from types import GeneratorType import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from scipy.spatial.distance import cdist, pdist, squareform import pytest from sklearn import config_context from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_allclose from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import ignore_warnings from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import nan_euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import haversine_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import laplacian_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_chunked from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_BOOLEAN_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.metrics.pairwise import _euclidean_distances_upcast from sklearn.preprocessing import normalize from sklearn.exceptions import DataConversionWarning def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Check to ensure NaNs work with pairwise_distances. X_masked = rng.random_sample((5, 4)) Y_masked = rng.random_sample((2, 4)) X_masked[0, 0] = np.nan Y_masked[0, 0] = np.nan S_masked = pairwise_distances(X_masked, Y_masked, metric="nan_euclidean") S2_masked = nan_euclidean_distances(X_masked, Y_masked) assert_array_almost_equal(S_masked, S2_masked) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # Test haversine distance # The data should be valid latitude and longitude X = rng.random_sample((5, 2)) X[:, 0] = (X[:, 0] - 0.5) * 2 * np.pi/2 X[:, 1] = (X[:, 1] - 0.5) * 2 * np.pi S = pairwise_distances(X, metric="haversine") S2 = haversine_distances(X) assert_array_almost_equal(S, S2) # Test haversine distance, with Y != X Y = rng.random_sample((2, 2)) Y[:, 0] = (Y[:, 0] - 0.5)*2*np.pi/2 Y[:, 1] = (Y[:, 1] - 0.5)*2*np.pi S = pairwise_distances(X, Y, metric="haversine") S2 = haversine_distances(X, Y) assert_array_almost_equal(S, S2) # "cityblock" uses scikit-learn metric, cityblock (function) is # scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert S.shape[0] == S.shape[1] assert S.shape[0] == X.shape[0] assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert S.shape[0] == X.shape[0] assert S.shape[1] == Y.shape[0] assert_array_almost_equal(S, S2) # Test cosine as a string metric versus cosine callable # The string "cosine" uses sklearn.metric, # while the function cosine is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert S.shape[0] == X.shape[0] assert S.shape[1] == Y.shape[0] assert_array_almost_equal(S, S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given with pytest.raises(TypeError): pairwise_distances(X_sparse, metric="minkowski") with pytest.raises(TypeError): pairwise_distances(X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unknown with pytest.raises(ValueError): pairwise_distances(X, Y, metric="blah") @pytest.mark.parametrize('metric', PAIRWISE_BOOLEAN_FUNCTIONS) def test_pairwise_boolean_distance(metric): # test that we convert to boolean arrays for boolean distances rng = np.random.RandomState(0) X = rng.randn(5, 4) Y = X.copy() Y[0, 0] = 1 - Y[0, 0] # ignore conversion to boolean in pairwise_distances with ignore_warnings(category=DataConversionWarning): for Z in [Y, None]: res = pairwise_distances(X, Z, metric=metric) res[np.isnan(res)] = 0 assert np.sum(res != 0) == 0 # non-boolean arrays are converted to boolean for boolean # distance metrics with a data conversion warning msg = "Data was converted to boolean for metric %s" % metric with pytest.warns(DataConversionWarning, match=msg): pairwise_distances(X, metric=metric) # Check that the warning is raised if X is boolean by Y is not boolean: with pytest.warns(DataConversionWarning, match=msg): pairwise_distances(X.astype(bool), Y=Y, metric=metric) # Check that no warning is raised if X is already boolean and Y is None: with pytest.warns(None) as records: pairwise_distances(X.astype(bool), metric=metric) assert len(records) == 0 def test_no_data_conversion_warning(): # No warnings issued if metric is not a boolean distance function rng = np.random.RandomState(0) X = rng.randn(5, 4) with pytest.warns(None) as records: pairwise_distances(X, metric="minkowski") assert len(records) == 0 @pytest.mark.parametrize('func', [pairwise_distances, pairwise_kernels]) def test_pairwise_precomputed(func): # Test correct shape with pytest.raises(ValueError, match='.* shape .*'): func(np.zeros((5, 3)), metric='precomputed') # with two args with pytest.raises(ValueError, match='.* shape .*'): func(np.zeros((5, 3)), np.zeros((4, 4)), metric='precomputed') # even if shape[1] agrees (although thus second arg is spurious) with pytest.raises(ValueError, match='.* shape .*'): func(np.zeros((5, 3)), np.zeros((4, 3)), metric='precomputed') # Test not copied (if appropriate dtype) S = np.zeros((5, 5)) S2 = func(S, metric="precomputed") assert S is S2 # with two args S = np.zeros((5, 3)) S2 = func(S, np.zeros((3, 3)), metric="precomputed") assert S is S2 # Test always returns float dtype S = func(np.array([[1]], dtype='int'), metric='precomputed') assert 'f' == S.dtype.kind # Test converts list to array-like S = func([[1.]], metric='precomputed') assert isinstance(S, np.ndarray) def test_pairwise_precomputed_non_negative(): # Test non-negative values with pytest.raises(ValueError, match='.* non-negative values.*'): pairwise_distances(np.full((5, 5), -1), metric='precomputed') _wminkowski_kwds = {'w': np.arange(1, 5).astype('double', copy=False), 'p': 1} def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K @pytest.mark.parametrize( 'func, metric, kwds', [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, _wminkowski_kwds), (pairwise_distances, 'wminkowski', _wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1})]) @pytest.mark.parametrize('array_constr', [np.array, csr_matrix]) @pytest.mark.parametrize('dtype', [np.float64, int]) def test_pairwise_parallel(func, metric, kwds, array_constr, dtype): rng = np.random.RandomState(0) X = array_constr(5 * rng.random_sample((5, 4)), dtype=dtype) Y = array_constr(5 * rng.random_sample((3, 4)), dtype=dtype) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if array_constr is csr_matrix: with pytest.raises(type(exc)): func(X, metric=metric, n_jobs=2, **kwds) return else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_allclose(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_allclose(S, S2) def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert pairwise_distances([[1.]], metric=lambda x, y: 5)[0, 0] == 5 # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. @pytest.mark.parametrize( 'metric', ["rbf", "laplacian", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"]) def test_pairwise_kernels(metric): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet with pytest.raises(ValueError): pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) return K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_callable(): # Test the pairwise_kernels helper function # with a callable function, with given keywords. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) metric = callable_rbf_kernel kwds = {'gamma': 0.1} K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) with pytest.raises(TypeError): pairwise_kernels(X, Y, metric="rbf", **params) @pytest.mark.parametrize('metric, func', PAIRED_DISTANCES.items()) def test_paired_distances(metric, func): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) def test_paired_distances_callable(): # Test the pairwise_distance helper function # with the callable implementation rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) with pytest.raises(ValueError): paired_distances(X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-2], [3]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) expected_idx = [0, 1] expected_vals = [2, 2] expected_vals_sq = [4, 4] # euclidean metric idx, vals = pairwise_distances_argmin_min(X, Y, metric="euclidean") idx2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(idx, expected_idx) assert_array_almost_equal(idx2, expected_idx) assert_array_almost_equal(vals, expected_vals) # sparse matrix case idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_almost_equal(idxsp, expected_idx) assert_array_almost_equal(valssp, expected_vals) # We don't want np.matrix here assert type(idxsp) == np.ndarray assert type(valssp) == np.ndarray # euclidean metric squared idx, vals = pairwise_distances_argmin_min(X, Y, metric="euclidean", metric_kwargs={"squared": True}) assert_array_almost_equal(idx, expected_idx) assert_array_almost_equal(vals, expected_vals_sq) # Non-euclidean scikit-learn metric idx, vals = pairwise_distances_argmin_min(X, Y, metric="manhattan") idx2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(idx, expected_idx) assert_array_almost_equal(idx2, expected_idx) assert_array_almost_equal(vals, expected_vals) # sparse matrix case idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(idxsp, expected_idx) assert_array_almost_equal(valssp, expected_vals) # Non-euclidean Scipy distance (callable) idx, vals = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(idx, expected_idx) assert_array_almost_equal(vals, expected_vals) # Non-euclidean Scipy distance (string) idx, vals = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(idx, expected_idx) assert_array_almost_equal(vals, expected_vals) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan") np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def _reduce_func(dist, start): return dist[:, :100] def test_pairwise_distances_chunked_reduce(): rng = np.random.RandomState(0) X = rng.random_sample((400, 4)) # Reduced Euclidean distance S = pairwise_distances(X)[:, :100] S_chunks = pairwise_distances_chunked(X, None, reduce_func=_reduce_func, working_memory=2 ** -16) assert isinstance(S_chunks, GeneratorType) S_chunks = list(S_chunks) assert len(S_chunks) > 1 # atol is for diagonal where S is explicitly zeroed on the diagonal assert_allclose(np.vstack(S_chunks), S, atol=1e-7) def test_pairwise_distances_chunked_reduce_none(): # check that the reduce func is allowed to return None rng = np.random.RandomState(0) X = rng.random_sample((10, 4)) S_chunks = pairwise_distances_chunked(X, None, reduce_func=lambda dist, start: None, working_memory=2 ** -16) assert isinstance(S_chunks, GeneratorType) S_chunks = list(S_chunks) assert len(S_chunks) > 1 assert all(chunk is None for chunk in S_chunks) @pytest.mark.parametrize('good_reduce', [ lambda D, start: list(D), lambda D, start: np.array(D), lambda D, start: csr_matrix(D), lambda D, start: (list(D), list(D)), lambda D, start: (dok_matrix(D), np.array(D), list(D)), ]) def test_pairwise_distances_chunked_reduce_valid(good_reduce): X = np.arange(10).reshape(-1, 1) S_chunks = pairwise_distances_chunked(X, None, reduce_func=good_reduce, working_memory=64) next(S_chunks) @pytest.mark.parametrize(('bad_reduce', 'err_type', 'message'), [ (lambda D, s: np.concatenate([D, D[-1:]]), ValueError, r'length 11\..* input: 10\.'), (lambda D, s: (D, np.concatenate([D, D[-1:]])), ValueError, r'length \(10, 11\)\..* input: 10\.'), (lambda D, s: (D[:9], D), ValueError, r'length \(9, 10\)\..* input: 10\.'), (lambda D, s: 7, TypeError, r'returned 7\. Expected sequence\(s\) of length 10\.'), (lambda D, s: (7, 8), TypeError, r'returned \(7, 8\)\. Expected sequence\(s\) of length 10\.'), (lambda D, s: (np.arange(10), 9), TypeError, r', 9\)\. Expected sequence\(s\) of length 10\.'), ]) def test_pairwise_distances_chunked_reduce_invalid(bad_reduce, err_type, message): X = np.arange(10).reshape(-1, 1) S_chunks = pairwise_distances_chunked(X, None, reduce_func=bad_reduce, working_memory=64) with pytest.raises(err_type, match=message): next(S_chunks) def check_pairwise_distances_chunked(X, Y, working_memory, metric='euclidean'): gen = pairwise_distances_chunked(X, Y, working_memory=working_memory, metric=metric) assert isinstance(gen, GeneratorType) blockwise_distances = list(gen) Y = X if Y is None else Y min_block_mib = len(Y) * 8 * 2 ** -20 for block in blockwise_distances: memory_used = block.nbytes assert memory_used <= max(working_memory, min_block_mib) * 2 ** 20 blockwise_distances = np.vstack(blockwise_distances) S = pairwise_distances(X, Y, metric=metric) assert_array_almost_equal(blockwise_distances, S) @pytest.mark.parametrize( 'metric', ('euclidean', 'l2', 'sqeuclidean')) def test_pairwise_distances_chunked_diagonal(metric): rng = np.random.RandomState(0) X = rng.normal(size=(1000, 10), scale=1e10) chunks = list(pairwise_distances_chunked(X, working_memory=1, metric=metric)) assert len(chunks) > 1 assert_array_almost_equal(np.diag(np.vstack(chunks)), 0, decimal=10) @pytest.mark.parametrize( 'metric', ('euclidean', 'l2', 'sqeuclidean')) def test_parallel_pairwise_distances_diagonal(metric): rng = np.random.RandomState(0) X = rng.normal(size=(1000, 10), scale=1e10) distances = pairwise_distances(X, metric=metric, n_jobs=2) assert_allclose(np.diag(distances), 0, atol=1e-10) @ignore_warnings def test_pairwise_distances_chunked(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((200, 4)) check_pairwise_distances_chunked(X, None, working_memory=1, metric='euclidean') # Test small amounts of memory for power in range(-16, 0): check_pairwise_distances_chunked(X, None, working_memory=2 ** power, metric='euclidean') # X as list check_pairwise_distances_chunked(X.tolist(), None, working_memory=1, metric='euclidean') # Euclidean distance, with Y != X. Y = rng.random_sample((100, 4)) check_pairwise_distances_chunked(X, Y, working_memory=1, metric='euclidean') check_pairwise_distances_chunked(X.tolist(), Y.tolist(), working_memory=1, metric='euclidean') # absurdly large working_memory check_pairwise_distances_chunked(X, Y, working_memory=10000, metric='euclidean') # "cityblock" uses scikit-learn metric, cityblock (function) is # scipy.spatial. check_pairwise_distances_chunked(X, Y, working_memory=1, metric='cityblock') # Test that a value error is raised if the metric is unknown with pytest.raises(ValueError): next(pairwise_distances_chunked(X, Y, metric="blah")) # Test precomputed returns all at once D = pairwise_distances(X) gen = pairwise_distances_chunked(D, working_memory=2 ** -16, metric='precomputed') assert isinstance(gen, GeneratorType) assert next(gen) is D with pytest.raises(StopIteration): next(gen) @pytest.mark.parametrize("x_array_constr", [np.array, csr_matrix], ids=["dense", "sparse"]) @pytest.mark.parametrize("y_array_constr", [np.array, csr_matrix], ids=["dense", "sparse"]) def test_euclidean_distances_known_result(x_array_constr, y_array_constr): # Check the pairwise Euclidean distances computation on known result X = x_array_constr([[0]]) Y = y_array_constr([[1], [2]]) D = euclidean_distances(X, Y) assert_allclose(D, [[1., 2.]]) @pytest.mark.parametrize("dtype", [np.float32, np.float64]) @pytest.mark.parametrize("y_array_constr", [np.array, csr_matrix], ids=["dense", "sparse"]) def test_euclidean_distances_with_norms(dtype, y_array_constr): # check that we still get the right answers with {X,Y}_norm_squared # and that we get a wrong answer with wrong {X,Y}_norm_squared rng = np.random.RandomState(0) X = rng.random_sample((10, 10)).astype(dtype, copy=False) Y = rng.random_sample((20, 10)).astype(dtype, copy=False) # norms will only be used if their dtype is float64 X_norm_sq = (X.astype(np.float64) ** 2).sum(axis=1).reshape(1, -1) Y_norm_sq = (Y.astype(np.float64) ** 2).sum(axis=1).reshape(1, -1) Y = y_array_constr(Y) D1 = euclidean_distances(X, Y) D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq) D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq) D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq) assert_allclose(D2, D1) assert_allclose(D3, D1) assert_allclose(D4, D1) # check we get the wrong answer with wrong {X,Y}_norm_squared wrong_D = euclidean_distances(X, Y, X_norm_squared=np.zeros_like(X_norm_sq), Y_norm_squared=np.zeros_like(Y_norm_sq)) with pytest.raises(AssertionError): assert_allclose(wrong_D, D1) @pytest.mark.parametrize("dtype", [np.float32, np.float64]) @pytest.mark.parametrize("x_array_constr", [np.array, csr_matrix], ids=["dense", "sparse"]) @pytest.mark.parametrize("y_array_constr", [np.array, csr_matrix], ids=["dense", "sparse"]) def test_euclidean_distances(dtype, x_array_constr, y_array_constr): # check that euclidean distances gives same result as scipy cdist # when X and Y != X are provided rng = np.random.RandomState(0) X = rng.random_sample((100, 10)).astype(dtype, copy=False) X[X < 0.8] = 0 Y = rng.random_sample((10, 10)).astype(dtype, copy=False) Y[Y < 0.8] = 0 expected = cdist(X, Y) X = x_array_constr(X) Y = y_array_constr(Y) distances = euclidean_distances(X, Y) # the default rtol=1e-7 is too close to the float32 precision # and fails due to rounding errors. assert_allclose(distances, expected, rtol=1e-6) assert distances.dtype == dtype @pytest.mark.parametrize("dtype", [np.float32, np.float64]) @pytest.mark.parametrize("x_array_constr", [np.array, csr_matrix], ids=["dense", "sparse"]) def test_euclidean_distances_sym(dtype, x_array_constr): # check that euclidean distances gives same result as scipy pdist # when only X is provided rng = np.random.RandomState(0) X = rng.random_sample((100, 10)).astype(dtype, copy=False) X[X < 0.8] = 0 expected = squareform(pdist(X)) X = x_array_constr(X) distances = euclidean_distances(X) # the default rtol=1e-7 is too close to the float32 precision # and fails due to rounding errors. assert_allclose(distances, expected, rtol=1e-6) assert distances.dtype == dtype @pytest.mark.parametrize("batch_size", [None, 5, 7, 101]) @pytest.mark.parametrize("x_array_constr", [np.array, csr_matrix], ids=["dense", "sparse"]) @pytest.mark.parametrize("y_array_constr", [np.array, csr_matrix], ids=["dense", "sparse"]) def test_euclidean_distances_upcast(batch_size, x_array_constr, y_array_constr): # check batches handling when Y != X (#13910) rng = np.random.RandomState(0) X = rng.random_sample((100, 10)).astype(np.float32) X[X < 0.8] = 0 Y = rng.random_sample((10, 10)).astype(np.float32) Y[Y < 0.8] = 0 expected = cdist(X, Y) X = x_array_constr(X) Y = y_array_constr(Y) distances = _euclidean_distances_upcast(X, Y=Y, batch_size=batch_size) distances = np.sqrt(np.maximum(distances, 0)) # the default rtol=1e-7 is too close to the float32 precision # and fails due to rounding errors. assert_allclose(distances, expected, rtol=1e-6) @pytest.mark.parametrize("batch_size", [None, 5, 7, 101]) @pytest.mark.parametrize("x_array_constr", [np.array, csr_matrix], ids=["dense", "sparse"]) def test_euclidean_distances_upcast_sym(batch_size, x_array_constr): # check batches handling when X is Y (#13910) rng = np.random.RandomState(0) X = rng.random_sample((100, 10)).astype(np.float32) X[X < 0.8] = 0 expected = squareform(pdist(X)) X = x_array_constr(X) distances = _euclidean_distances_upcast(X, Y=X, batch_size=batch_size) distances = np.sqrt(np.maximum(distances, 0)) # the default rtol=1e-7 is too close to the float32 precision # and fails due to rounding errors. assert_allclose(distances, expected, rtol=1e-6) @pytest.mark.parametrize( "dtype, eps, rtol", [(np.float32, 1e-4, 1e-5), pytest.param( np.float64, 1e-8, 0.99, marks=pytest.mark.xfail(reason='failing due to lack of precision'))]) @pytest.mark.parametrize("dim", [1, 1000000]) def test_euclidean_distances_extreme_values(dtype, eps, rtol, dim): # check that euclidean distances is correct with float32 input thanks to # upcasting. On float64 there are still precision issues. X = np.array([[1.] * dim], dtype=dtype) Y = np.array([[1. + eps] * dim], dtype=dtype) distances = euclidean_distances(X, Y) expected = cdist(X, Y) assert_allclose(distances, expected, rtol=1e-5) @pytest.mark.parametrize("squared", [True, False]) def test_nan_euclidean_distances_equal_to_euclidean_distance(squared): # with no nan values rng = np.random.RandomState(1337) X = rng.randn(3, 4) Y = rng.randn(4, 4) normal_distance = euclidean_distances(X, Y=Y, squared=squared) nan_distance = nan_euclidean_distances(X, Y=Y, squared=squared) assert_allclose(normal_distance, nan_distance) @pytest.mark.parametrize( "X", [np.array([[np.inf, 0]]), np.array([[0, -np.inf]])]) @pytest.mark.parametrize( "Y", [np.array([[np.inf, 0]]), np.array([[0, -np.inf]]), None]) def test_nan_euclidean_distances_infinite_values(X, Y): with pytest.raises(ValueError) as excinfo: nan_euclidean_distances(X, Y=Y) exp_msg = ("Input contains infinity or a value too large for " "dtype('float64').") assert exp_msg == str(excinfo.value) @pytest.mark.parametrize("X, X_diag, missing_value", [ (np.array([[0, 1], [1, 0]]), np.sqrt(2), np.nan), (np.array([[0, 1], [1, np.nan]]), np.sqrt(2), np.nan), (np.array([[np.nan, 1], [1, np.nan]]), np.nan, np.nan), (np.array([[np.nan, 1], [np.nan, 0]]), np.sqrt(2), np.nan), (np.array([[0, np.nan], [1, np.nan]]), np.sqrt(2), np.nan), (np.array([[0, 1], [1, 0]]), np.sqrt(2), -1), (np.array([[0, 1], [1, -1]]), np.sqrt(2), -1), (np.array([[-1, 1], [1, -1]]), np.nan, -1), (np.array([[-1, 1], [-1, 0]]), np.sqrt(2), -1), (np.array([[0, -1], [1, -1]]), np.sqrt(2), -1) ]) def test_nan_euclidean_distances_2x2(X, X_diag, missing_value): exp_dist = np.array([[0., X_diag], [X_diag, 0]]) dist = nan_euclidean_distances(X, missing_values=missing_value) assert_allclose(exp_dist, dist) dist_sq = nan_euclidean_distances( X, squared=True, missing_values=missing_value) assert_allclose(exp_dist**2, dist_sq) dist_two = nan_euclidean_distances(X, X, missing_values=missing_value) assert_allclose(exp_dist, dist_two) dist_two_copy = nan_euclidean_distances( X, X.copy(), missing_values=missing_value) assert_allclose(exp_dist, dist_two_copy) @pytest.mark.parametrize("missing_value", [np.nan, -1]) def test_nan_euclidean_distances_complete_nan(missing_value): X = np.array([[missing_value, missing_value], [0, 1]]) exp_dist = np.array([[np.nan, np.nan], [np.nan, 0]]) dist = nan_euclidean_distances(X, missing_values=missing_value) assert_allclose(exp_dist, dist) dist = nan_euclidean_distances( X, X.copy(), missing_values=missing_value) assert_allclose(exp_dist, dist) @pytest.mark.parametrize("missing_value", [np.nan, -1]) def test_nan_euclidean_distances_not_trival(missing_value): X = np.array([[1., missing_value, 3., 4., 2.], [missing_value, 4., 6., 1., missing_value], [3., missing_value, missing_value, missing_value, 1.]]) Y = np.array([[missing_value, 7., 7., missing_value, 2.], [missing_value, missing_value, 5., 4., 7.], [missing_value, missing_value, missing_value, 4., 5.]]) # Check for symmetry D1 = nan_euclidean_distances(X, Y, missing_values=missing_value) D2 = nan_euclidean_distances(Y, X, missing_values=missing_value) assert_almost_equal(D1, D2.T) # Check with explicit formula and squared=True assert_allclose( nan_euclidean_distances( X[:1], Y[:1], squared=True, missing_values=missing_value), [[5.0 / 2.0 * ((7 - 3)**2 + (2 - 2)**2)]]) # Check with explicit formula and squared=False assert_allclose( nan_euclidean_distances( X[1:2], Y[1:2], squared=False, missing_values=missing_value), [[np.sqrt(5.0 / 2.0 * ((6 - 5)**2 + (1 - 4)**2))]]) # Check when Y = X is explicitly passed D3 = nan_euclidean_distances(X, missing_values=missing_value) D4 = nan_euclidean_distances(X, X, missing_values=missing_value) D5 = nan_euclidean_distances(X, X.copy(), missing_values=missing_value) assert_allclose(D3, D4) assert_allclose(D4, D5) # Check copy = True against copy = False D6 = nan_euclidean_distances(X, Y, copy=True) D7 = nan_euclidean_distances(X, Y, copy=False) assert_allclose(D6, D7) @pytest.mark.parametrize("missing_value", [np.nan, -1]) def test_nan_euclidean_distances_one_feature_match_positive(missing_value): # First feature is the only feature that is non-nan and in both # samples. The result of `nan_euclidean_distances` with squared=True # should be non-negative. The non-squared version should all be close to 0. X = np.array([[-122.27, 648., missing_value, 37.85], [-122.27, missing_value, 2.34701493, missing_value]]) dist_squared = nan_euclidean_distances(X, missing_values=missing_value, squared=True) assert np.all(dist_squared >= 0) dist = nan_euclidean_distances(X, missing_values=missing_value, squared=False) assert_allclose(dist, 0.0) def test_cosine_distances(): # Check the pairwise Cosine distances computation rng = np.random.RandomState(1337) x = np.abs(rng.rand(910)) XA = np.vstack([x, x]) D = cosine_distances(XA) assert_array_almost_equal(D, [[0., 0.], [0., 0.]]) # check that all elements are in [0, 2] assert np.all(D >= 0.) assert np.all(D <= 2.) # check that diagonal elements are equal to 0 assert_array_almost_equal(D[np.diag_indices_from(D)], [0., 0.]) XB = np.vstack([x, -x]) D2 = cosine_distances(XB) # check that all elements are in [0, 2] assert np.all(D2 >= 0.) assert np.all(D2 <= 2.) # check that diagonal elements are equal to 0 and non diagonal to 2 assert_array_almost_equal(D2, [[0., 2.], [2., 0.]]) # check large random matrix X = np.abs(rng.rand(1000, 5000)) D = cosine_distances(X) # check that diagonal elements are equal to 0 assert_array_almost_equal(D[np.diag_indices_from(D)], [0.] * D.shape[0]) assert np.all(D >= 0.) assert np.all(D <= 2.) def test_haversine_distances(): # Check haversine distance with distances computation def slow_haversine_distances(x, y): diff_lat = y[0] - x[0] diff_lon = y[1] - x[1] a = np.sin(diff_lat / 2) ** 2 + ( np.cos(x[0]) * np.cos(y[0]) * np.sin(diff_lon/2) ** 2 ) c = 2 * np.arcsin(np.sqrt(a)) return c rng = np.random.RandomState(0) X = rng.random_sample((5, 2)) Y = rng.random_sample((10, 2)) D1 = np.array([[slow_haversine_distances(x, y) for y in Y] for x in X]) D2 = haversine_distances(X, Y) assert_array_almost_equal(D1, D2) # Test haversine distance does not accept X where n_feature != 2 X = rng.random_sample((10, 3)) err_msg = "Haversine distance only valid in 2 dimensions" with pytest.raises(ValueError, match=err_msg): haversine_distances(X) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert K.dtype == np.float for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert np.all(K > 0) assert np.all(K - np.diag(np.diag(K)) < 1) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert K.dtype == np.float32 # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert np.isfinite(K).all() assert K.dtype == np.float # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert K[0, 0] > K[0, 1] assert K[1, 1] > K[1, 0] # test negative input with pytest.raises(ValueError): chi2_kernel([[0, -1]]) with pytest.raises(ValueError): chi2_kernel([[0, -1]], [[-1, -1]]) with pytest.raises(ValueError): chi2_kernel([[0, 1]], [[-1, -1]]) # different n_features in X and Y with pytest.raises(ValueError): chi2_kernel([[0, 1]], [[.2, .2, .6]]) # sparse matrices with pytest.raises(ValueError): chi2_kernel(csr_matrix(X), csr_matrix(Y)) with pytest.raises(ValueError): additive_chi2_kernel(csr_matrix(X), csr_matrix(Y)) @pytest.mark.parametrize( 'kernel', (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity)) def test_kernel_symmetry(kernel): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) @pytest.mark.parametrize( 'kernel', (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity)) def test_kernel_sparse(kernel): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_laplacian_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = laplacian_kernel(X, X) # the diagonal elements of a laplacian kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(5)) # off-diagonal elements are < 1 but > 0: assert np.all(K > 0) assert np.all(K - np.diag(np.diag(K)) < 1) @pytest.mark.parametrize('metric, pairwise_func', [('linear', linear_kernel), ('cosine', cosine_similarity)]) def test_pairwise_similarity_sparse_output(metric, pairwise_func): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) # should be sparse K1 = pairwise_func(Xcsr, Ycsr, dense_output=False) assert issparse(K1) # should be dense, and equal to K1 K2 = pairwise_func(X, Y, dense_output=True) assert not issparse(K2) assert_array_almost_equal(K1.todense(), K2) # show the kernel output equal to the sparse.todense() K3 = pairwise_kernels(X, Y=Y, metric=metric) assert_array_almost_equal(K1.todense(), K3) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert XA_checked is XB_checked assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) with pytest.raises(ValueError): check_pairwise_arrays(XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) with pytest.raises(ValueError): check_paired_arrays(XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. # The modified tests are not 1D. In the old test, the array was internally # converted to 2D anyways XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) with pytest.raises(ValueError): check_pairwise_arrays(XA, XB) XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) with pytest.raises(ValueError): check_pairwise_arrays(XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert issparse(XA_checked) assert abs(XA_sparse - XA_checked).sum() == 0 assert issparse(XB_checked) assert abs(XB_sparse - XB_checked).sum() == 0 XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert issparse(XA_checked) assert abs(XA_sparse - XA_checked).sum() == 0 assert issparse(XA_2_checked) assert abs(XA_2_checked - XA_checked).sum() == 0 def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert XA_checked.dtype == np.float32 # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert XA_checked.dtype == np.float32 assert XB_checked.dtype == np.float32 # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert XA_checked.dtype == np.float assert XB_checked.dtype == np.float # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert XA_checked.dtype == np.float assert XB_checked.dtype == np.float @pytest.mark.parametrize("n_jobs", [1, 2]) @pytest.mark.parametrize("metric", ["seuclidean", "mahalanobis"]) @pytest.mark.parametrize("dist_function", [pairwise_distances, pairwise_distances_chunked]) @pytest.mark.parametrize("y_is_x", [True, False], ids=["Y is X", "Y is not X"]) def test_pairwise_distances_data_derived_params(n_jobs, metric, dist_function, y_is_x): # check that pairwise_distances give the same result in sequential and # parallel, when metric has data-derived parameters. with config_context(working_memory=0.1): # to have more than 1 chunk rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) if y_is_x: Y = X expected_dist_default_params = squareform(pdist(X, metric=metric)) if metric == "seuclidean": params = {'V': np.var(X, axis=0, ddof=1)} else: params = {'VI': np.linalg.inv(np.cov(X.T)).T} else: Y = rng.random_sample((100, 10)) expected_dist_default_params = cdist(X, Y, metric=metric) if metric == "seuclidean": params = {'V': np.var(np.vstack([X, Y]), axis=0, ddof=1)} else: params = {'VI': np.linalg.inv(np.cov(np.vstack([X, Y]).T)).T} expected_dist_explicit_params = cdist(X, Y, metric=metric, **params) # TODO: Remove warn_checker in 0.25 if y_is_x: warn_checker = pytest.warns(None) else: warn_checker = pytest.warns(FutureWarning, match="to be specified if Y is passed") with warn_checker: dist = np.vstack(tuple(dist_function(X, Y, metric=metric, n_jobs=n_jobs))) assert_allclose(dist, expected_dist_explicit_params) assert_allclose(dist, expected_dist_default_params) @pytest.mark.parametrize( 'metric', [ 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'hamming', 'mahalanobis', 'minkowski', 'seuclidean', 'sqeuclidean', 'cityblock', 'cosine', 'euclidean']) @pytest.mark.parametrize( "dtype", [np.float32, np.float64]) @pytest.mark.parametrize("y_is_x", [True, False], ids=["Y is X", "Y is not X"]) def test_numeric_pairwise_distances_datatypes(metric, dtype, y_is_x): # Check that pairwise distances gives the same result as pdist and cdist # regardless of input datatype when using any scipy metric for comparing # numeric vectors # # This test is necessary because pairwise_distances used to throw an # error when using metric='seuclidean' and the input data was not # of type np.float64 (#15730) rng = np.random.RandomState(0) X = rng.random_sample((5, 4)).astype(dtype) params = {} if y_is_x: Y = X expected_dist = squareform(pdist(X, metric=metric)) else: Y = rng.random_sample((5, 4)).astype(dtype) expected_dist = cdist(X, Y, metric=metric) # precompute parameters for seuclidean & mahalanobis when x is not y if metric == 'seuclidean': params = {'V': np.var(np.vstack([X, Y]), axis=0, ddof=1, dtype=np.float64)} elif metric == 'mahalanobis': params = {'VI': np.linalg.inv(np.cov(np.vstack([X, Y]).T)).T} dist = pairwise_distances(X, Y, metric=metric, **params) # the default rtol=1e-7 is too close to the float32 precision # and fails due to rounding errors rtol = 1e-5 if dtype is np.float32 else 1e-7 assert_allclose(dist, expected_dist, rtol=rtol)