitespace(string, compact=False): """Return string with compressed whitespace.""" for a, b in ( ('\r\n', '\n'), ('\r', '\n'), ('\n\n', '\n'), ('\t', ' '), (' ', ' ') ): string = string.replace(a, b) if compact: for a, b in ( ('\n', ' '), ('[ ', '['), (' ', ' '), (' ', ' '), (' ', ' ') ): string = string.replace(a, b) return string.strip() def pformat_xml(xml): """Return pretty formatted XML.""" try: from lxml import etree # delayed import if not isinstance(xml, bytes): xml = xml.encode() xml = etree.parse(io.BytesIO(xml)) xml = etree.tostring(xml, pretty_print=True, xml_declaration=True, encoding=xml.docinfo.encoding) xml = bytes2str(xml) except Exception: if isinstance(xml, bytes): xml = bytes2str(xml) xml = xml.replace('><', '>\n<') return xml.replace(' ', ' ').replace('\t', ' ') def pformat(arg, width=79, height=24, compact=True): """Return pretty formatted representation of object as string. Whitespace might be altered. """ if height is None or height < 1: height = 1024 if width is None or width < 1: width = 256 npopt = numpy.get_printoptions() numpy.set_printoptions(threshold=100, linewidth=width) if isinstance(arg, bytes): if arg[:5].lower() == b'': arg = bytes2str(arg) if isinstance(arg, bytes): if isprintable(arg): arg = bytes2str(arg) arg = clean_whitespace(arg) else: numpy.set_printoptions(**npopt) return hexdump(arg, width=width, height=height, modulo=1) arg = arg.rstrip() elif isinstance(arg, str): if arg[:5].lower() == '': arg = arg[: 4 * width] if height == 1 else pformat_xml(arg) arg = arg.rstrip() elif isinstance(arg, numpy.record): arg = arg.pprint() else: import pprint # delayed import arg = pprint.pformat(arg, width=width, compact=compact) numpy.set_printoptions(**npopt) if height == 1: arg = clean_whitespace(arg, compact=True) return arg[:width] argl = list(arg.splitlines()) if len(argl) > height: arg = '\n'.join(argl[:height // 2] + ['...'] + argl[-height // 2:]) return arg def snipstr(string, width=79, snipat=None, ellipsis=None): """Return string cut to specified length. >>> snipstr('abcdefghijklmnop', 8) 'abc...op' """ if snipat is None: snipat = 0.5 if ellipsis is None: if isinstance(string, bytes): ellipsis = b'...' else: ellipsis = '\u2026' esize = len(ellipsis) splitlines = string.splitlines() # TODO: finish and test multiline snip result = [] for line in splitlines: if line is None: result.append(ellipsis) continue linelen = len(line) if linelen <= width: result.append(string) continue split = snipat if split is None or split == 1: split = linelen elif 0 < abs(split) < 1: split = int(math.floor(linelen * split)) if split < 0: split += linelen if split < 0: split = 0 if esize == 0 or width < esize + 1: if split <= 0: result.append(string[-width:]) else: result.append(string[:width]) elif split <= 0: result.append(ellipsis + string[esize - width:]) elif split >= linelen or width < esize + 4: result.append(string[:width - esize] + ellipsis) else: splitlen = linelen - width + esize end1 = split - splitlen // 2 end2 = end1 + splitlen result.append(string[:end1] + ellipsis + string[end2:]) if isinstance(string, bytes): return b'\n'.join(result) return '\n'.join(result) def enumstr(enum): """Return short string representation of Enum instance.""" name = enum.name if name is None: name = str(enum) return name def enumarg(enum, arg): """Return enum member from its name or value. >>> enumarg(TIFF.PHOTOMETRIC, 2) >>> enumarg(TIFF.PHOTOMETRIC, 'RGB') """ try: return enum(arg) except Exception: try: return enum[arg.upper()] except Exception: raise ValueError(f'invalid argument {arg}') def parse_kwargs(kwargs, *keys, **keyvalues): """Return dict with keys from keys|keyvals and values from kwargs|keyvals. Existing keys are deleted from kwargs. >>> kwargs = {'one': 1, 'two': 2, 'four': 4} >>> kwargs2 = parse_kwargs(kwargs, 'two', 'three', four=None, five=5) >>> kwargs == {'one': 1} True >>> kwargs2 == {'two': 2, 'four': 4, 'five': 5} True """ result = {} for key in keys: if key in kwargs: result[key] = kwargs[key] del kwargs[key] for key, value in keyvalues.items(): if key in kwargs: result[key] = kwargs[key] del kwargs[key] else: result[key] = value return result def update_kwargs(kwargs, **keyvalues): """Update dict with keys and values if keys do not already exist. >>> kwargs = {'one': 1, } >>> update_kwargs(kwargs, one=None, two=2) >>> kwargs == {'one': 1, 'two': 2} True """ for key, value in keyvalues.items(): if key not in kwargs: kwargs[key] = value def log_warning(msg, *args, **kwargs): """Log message with level WARNING.""" import logging logging.getLogger(__name__).warning(msg, *args, **kwargs) def validate_jhove(filename, jhove=None, ignore=None): """Validate TIFF file using jhove -m TIFF-hul. Raise ValueError if jhove outputs an error message unless the message contains one of the strings in 'ignore'. JHOVE does not support bigtiff or more than 50 IFDs. See `JHOVE TIFF-hul Module `_ """ import subprocess if ignore is None: ignore = ['More than 50 IFDs'] if jhove is None: jhove = 'jhove' out = subprocess.check_output([jhove, filename, '-m', 'TIFF-hul']) if b'ErrorMessage: ' in out: for line in out.splitlines(): line = line.strip() if line.startswith(b'ErrorMessage: '): error = line[14:].decode() for i in ignore: if i in error: break else: raise ValueError(error) break def lsm2bin(lsmfile, binfile=None, tile=None, verbose=True): """Convert [MP]TZCYX LSM file to series of BIN files. One BIN file containing 'ZCYX' data are created for each position, time, and tile. The position, time, and tile indices are encoded at the end of the filenames. """ verbose = print if verbose else nullfunc if tile is None: tile = (256, 256) if binfile is None: binfile = lsmfile elif binfile.lower() == 'none': binfile = None if binfile: binfile += '_(z%ic%iy%ix%i)_m%%ip%%it%%03iy%%ix%%i.bin' verbose('\nOpening LSM file... ', end='', flush=True) timer = Timer() with TiffFile(lsmfile) as lsm: if not lsm.is_lsm: verbose('\n', lsm, flush=True) raise ValueError('not a LSM file') series = lsm.series[0] # first series contains the image data shape = series.shape axes = series.axes dtype = series.dtype size = product(shape) * dtype.itemsize verbose(timer) # verbose(lsm, flush=True) verbose( 'Image\n axes: {}\n shape: {}\n dtype: {}\n size: {}'.format( axes, shape, dtype, format_size(size) ), flush=True ) if not series.axes.endswith('TZCYX'): raise ValueError('not a *TZCYX LSM file') verbose('Copying image from LSM to BIN files', end='', flush=True) timer.start() tiles = shape[-2] // tile[-2], shape[-1] // tile[-1] if binfile: binfile = binfile % (shape[-4], shape[-3], tile[0], tile[1]) shape = (1,) * (7 - len(shape)) + shape # cache for ZCYX stacks and output files data = numpy.empty(shape[3:], dtype=dtype) out = numpy.empty((shape[-4], shape[-3], tile[0], tile[1]), dtype=dtype) # iterate over Tiff pages containing data pages = iter(series.pages) for m in range(shape[0]): # mosaic axis for p in range(shape[1]): # position axis for t in range(shape[2]): # time axis for z in range(shape[3]): # z slices data[z] = next(pages).asarray() for y in range(tiles[0]): # tile y for x in range(tiles[1]): # tile x out[:] = data[ ..., y * tile[0]: (y + 1) * tile[0], x * tile[1]: (x + 1) * tile[1] ] if binfile: out.tofile(binfile % (m, p, t, y, x)) verbose('.', end='', flush=True) verbose(timer, flush=True) def imshow(data, photometric=None, planarconfig=None, bitspersample=None, nodata=0, interpolation=None, cmap=None, vmin=None, vmax=None, figure=None, title=None, dpi=96, subplot=None, maxdim=None, **kwargs): """Plot n-dimensional images using matplotlib.pyplot. Return figure, subplot and plot axis. Requires pyplot already imported C{from matplotlib import pyplot}. Parameters ---------- data : nd array The image data. photometric : {'MINISWHITE', 'MINISBLACK', 'RGB', or 'PALETTE'} The color space of the image data. planarconfig : {'CONTIG' or 'SEPARATE'} Defines how components of each pixel are stored. bitspersample : int Number of bits per channel in integer RGB images. interpolation : str The image interpolation method used in matplotlib.imshow. By default, 'nearest' will be used for image dimensions <= 512, else 'bilinear'. cmap : str or matplotlib.colors.Colormap The colormap maps non-RGBA scalar data to colors. vmin, vmax : scalar Data range covered by the colormap. By default, the complete range of the data is covered. figure : matplotlib.figure.Figure Matplotlib figure to use for plotting. title : str Window and subplot title. subplot : int A matplotlib.pyplot.subplot axis. maxdim : int Maximum image width and length. kwargs : dict Additional arguments for matplotlib.pyplot.imshow. """ # TODO: rewrite detection of isrgb, iscontig # TODO: use planarconfig if photometric is None: photometric = 'RGB' if maxdim is None: maxdim = 2**16 isrgb = photometric in ('RGB', 'YCBCR') # 'PALETTE', 'YCBCR' if data.dtype == 'float16': data = data.astype('float32') if data.dtype.kind == 'b': isrgb = False if isrgb and not ( data.shape[-1] in (3, 4) or (data.ndim > 2 and data.shape[-3] in (3, 4)) ): isrgb = False photometric = 'MINISBLACK' data = data.squeeze() if photometric in ('MINISWHITE', 'MINISBLACK', None): data = reshape_nd(data, 2) else: data = reshape_nd(data, 3) dims = data.ndim if dims < 2: raise ValueError('not an image') if dims == 2: dims = 0 isrgb = False else: if isrgb and data.shape[-3] in (3, 4): data = numpy.swapaxes(data, -3, -2) data = numpy.swapaxes(data, -2, -1) elif not isrgb and ( data.shape[-1] < data.shape[-2] // 8 and data.shape[-1] < data.shape[-3] // 8 ): data = numpy.swapaxes(data, -3, -1) data = numpy.swapaxes(data, -2, -1) isrgb = isrgb and data.shape[-1] in (3, 4) dims -= 3 if isrgb else 2 if interpolation is None: threshold = 512 elif isinstance(interpolation, int): threshold = interpolation else: threshold = 0 if isrgb: data = data[..., :maxdim, :maxdim, :maxdim] if threshold: if data.shape[-2] > threshold or data.shape[-3] > threshold: interpolation = 'bilinear' else: interpolation = 'nearest' else: data = data[..., :maxdim, :maxdim] if threshold: if data.shape[-1] > threshold or data.shape[-2] > threshold: interpolation = 'bilinear' else: interpolation = 'nearest' if photometric == 'PALETTE' and isrgb: try: datamax = numpy.max(data) except ValueError: datamax = 1 if datamax > 255: data = data >> 8 # possible precision loss data = data.astype('B') elif data.dtype.kind in 'ui': if not (isrgb and data.dtype.itemsize <= 1) or bitspersample is None: try: bitspersample = int(math.ceil(math.log(data.max(), 2))) except Exception: bitspersample = data.dtype.itemsize * 8 elif not isinstance(bitspersample, (int, numpy.integer)): # bitspersample can be tuple, e.g. (5, 6, 5) bitspersample = data.dtype.itemsize * 8 datamax = 2**bitspersample if isrgb: if bitspersample < 8: data = data << (8 - bitspersample) elif bitspersample > 8: data = data >> (bitspersample - 8) # precision loss data = data.astype('B') elif data.dtype.kind == 'f': if nodata: data = data.copy() data[data > 1e30] = 0.0 try: datamax = numpy.max(data) except ValueError: datamax = 1 if isrgb and datamax > 1.0: if data.dtype.char == 'd': data = data.astype('f') data /= datamax else: data = data / datamax elif data.dtype.kind == 'b': datamax = 1 elif data.dtype.kind == 'c': data = numpy.absolute(data) try: datamax = numpy.max(data) except ValueError: datamax = 1 if isrgb: vmin = 0 else: if vmax is None: vmax = datamax if vmin is None: if data.dtype.kind == 'i': dtmin = numpy.iinfo(data.dtype).min try: vmin = numpy.min(data) except ValueError: vmin = -1 if vmin == dtmin: vmin = numpy.min(data[data > dtmin]) elif data.dtype.kind == 'f': dtmin = numpy.finfo(data.dtype).min try: vmin = numpy.min(data) except ValueError: vmin = 0.0 if vmin == dtmin: vmin = numpy.min(data[data > dtmin]) else: vmin = 0 pyplot = sys.modules['matplotlib.pyplot'] if figure is None: pyplot.rc('font', family='sans-serif', weight='normal', size=8) figure = pyplot.figure(dpi=dpi, figsize=(10.3, 6.3), frameon=True, facecolor='1.0', edgecolor='w') try: figure.canvas.manager.window.title(title) except Exception: pass size = len(title.splitlines()) if title else 1 pyplot.subplots_adjust( bottom=0.03 * (dims + 2), top=0.98 - size * 0.03, left=0.1, right=0.95, hspace=0.05, wspace=0.0) if subplot is None: subplot = 111 subplot = pyplot.subplot(subplot) subplot.set_facecolor((0, 0, 0)) if title: try: title = str(title, 'Windows-1252') except TypeError: pass pyplot.title(title, size=11) if cmap is None: if data.dtype.char == '?': cmap = 'gray' elif data.dtype.kind in 'buf' or vmin == 0: cmap = 'viridis' else: cmap = 'coolwarm' if photometric == 'MINISWHITE': cmap += '_r' image = pyplot.imshow(numpy.atleast_2d(data[(0,) * dims].squeeze()), vmin=vmin, vmax=vmax, cmap=cmap, interpolation=interpolation, **kwargs) if not isrgb: pyplot.colorbar() # panchor=(0.55, 0.5), fraction=0.05 def format_coord(x, y): # callback function to format coordinate display in toolbar x = int(x + 0.5) y = int(y + 0.5) try: if dims: return f'{curaxdat[1][y, x]} @ {current} [{y:4}, {x:4}]' return f'{data[y, x]} @ [{y:4}, {x:4}]' except IndexError: return '' def none(event): return '' subplot.format_coord = format_coord image.get_cursor_data = none image.format_cursor_data = none if dims: current = list((0,) * dims) curaxdat = [0, data[tuple(current)].squeeze()] sliders = [ pyplot.Slider( pyplot.axes([0.125, 0.03 * (axis + 1), 0.725, 0.025]), f'Dimension {axis}', 0, data.shape[axis] - 1, 0, facecolor='0.5', valfmt=f'%.0f [{data.shape[axis]}]' ) for axis in range(dims) ] for slider in sliders: slider.drawon = False def set_image(current, sliders=sliders, data=data): # change image and redraw canvas curaxdat[1] = data[tuple(current)].squeeze() image.set_data(curaxdat[1]) for ctrl, index in zip(sliders, current): ctrl.eventson = False ctrl.set_val(index) ctrl.eventson = True figure.canvas.draw() def on_changed(index, axis, data=data, current=current): # callback function for slider change event index = int(round(index)) curaxdat[0] = axis if index == current[axis]: return if index >= data.shape[axis]: index = 0 elif index < 0: index = data.shape[axis] - 1 current[axis] = index set_image(current) def on_keypressed(event, data=data, current=current): # callback function for key press event key = event.key axis = curaxdat[0] if str(key) in '0123456789': on_changed(key, axis) elif key == 'right': on_changed(current[axis] + 1, axis) elif key == 'left': on_changed(current[axis] - 1, axis) elif key == 'up': curaxdat[0] = 0 if axis == len(data.shape) - 1 else axis + 1 elif key == 'down': curaxdat[0] = len(data.shape) - 1 if axis == 0 else axis - 1 elif key == 'end': on_changed(data.shape[axis] - 1, axis) elif key == 'home': on_changed(0, axis) figure.canvas.mpl_connect('key_press_event', on_keypressed) for axis, ctrl in enumerate(sliders): ctrl.on_changed(lambda k, a=axis: on_changed(k, a)) return figure, subplot, image def _app_show(): """Block the GUI. For use as skimage plugin.""" pyplot = sys.modules['matplotlib.pyplot'] pyplot.show() def askopenfilename(**kwargs): """Return file name(s) from Tkinter's file open dialog.""" from tkinter import Tk, filedialog root = Tk() root.withdraw() root.update() filenames = filedialog.askopenfilename(**kwargs) root.destroy() return filenames def main(): """Tifffile command line usage main function.""" import optparse # TODO: use argparse import logging logging.getLogger(__name__).setLevel(logging.INFO) parser = optparse.OptionParser( usage='usage: %prog [options] path', description='Display image data in TIFF files.', version=f'%prog {__version__}', prog='tifffile') opt = parser.add_option opt('-p', '--page', dest='page', type='int', default=-1, help='display single page') opt('-s', '--series', dest='series', type='int', default=-1, help='display series of pages of same shape') opt('-l', '--level', dest='level', type='int', default=-1, help='display pyramid level of series') opt('--nomultifile', dest='nomultifile', action='store_true', default=False, help='do not read OME series from multiple files') opt('--noplots', dest='noplots', type='int', default=10, help='maximum number of plots') opt('--interpol', dest='interpol', metavar='INTERPOL', default=None, help='image interpolation method') opt('--dpi', dest='dpi', type='int', default=96, help='plot resolution') opt('--vmin', dest='vmin', type='int', default=None, help='minimum value for colormapping') opt('--vmax', dest='vmax', type='int', default=None, help='maximum value for colormapping') opt('--debug', dest='debug', action='store_true', default=False, help='raise exception on failures') opt('--doctest', dest='doctest', action='store_true', default=False, help='runs the docstring examples') opt('-v', '--detail', dest='detail', type='int', default=2) opt('-q', '--quiet', dest='quiet', action='store_true') settings, path = parser.parse_args() path = ' '.join(path) if settings.doctest: import doctest try: import tifffile.tifffile as m except ImportError: m = None doctest.testmod(m, optionflags=doctest.ELLIPSIS) return 0 if not path: path = askopenfilename(title='Select a TIFF file', filetypes=TIFF.FILEOPEN_FILTER) if not path: parser.error('No file specified') if any(i in path for i in '?*'): path = glob.glob(path) if not path: print('No files match the pattern') return 0 # TODO: handle image sequences path = path[0] if not settings.quiet: print('\nReading TIFF header:', end=' ', flush=True) timer = Timer() try: tif = TiffFile(path, multifile=not settings.nomultifile) except Exception as exc: if settings.debug: raise print(f'\n\n{exc.__class__.__name__}: {exc}') sys.exit(0) if not settings.quiet: print(timer) if tif.is_ome: settings.norgb = True images = [] if settings.noplots > 0: if not settings.quiet: print('Reading image data: ', end=' ', flush=True) def notnone(x): return next(i for i in x if i is not None) timer.start() try: if settings.page >= 0: images = [ (tif.asarray(key=settings.page), tif[settings.page], None) ] elif settings.series >= 0: series = tif.series[settings.series] if settings.level >= 0: level = settings.level elif series.is_pyramid and product(series.shape) > 2**32: level = -1 for r in series.levels: level += 1 if product(r.shape) < 2**32: break else: level = 0 images = [( tif.asarray(series=settings.series, level=level), notnone(tif.series[settings.series]._pages), tif.series[settings.series] )] else: for i, s in enumerate(tif.series[:settings.noplots]): if settings.level < 0: level = -1 for r in s.levels: level += 1 if product(r.shape) < 2**31: break else: level = 0 try: images.append(( tif.asarray(series=i, level=level), notnone(s._pages), tif.series[i] )) except Exception as exc: images.append((None, notnone(s.pages), None)) if settings.debug: raise print( '\nSeries {} failed with {}: {}... '.format( i, exc.__class__.__name__, exc), end='' ) except Exception as exc: if settings.debug: raise print(f'{exc.__class__.__name__}: {exc}') if not settings.quiet: print(timer) if not settings.quiet: print('Generating report:', end=' ', flush=True) timer.start() info = TiffFile.__str__(tif, detail=int(settings.detail)) print(timer) print() print(info) print() tif.close() if images and settings.noplots > 0: try: import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot except ImportError as exc: log_warning(f'tifffile.main: {exc.__class__.__name__}: {exc}') else: for img, page, series in images: if img is None: continue vmin, vmax = settings.vmin, settings.vmax if page.keyframe.nodata: try: vmin = numpy.min(img[img > page.keyframe.nodata]) except ValueError: pass if tif.is_stk: try: vmin = tif.stk_metadata['MinScale'] vmax = tif.stk_metadata['MaxScale'] except KeyError: pass else: if vmax <= vmin: vmin, vmax = settings.vmin, settings.vmax if series: title = f'{tif}\n{page}\n{series}' else: title = f'{tif}\n {page}' photometric = 'MINISBLACK' if page.photometric not in (3,): photometric = TIFF.PHOTOMETRIC(page.photometric).name imshow(img, title=title, vmin=vmin, vmax=vmax, bitspersample=page.bitspersample, nodata=page.nodata, photometric=photometric, interpolation=settings.interpol, dpi=settings.dpi) pyplot.show() return 0 def bytes2str(b, encoding=None, errors='strict'): """Return unicode string from encoded bytes.""" if encoding is not None: return b.decode(encoding, errors) try: return b.decode('utf-8', errors) except UnicodeDecodeError: return b.decode('cp1252', errors) def bytestr(s, encoding='cp1252'): """Return bytes from unicode string, else pass through.""" return s.encode(encoding) if isinstance(s, str) else s # deprecated imsave = imwrite if __name__ == '__main__': sys.exit(main())