""" Implementations of standard library functions, because it's not possible to understand them with Jedi. To add a new implementation, create a function and add it to the ``_implemented`` dict at the bottom of this module. Note that this module exists only to implement very specific functionality in the standard library. The usual way to understand the standard library is the compiled module that returns the types for C-builtins. """ import parso import os from jedi._compatibility import force_unicode, Parameter from jedi import debug from jedi.inference.utils import safe_property from jedi.inference.helpers import get_str_or_none from jedi.inference.arguments import iterate_argument_clinic, ParamIssue, \ repack_with_argument_clinic, AbstractArguments, TreeArgumentsWrapper from jedi.inference import analysis from jedi.inference import compiled from jedi.inference.value.instance import \ AnonymousMethodExecutionContext, MethodExecutionContext from jedi.inference.base_value import ContextualizedNode, \ NO_VALUES, ValueSet, ValueWrapper, LazyValueWrapper from jedi.inference.value import ClassValue, ModuleValue from jedi.inference.value.klass import ClassMixin from jedi.inference.value.function import FunctionMixin from jedi.inference.value import iterable from jedi.inference.lazy_value import LazyTreeValue, LazyKnownValue, \ LazyKnownValues from jedi.inference.names import ValueName, BaseTreeParamName from jedi.inference.filters import AttributeOverwrite, publish_method, \ ParserTreeFilter, DictFilter from jedi.inference.signature import AbstractSignature, SignatureWrapper # Copied from Python 3.6's stdlib. _NAMEDTUPLE_CLASS_TEMPLATE = """\ _property = property _tuple = tuple from operator import itemgetter as _itemgetter from collections import OrderedDict class {typename}(tuple): __slots__ = () _fields = {field_names!r} def __new__(_cls, {arg_list}): 'Create new instance of {typename}({arg_list})' return _tuple.__new__(_cls, ({arg_list})) @classmethod def _make(cls, iterable, new=tuple.__new__, len=len): 'Make a new {typename} object from a sequence or iterable' result = new(cls, iterable) if len(result) != {num_fields:d}: raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result)) return result def _replace(_self, **kwds): 'Return a new {typename} object replacing specified fields with new values' result = _self._make(map(kwds.pop, {field_names!r}, _self)) if kwds: raise ValueError('Got unexpected field names: %r' % list(kwds)) return result def __repr__(self): 'Return a nicely formatted representation string' return self.__class__.__name__ + '({repr_fmt})' % self def _asdict(self): 'Return a new OrderedDict which maps field names to their values.' return OrderedDict(zip(self._fields, self)) def __getnewargs__(self): 'Return self as a plain tuple. Used by copy and pickle.' return tuple(self) # These methods were added by Jedi. # __new__ doesn't really work with Jedi. So adding this to nametuples seems # like the easiest way. def __init__(self, {arg_list}): 'A helper function for namedtuple.' self.__iterable = ({arg_list}) def __iter__(self): for i in self.__iterable: yield i def __getitem__(self, y): return self.__iterable[y] {field_defs} """ _NAMEDTUPLE_FIELD_TEMPLATE = '''\ {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}') ''' def execute(callback): def wrapper(value, arguments): def call(): return callback(value, arguments=arguments) try: obj_name = value.name.string_name except AttributeError: pass else: p = value.parent_context if p is not None and p.is_builtins_module(): module_name = 'builtins' elif p is not None and p.is_module(): module_name = p.py__name__() else: return call() if value.is_bound_method() or value.is_instance(): # value can be an instance for example if it is a partial # object. return call() # for now we just support builtin functions. try: func = _implemented[module_name][obj_name] except KeyError: pass else: return func(value, arguments=arguments, callback=call) return call() return wrapper def _follow_param(inference_state, arguments, index): try: key, lazy_value = list(arguments.unpack())[index] except IndexError: return NO_VALUES else: return lazy_value.infer() def argument_clinic(clinic_string, want_value=False, want_context=False, want_arguments=False, want_inference_state=False, want_callback=False): """ Works like Argument Clinic (PEP 436), to validate function params. """ def f(func): def wrapper(value, arguments, callback): try: args = tuple(iterate_argument_clinic( value.inference_state, arguments, clinic_string)) except ParamIssue: return NO_VALUES debug.dbg('builtin start %s' % value, color='MAGENTA') kwargs = {} if want_context: kwargs['context'] = arguments.context if want_value: kwargs['value'] = value if want_inference_state: kwargs['inference_state'] = value.inference_state if want_arguments: kwargs['arguments'] = arguments if want_callback: kwargs['callback'] = callback result = func(*args, **kwargs) debug.dbg('builtin end: %s', result, color='MAGENTA') return result return wrapper return f @argument_clinic('iterator[, default], /', want_inference_state=True) def builtins_next(iterators, defaults, inference_state): if inference_state.environment.version_info.major == 2: name = 'next' else: name = '__next__' # TODO theoretically we have to check here if something is an iterator. # That is probably done by checking if it's not a class. return defaults | iterators.py__getattribute__(name).execute_with_values() @argument_clinic('iterator[, default], /') def builtins_iter(iterators_or_callables, defaults): # TODO implement this if it's a callable. return iterators_or_callables.py__getattribute__('__iter__').execute_with_values() @argument_clinic('object, name[, default], /') def builtins_getattr(objects, names, defaults=None): # follow the first param for value in objects: for name in names: string = get_str_or_none(name) if string is None: debug.warning('getattr called without str') continue else: return value.py__getattribute__(force_unicode(string)) return NO_VALUES @argument_clinic('object[, bases, dict], /') def builtins_type(objects, bases, dicts): if bases or dicts: # It's a type creation... maybe someday... return NO_VALUES else: return objects.py__class__() class SuperInstance(LazyValueWrapper): """To be used like the object ``super`` returns.""" def __init__(self, inference_state, instance): self.inference_state = inference_state self._instance = instance # Corresponds to super().__self__ def _get_bases(self): return self._instance.py__class__().py__bases__() def _get_wrapped_value(self): objs = self._get_bases()[0].infer().execute_with_values() if not objs: # This is just a fallback and will only be used, if it's not # possible to find a class return self._instance return next(iter(objs)) def get_filters(self, origin_scope=None): for b in self._get_bases(): for value in b.infer().execute_with_values(): for f in value.get_filters(): yield f @argument_clinic('[type[, value]], /', want_context=True) def builtins_super(types, objects, context): instance = None if isinstance(context, AnonymousMethodExecutionContext): instance = context.instance elif isinstance(context, MethodExecutionContext): instance = context.instance if instance is None: return NO_VALUES return ValueSet({SuperInstance(instance.inference_state, instance)}) class ReversedObject(AttributeOverwrite): def __init__(self, reversed_obj, iter_list): super(ReversedObject, self).__init__(reversed_obj) self._iter_list = iter_list def py__iter__(self, contextualized_node): return self._iter_list @publish_method('next', python_version_match=2) @publish_method('__next__', python_version_match=3) def _next(self, arguments): return ValueSet.from_sets( lazy_value.infer() for lazy_value in self._iter_list ) @argument_clinic('sequence, /', want_value=True, want_arguments=True) def builtins_reversed(sequences, value, arguments): # While we could do without this variable (just by using sequences), we # want static analysis to work well. Therefore we need to generated the # values again. key, lazy_value = next(arguments.unpack()) cn = None if isinstance(lazy_value, LazyTreeValue): cn = ContextualizedNode(lazy_value.context, lazy_value.data) ordered = list(sequences.iterate(cn)) # Repack iterator values and then run it the normal way. This is # necessary, because `reversed` is a function and autocompletion # would fail in certain cases like `reversed(x).__iter__` if we # just returned the result directly. seq, = value.inference_state.typing_module.py__getattribute__('Iterator').execute_with_values() return ValueSet([ReversedObject(seq, list(reversed(ordered)))]) @argument_clinic('value, type, /', want_arguments=True, want_inference_state=True) def builtins_isinstance(objects, types, arguments, inference_state): bool_results = set() for o in objects: cls = o.py__class__() try: cls.py__bases__ except AttributeError: # This is temporary. Everything should have a class attribute in # Python?! Maybe we'll leave it here, because some numpy objects or # whatever might not. bool_results = set([True, False]) break mro = list(cls.py__mro__()) for cls_or_tup in types: if cls_or_tup.is_class(): bool_results.add(cls_or_tup in mro) elif cls_or_tup.name.string_name == 'tuple' \ and cls_or_tup.get_root_context().is_builtins_module(): # Check for tuples. classes = ValueSet.from_sets( lazy_value.infer() for lazy_value in cls_or_tup.iterate() ) bool_results.add(any(cls in mro for cls in classes)) else: _, lazy_value = list(arguments.unpack())[1] if isinstance(lazy_value, LazyTreeValue): node = lazy_value.data message = 'TypeError: isinstance() arg 2 must be a ' \ 'class, type, or tuple of classes and types, ' \ 'not %s.' % cls_or_tup analysis.add(lazy_value.context, 'type-error-isinstance', node, message) return ValueSet( compiled.builtin_from_name(inference_state, force_unicode(str(b))) for b in bool_results ) class StaticMethodObject(ValueWrapper): def py__get__(self, instance, class_value): return ValueSet([self._wrapped_value]) @argument_clinic('sequence, /') def builtins_staticmethod(functions): return ValueSet(StaticMethodObject(f) for f in functions) class ClassMethodObject(ValueWrapper): def __init__(self, class_method_obj, function): super(ClassMethodObject, self).__init__(class_method_obj) self._function = function def py__get__(self, instance, class_value): return ValueSet([ ClassMethodGet(__get__, class_value, self._function) for __get__ in self._wrapped_value.py__getattribute__('__get__') ]) class ClassMethodGet(ValueWrapper): def __init__(self, get_method, klass, function): super(ClassMethodGet, self).__init__(get_method) self._class = klass self._function = function def get_signatures(self): return [sig.bind(self._function) for sig in self._function.get_signatures()] def py__call__(self, arguments): return self._function.execute(ClassMethodArguments(self._class, arguments)) class ClassMethodArguments(TreeArgumentsWrapper): def __init__(self, klass, arguments): super(ClassMethodArguments, self).__init__(arguments) self._class = klass def unpack(self, func=None): yield None, LazyKnownValue(self._class) for values in self._wrapped_arguments.unpack(func): yield values @argument_clinic('sequence, /', want_value=True, want_arguments=True) def builtins_classmethod(functions, value, arguments): return ValueSet( ClassMethodObject(class_method_object, function) for class_method_object in value.py__call__(arguments=arguments) for function in functions ) class PropertyObject(AttributeOverwrite, ValueWrapper): def __init__(self, property_obj, function): super(PropertyObject, self).__init__(property_obj) self._function = function def py__get__(self, instance, class_value): if instance is None: return ValueSet([self]) return self._function.execute_with_values(instance) @publish_method('deleter') @publish_method('getter') @publish_method('setter') def _return_self(self, arguments): return ValueSet({self}) @argument_clinic('func, /', want_callback=True) def builtins_property(functions, callback): return ValueSet( PropertyObject(property_value, function) for property_value in callback() for function in functions ) def collections_namedtuple(value, arguments, callback): """ Implementation of the namedtuple function. This has to be done by processing the namedtuple class template and inferring the result. """ inference_state = value.inference_state # Process arguments name = u'jedi_unknown_namedtuple' for c in _follow_param(inference_state, arguments, 0): x = get_str_or_none(c) if x is not None: name = force_unicode(x) break # TODO here we only use one of the types, we should use all. param_values = _follow_param(inference_state, arguments, 1) if not param_values: return NO_VALUES _fields = list(param_values)[0] string = get_str_or_none(_fields) if string is not None: fields = force_unicode(string).replace(',', ' ').split() elif isinstance(_fields, iterable.Sequence): fields = [ force_unicode(get_str_or_none(v)) for lazy_value in _fields.py__iter__() for v in lazy_value.infer() ] fields = [f for f in fields if f is not None] else: return NO_VALUES # Build source code code = _NAMEDTUPLE_CLASS_TEMPLATE.format( typename=name, field_names=tuple(fields), num_fields=len(fields), arg_list=repr(tuple(fields)).replace("u'", "").replace("'", "")[1:-1], repr_fmt='', field_defs='\n'.join(_NAMEDTUPLE_FIELD_TEMPLATE.format(index=index, name=name) for index, name in enumerate(fields)) ) # Parse source code module = inference_state.grammar.parse(code) generated_class = next(module.iter_classdefs()) parent_context = ModuleValue( inference_state, module, code_lines=parso.split_lines(code, keepends=True), ).as_context() return ValueSet([ClassValue(inference_state, parent_context, generated_class)]) class PartialObject(ValueWrapper): def __init__(self, actual_value, arguments, instance=None): super(PartialObject, self).__init__(actual_value) self._arguments = arguments self._instance = instance def _get_functions(self, unpacked_arguments): key, lazy_value = next(unpacked_arguments, (None, None)) if key is not None or lazy_value is None: debug.warning("Partial should have a proper function %s", self._arguments) return None return lazy_value.infer() def get_signatures(self): unpacked_arguments = self._arguments.unpack() funcs = self._get_functions(unpacked_arguments) if funcs is None: return [] arg_count = 0 if self._instance is not None: arg_count = 1 keys = set() for key, _ in unpacked_arguments: if key is None: arg_count += 1 else: keys.add(key) return [PartialSignature(s, arg_count, keys) for s in funcs.get_signatures()] def py__call__(self, arguments): funcs = self._get_functions(self._arguments.unpack()) if funcs is None: return NO_VALUES return funcs.execute( MergedPartialArguments(self._arguments, arguments, self._instance) ) def py__doc__(self): """ In CPython partial does not replace the docstring. However we are still imitating it here, because we want this docstring to be worth something for the user. """ callables = self._get_functions(self._arguments.unpack()) if callables is None: return '' for callable_ in callables: return callable_.py__doc__() return '' def py__get__(self, instance, class_value): return ValueSet([self]) class PartialMethodObject(PartialObject): def py__get__(self, instance, class_value): if instance is None: return ValueSet([self]) return ValueSet([PartialObject(self._wrapped_value, self._arguments, instance)]) class PartialSignature(SignatureWrapper): def __init__(self, wrapped_signature, skipped_arg_count, skipped_arg_set): super(PartialSignature, self).__init__(wrapped_signature) self._skipped_arg_count = skipped_arg_count self._skipped_arg_set = skipped_arg_set def get_param_names(self, resolve_stars=False): names = self._wrapped_signature.get_param_names()[self._skipped_arg_count:] return [n for n in names if n.string_name not in self._skipped_arg_set] class MergedPartialArguments(AbstractArguments): def __init__(self, partial_arguments, call_arguments, instance=None): self._partial_arguments = partial_arguments self._call_arguments = call_arguments self._instance = instance def unpack(self, funcdef=None): unpacked = self._partial_arguments.unpack(funcdef) # Ignore this one, it's the function. It was checked before that it's # there. next(unpacked, None) if self._instance is not None: yield None, LazyKnownValue(self._instance) for key_lazy_value in unpacked: yield key_lazy_value for key_lazy_value in self._call_arguments.unpack(funcdef): yield key_lazy_value def functools_partial(value, arguments, callback): return ValueSet( PartialObject(instance, arguments) for instance in value.py__call__(arguments) ) def functools_partialmethod(value, arguments, callback): return ValueSet( PartialMethodObject(instance, arguments) for instance in value.py__call__(arguments) ) @argument_clinic('first, /') def _return_first_param(firsts): return firsts @argument_clinic('seq') def _random_choice(sequences): return ValueSet.from_sets( lazy_value.infer() for sequence in sequences for lazy_value in sequence.py__iter__() ) def _dataclass(value, arguments, callback): for c in _follow_param(value.inference_state, arguments, 0): if c.is_class(): return ValueSet([DataclassWrapper(c)]) else: return ValueSet([value]) return NO_VALUES class DataclassWrapper(ValueWrapper, ClassMixin): def get_signatures(self): param_names = [] for cls in reversed(list(self.py__mro__())): if isinstance(cls, DataclassWrapper): filter_ = cls.as_context().get_global_filter() # .values ordering is not guaranteed, at least not in # Python < 3.6, when dicts where not ordered, which is an # implementation detail anyway. for name in sorted(filter_.values(), key=lambda name: name.start_pos): d = name.tree_name.get_definition() annassign = d.children[1] if d.type == 'expr_stmt' and annassign.type == 'annassign': if len(annassign.children) < 4: default = None else: default = annassign.children[3] param_names.append(DataclassParamName( parent_context=cls.parent_context, tree_name=name.tree_name, annotation_node=annassign.children[1], default_node=default, )) return [DataclassSignature(cls, param_names)] class DataclassSignature(AbstractSignature): def __init__(self, value, param_names): super(DataclassSignature, self).__init__(value) self._param_names = param_names def get_param_names(self, resolve_stars=False): return self._param_names class DataclassParamName(BaseTreeParamName): def __init__(self, parent_context, tree_name, annotation_node, default_node): super(DataclassParamName, self).__init__(parent_context, tree_name) self.annotation_node = annotation_node self.default_node = default_node def get_kind(self): return Parameter.POSITIONAL_OR_KEYWORD def infer(self): if self.annotation_node is None: return NO_VALUES else: return self.parent_context.infer_node(self.annotation_node) class ItemGetterCallable(ValueWrapper): def __init__(self, instance, args_value_set): super(ItemGetterCallable, self).__init__(instance) self._args_value_set = args_value_set @repack_with_argument_clinic('item, /') def py__call__(self, item_value_set): value_set = NO_VALUES for args_value in self._args_value_set: lazy_values = list(args_value.py__iter__()) if len(lazy_values) == 1: # TODO we need to add the contextualized value. value_set |= item_value_set.get_item(lazy_values[0].infer(), None) else: value_set |= ValueSet([iterable.FakeList( self._wrapped_value.inference_state, [ LazyKnownValues(item_value_set.get_item(lazy_value.infer(), None)) for lazy_value in lazy_values ], )]) return value_set @argument_clinic('func, /') def _functools_wraps(funcs): return ValueSet(WrapsCallable(func) for func in funcs) class WrapsCallable(ValueWrapper): # XXX this is not the correct wrapped value, it should be a weird # partials object, but it doesn't matter, because it's always used as a # decorator anyway. @repack_with_argument_clinic('func, /') def py__call__(self, funcs): return ValueSet({Wrapped(func, self._wrapped_value) for func in funcs}) class Wrapped(ValueWrapper, FunctionMixin): def __init__(self, func, original_function): super(Wrapped, self).__init__(func) self._original_function = original_function @property def name(self): return self._original_function.name def get_signature_functions(self): return [self] @argument_clinic('*args, /', want_value=True, want_arguments=True) def _operator_itemgetter(args_value_set, value, arguments): return ValueSet([ ItemGetterCallable(instance, args_value_set) for instance in value.py__call__(arguments) ]) def _create_string_input_function(func): @argument_clinic('string, /', want_value=True, want_arguments=True) def wrapper(strings, value, arguments): def iterate(): for value in strings: s = get_str_or_none(value) if s is not None: s = func(s) yield compiled.create_simple_object(value.inference_state, s) values = ValueSet(iterate()) if values: return values return value.py__call__(arguments) return wrapper @argument_clinic('*args, /', want_callback=True) def _os_path_join(args_set, callback): if len(args_set) == 1: string = u'' sequence, = args_set is_first = True for lazy_value in sequence.py__iter__(): string_values = lazy_value.infer() if len(string_values) != 1: break s = get_str_or_none(next(iter(string_values))) if s is None: break if not is_first: string += os.path.sep string += force_unicode(s) is_first = False else: return ValueSet([compiled.create_simple_object(sequence.inference_state, string)]) return callback() _implemented = { 'builtins': { 'getattr': builtins_getattr, 'type': builtins_type, 'super': builtins_super, 'reversed': builtins_reversed, 'isinstance': builtins_isinstance, 'next': builtins_next, 'iter': builtins_iter, 'staticmethod': builtins_staticmethod, 'classmethod': builtins_classmethod, 'property': builtins_property, }, 'copy': { 'copy': _return_first_param, 'deepcopy': _return_first_param, }, 'json': { 'load': lambda value, arguments, callback: NO_VALUES, 'loads': lambda value, arguments, callback: NO_VALUES, }, 'collections': { 'namedtuple': collections_namedtuple, }, 'functools': { 'partial': functools_partial, 'partialmethod': functools_partialmethod, 'wraps': _functools_wraps, }, '_weakref': { 'proxy': _return_first_param, }, 'random': { 'choice': _random_choice, }, 'operator': { 'itemgetter': _operator_itemgetter, }, 'abc': { # Not sure if this is necessary, but it's used a lot in typeshed and # it's for now easier to just pass the function. 'abstractmethod': _return_first_param, }, 'typing': { # The _alias function just leads to some annoying type inference. # Therefore, just make it return nothing, which leads to the stubs # being used instead. This only matters for 3.7+. '_alias': lambda value, arguments, callback: NO_VALUES, # runtime_checkable doesn't really change anything and is just # adding logs for infering stuff, so we can safely ignore it. 'runtime_checkable': lambda value, arguments, callback: NO_VALUES, }, 'dataclasses': { # For now this works at least better than Jedi trying to understand it. 'dataclass': _dataclass }, 'os.path': { 'dirname': _create_string_input_function(os.path.dirname), 'abspath': _create_string_input_function(os.path.abspath), 'relpath': _create_string_input_function(os.path.relpath), 'join': _os_path_join, } } def get_metaclass_filters(func): def wrapper(cls, metaclasses, is_instance): for metaclass in metaclasses: if metaclass.py__name__() == 'EnumMeta' \ and metaclass.get_root_context().py__name__() == 'enum': filter_ = ParserTreeFilter(parent_context=cls.as_context()) return [DictFilter({ name.string_name: EnumInstance(cls, name).name for name in filter_.values() })] return func(cls, metaclasses, is_instance) return wrapper class EnumInstance(LazyValueWrapper): def __init__(self, cls, name): self.inference_state = cls.inference_state self._cls = cls # Corresponds to super().__self__ self._name = name self.tree_node = self._name.tree_name @safe_property def name(self): return ValueName(self, self._name.tree_name) def _get_wrapped_value(self): value, = self._cls.execute_with_values() return value def get_filters(self, origin_scope=None): yield DictFilter(dict( name=compiled.create_simple_object(self.inference_state, self._name.string_name).name, value=self._name, )) for f in self._get_wrapped_value().get_filters(): yield f def tree_name_to_values(func): def wrapper(inference_state, context, tree_name): if tree_name.value == 'sep' and context.is_module() and context.py__name__() == 'os.path': return ValueSet({ compiled.create_simple_object(inference_state, os.path.sep), }) return func(inference_state, context, tree_name) return wrapper