"""Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ """ # Copyright (c) 2011 Olivier Grisel # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import dirname, join, exists, isdir import logging import numpy as np import joblib from joblib import Memory from ._base import get_data_home, _fetch_remote, RemoteFileMetadata from ..utils import Bunch from ..utils.validation import _deprecate_positional_args from ..utils.fixes import parse_version logger = logging.getLogger(__name__) # The original data can be found in: # http://vis-www.cs.umass.edu/lfw/lfw.tgz ARCHIVE = RemoteFileMetadata( filename='lfw.tgz', url='https://ndownloader.figshare.com/files/5976018', checksum=('055f7d9c632d7370e6fb4afc7468d40f' '970c34a80d4c6f50ffec63f5a8d536c0')) # The original funneled data can be found in: # http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz FUNNELED_ARCHIVE = RemoteFileMetadata( filename='lfw-funneled.tgz', url='https://ndownloader.figshare.com/files/5976015', checksum=('b47c8422c8cded889dc5a13418c4bc2a' 'bbda121092b3533a83306f90d900100a')) # The original target data can be found in: # http://vis-www.cs.umass.edu/lfw/pairsDevTrain.txt', # http://vis-www.cs.umass.edu/lfw/pairsDevTest.txt', # http://vis-www.cs.umass.edu/lfw/pairs.txt', TARGETS = ( RemoteFileMetadata( filename='pairsDevTrain.txt', url='https://ndownloader.figshare.com/files/5976012', checksum=('1d454dada7dfeca0e7eab6f65dc4e97a' '6312d44cf142207be28d688be92aabfa')), RemoteFileMetadata( filename='pairsDevTest.txt', url='https://ndownloader.figshare.com/files/5976009', checksum=('7cb06600ea8b2814ac26e946201cdb30' '4296262aad67d046a16a7ec85d0ff87c')), RemoteFileMetadata( filename='pairs.txt', url='https://ndownloader.figshare.com/files/5976006', checksum=('ea42330c62c92989f9d7c03237ed5d59' '1365e89b3e649747777b70e692dc1592')), ) # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def _check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if not exists(lfw_home): makedirs(lfw_home) for target in TARGETS: target_filepath = join(lfw_home, target.filename) if not exists(target_filepath): if download_if_missing: logger.info("Downloading LFW metadata: %s", target.url) _fetch_remote(target, dirname=lfw_home) else: raise IOError("%s is missing" % target_filepath) if funneled: data_folder_path = join(lfw_home, "lfw_funneled") archive = FUNNELED_ARCHIVE else: data_folder_path = join(lfw_home, "lfw") archive = ARCHIVE if not exists(data_folder_path): archive_path = join(lfw_home, archive.filename) if not exists(archive_path): if download_if_missing: logger.info("Downloading LFW data (~200MB): %s", archive.url) _fetch_remote(archive, dirname=lfw_home) else: raise IOError("%s is missing" % archive_path) import tarfile logger.debug("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # import PIL only when needed from ..externals._pilutil import imread, imresize # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.debug("Loading face #%05d / %05d", i + 1, n_faces) # Checks if jpeg reading worked. Refer to issue #3594 for more # details. img = imread(file_path) if img.ndim == 0: raise RuntimeError("Failed to read the image file %s, " "Please make sure that libjpeg is installed" % file_path) face = np.asarray(img[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representation face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in sorted(listdir(folder_path))] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names @_deprecate_positional_args def fetch_lfw_people(*, data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True, return_X_y=False): """Load the Labeled Faces in the Wild (LFW) people dataset \ (classification). Download it if necessary. ================= ======================= Classes 5749 Samples total 13233 Dimensionality 5828 Features real, between 0 and 255 ================= ======================= Read more in the :ref:`User Guide `. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. return_X_y : boolean, default=False. If True, returns ``(dataset.data, dataset.target)`` instead of a Bunch object. See below for more information about the `dataset.data` and `dataset.target` object. .. versionadded:: 0.20 Returns ------- dataset : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.20 """ lfw_home, data_folder_path = _check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.debug('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage if parse_version(joblib.__version__) < parse_version('0.12'): # Deal with change of API in joblib m = Memory(cachedir=lfw_home, compress=6, verbose=0) else: m = Memory(location=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) X = faces.reshape(len(faces), -1) module_path = dirname(__file__) with open(join(module_path, 'descr', 'lfw.rst')) as rst_file: fdescr = rst_file.read() if return_X_y: return X, target # pack the results as a Bunch instance return Bunch(data=X, images=faces, target=target, target_names=target_names, DESCR=fdescr) # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.decode().strip().split('\t') for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # iterating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @_deprecate_positional_args def fetch_lfw_pairs(*, subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Load the Labeled Faces in the Wild (LFW) pairs dataset (classification). Download it if necessary. ================= ======================= Classes 2 Samples total 13233 Dimensionality 5828 Features real, between 0 and 255 ================= ======================= In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 47. Read more in the :ref:`User Guide `. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : ndarray of shape (2200, 5828). Shape depends on ``subset``. Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_``, ``resize`` or ``subset`` parameters will change the shape of the output. pairs : ndarray of shape (2200, 2, 62, 47). Shape depends on ``subset`` Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_``, ``resize`` or ``subset`` parameters will change the shape of the output. target : numpy array of shape (2200,). Shape depends on ``subset``. Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = _check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.debug('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage if parse_version(joblib.__version__) < parse_version('0.12'): # Deal with change of API in joblib m = Memory(cachedir=lfw_home, compress=6, verbose=0) else: m = Memory(location=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) module_path = dirname(__file__) with open(join(module_path, 'descr', 'lfw.rst')) as rst_file: fdescr = rst_file.read() # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR=fdescr)