""" A sparse matrix in COOrdinate or 'triplet' format""" __docformat__ = "restructuredtext en" __all__ = ['coo_matrix', 'isspmatrix_coo'] from warnings import warn import numpy as np from ._sparsetools import coo_tocsr, coo_todense, coo_matvec from .base import isspmatrix, SparseEfficiencyWarning, spmatrix from .data import _data_matrix, _minmax_mixin from .sputils import (upcast, upcast_char, to_native, isshape, getdtype, get_index_dtype, downcast_intp_index, check_shape, check_reshape_kwargs, matrix) import operator class coo_matrix(_data_matrix, _minmax_mixin): """ A sparse matrix in COOrdinate format. Also known as the 'ijv' or 'triplet' format. This can be instantiated in several ways: coo_matrix(D) with a dense matrix D coo_matrix(S) with another sparse matrix S (equivalent to S.tocoo()) coo_matrix((M, N), [dtype]) to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'. coo_matrix((data, (i, j)), [shape=(M, N)]) to construct from three arrays: 1. data[:] the entries of the matrix, in any order 2. i[:] the row indices of the matrix entries 3. j[:] the column indices of the matrix entries Where ``A[i[k], j[k]] = data[k]``. When shape is not specified, it is inferred from the index arrays Attributes ---------- dtype : dtype Data type of the matrix shape : 2-tuple Shape of the matrix ndim : int Number of dimensions (this is always 2) nnz Number of stored values, including explicit zeros data COO format data array of the matrix row COO format row index array of the matrix col COO format column index array of the matrix Notes ----- Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. Advantages of the COO format - facilitates fast conversion among sparse formats - permits duplicate entries (see example) - very fast conversion to and from CSR/CSC formats Disadvantages of the COO format - does not directly support: + arithmetic operations + slicing Intended Usage - COO is a fast format for constructing sparse matrices - Once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations - By default when converting to CSR or CSC format, duplicate (i,j) entries will be summed together. This facilitates efficient construction of finite element matrices and the like. (see example) Examples -------- >>> # Constructing an empty matrix >>> from scipy.sparse import coo_matrix >>> coo_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8) >>> # Constructing a matrix using ijv format >>> row = np.array([0, 3, 1, 0]) >>> col = np.array([0, 3, 1, 2]) >>> data = np.array([4, 5, 7, 9]) >>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray() array([[4, 0, 9, 0], [0, 7, 0, 0], [0, 0, 0, 0], [0, 0, 0, 5]]) >>> # Constructing a matrix with duplicate indices >>> row = np.array([0, 0, 1, 3, 1, 0, 0]) >>> col = np.array([0, 2, 1, 3, 1, 0, 0]) >>> data = np.array([1, 1, 1, 1, 1, 1, 1]) >>> coo = coo_matrix((data, (row, col)), shape=(4, 4)) >>> # Duplicate indices are maintained until implicitly or explicitly summed >>> np.max(coo.data) 1 >>> coo.toarray() array([[3, 0, 1, 0], [0, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]]) """ format = 'coo' def __init__(self, arg1, shape=None, dtype=None, copy=False): _data_matrix.__init__(self) if isinstance(arg1, tuple): if isshape(arg1): M, N = arg1 self._shape = check_shape((M, N)) idx_dtype = get_index_dtype(maxval=max(M, N)) self.row = np.array([], dtype=idx_dtype) self.col = np.array([], dtype=idx_dtype) self.data = np.array([], getdtype(dtype, default=float)) self.has_canonical_format = True else: try: obj, (row, col) = arg1 except (TypeError, ValueError): raise TypeError('invalid input format') if shape is None: if len(row) == 0 or len(col) == 0: raise ValueError('cannot infer dimensions from zero ' 'sized index arrays') M = operator.index(np.max(row)) + 1 N = operator.index(np.max(col)) + 1 self._shape = check_shape((M, N)) else: # Use 2 steps to ensure shape has length 2. M, N = shape self._shape = check_shape((M, N)) idx_dtype = get_index_dtype(maxval=max(self.shape)) self.row = np.array(row, copy=copy, dtype=idx_dtype) self.col = np.array(col, copy=copy, dtype=idx_dtype) self.data = np.array(obj, copy=copy) self.has_canonical_format = False else: if isspmatrix(arg1): if isspmatrix_coo(arg1) and copy: self.row = arg1.row.copy() self.col = arg1.col.copy() self.data = arg1.data.copy() self._shape = check_shape(arg1.shape) else: coo = arg1.tocoo() self.row = coo.row self.col = coo.col self.data = coo.data self._shape = check_shape(coo.shape) self.has_canonical_format = False else: #dense argument M = np.atleast_2d(np.asarray(arg1)) if M.ndim != 2: raise TypeError('expected dimension <= 2 array or matrix') self._shape = check_shape(M.shape) if shape is not None: if check_shape(shape) != self._shape: raise ValueError('inconsistent shapes: %s != %s' % (shape, self._shape)) self.row, self.col = M.nonzero() self.data = M[self.row, self.col] self.has_canonical_format = True if dtype is not None: self.data = self.data.astype(dtype, copy=False) self._check() def reshape(self, *args, **kwargs): shape = check_shape(args, self.shape) order, copy = check_reshape_kwargs(kwargs) # Return early if reshape is not required if shape == self.shape: if copy: return self.copy() else: return self nrows, ncols = self.shape if order == 'C': # Upcast to avoid overflows: the coo_matrix constructor # below will downcast the results to a smaller dtype, if # possible. dtype = get_index_dtype(maxval=(ncols * max(0, nrows - 1) + max(0, ncols - 1))) flat_indices = np.multiply(ncols, self.row, dtype=dtype) + self.col new_row, new_col = divmod(flat_indices, shape[1]) elif order == 'F': dtype = get_index_dtype(maxval=(nrows * max(0, ncols - 1) + max(0, nrows - 1))) flat_indices = np.multiply(nrows, self.col, dtype=dtype) + self.row new_col, new_row = divmod(flat_indices, shape[0]) else: raise ValueError("'order' must be 'C' or 'F'") # Handle copy here rather than passing on to the constructor so that no # copy will be made of new_row and new_col regardless if copy: new_data = self.data.copy() else: new_data = self.data return coo_matrix((new_data, (new_row, new_col)), shape=shape, copy=False) reshape.__doc__ = spmatrix.reshape.__doc__ def getnnz(self, axis=None): if axis is None: nnz = len(self.data) if nnz != len(self.row) or nnz != len(self.col): raise ValueError('row, column, and data array must all be the ' 'same length') if self.data.ndim != 1 or self.row.ndim != 1 or \ self.col.ndim != 1: raise ValueError('row, column, and data arrays must be 1-D') return int(nnz) if axis < 0: axis += 2 if axis == 0: return np.bincount(downcast_intp_index(self.col), minlength=self.shape[1]) elif axis == 1: return np.bincount(downcast_intp_index(self.row), minlength=self.shape[0]) else: raise ValueError('axis out of bounds') getnnz.__doc__ = spmatrix.getnnz.__doc__ def _check(self): """ Checks data structure for consistency """ # index arrays should have integer data types if self.row.dtype.kind != 'i': warn("row index array has non-integer dtype (%s) " % self.row.dtype.name) if self.col.dtype.kind != 'i': warn("col index array has non-integer dtype (%s) " % self.col.dtype.name) idx_dtype = get_index_dtype(maxval=max(self.shape)) self.row = np.asarray(self.row, dtype=idx_dtype) self.col = np.asarray(self.col, dtype=idx_dtype) self.data = to_native(self.data) if self.nnz > 0: if self.row.max() >= self.shape[0]: raise ValueError('row index exceeds matrix dimensions') if self.col.max() >= self.shape[1]: raise ValueError('column index exceeds matrix dimensions') if self.row.min() < 0: raise ValueError('negative row index found') if self.col.min() < 0: raise ValueError('negative column index found') def transpose(self, axes=None, copy=False): if axes is not None: raise ValueError(("Sparse matrices do not support " "an 'axes' parameter because swapping " "dimensions is the only logical permutation.")) M, N = self.shape return coo_matrix((self.data, (self.col, self.row)), shape=(N, M), copy=copy) transpose.__doc__ = spmatrix.transpose.__doc__ def resize(self, *shape): shape = check_shape(shape) new_M, new_N = shape M, N = self.shape if new_M < M or new_N < N: mask = np.logical_and(self.row < new_M, self.col < new_N) if not mask.all(): self.row = self.row[mask] self.col = self.col[mask] self.data = self.data[mask] self._shape = shape resize.__doc__ = spmatrix.resize.__doc__ def toarray(self, order=None, out=None): """See the docstring for `spmatrix.toarray`.""" B = self._process_toarray_args(order, out) fortran = int(B.flags.f_contiguous) if not fortran and not B.flags.c_contiguous: raise ValueError("Output array must be C or F contiguous") M,N = self.shape coo_todense(M, N, self.nnz, self.row, self.col, self.data, B.ravel('A'), fortran) return B def tocsc(self, copy=False): """Convert this matrix to Compressed Sparse Column format Duplicate entries will be summed together. Examples -------- >>> from numpy import array >>> from scipy.sparse import coo_matrix >>> row = array([0, 0, 1, 3, 1, 0, 0]) >>> col = array([0, 2, 1, 3, 1, 0, 0]) >>> data = array([1, 1, 1, 1, 1, 1, 1]) >>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsc() >>> A.toarray() array([[3, 0, 1, 0], [0, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]]) """ from .csc import csc_matrix if self.nnz == 0: return csc_matrix(self.shape, dtype=self.dtype) else: M,N = self.shape idx_dtype = get_index_dtype((self.col, self.row), maxval=max(self.nnz, M)) row = self.row.astype(idx_dtype, copy=False) col = self.col.astype(idx_dtype, copy=False) indptr = np.empty(N + 1, dtype=idx_dtype) indices = np.empty_like(row, dtype=idx_dtype) data = np.empty_like(self.data, dtype=upcast(self.dtype)) coo_tocsr(N, M, self.nnz, col, row, self.data, indptr, indices, data) x = csc_matrix((data, indices, indptr), shape=self.shape) if not self.has_canonical_format: x.sum_duplicates() return x def tocsr(self, copy=False): """Convert this matrix to Compressed Sparse Row format Duplicate entries will be summed together. Examples -------- >>> from numpy import array >>> from scipy.sparse import coo_matrix >>> row = array([0, 0, 1, 3, 1, 0, 0]) >>> col = array([0, 2, 1, 3, 1, 0, 0]) >>> data = array([1, 1, 1, 1, 1, 1, 1]) >>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsr() >>> A.toarray() array([[3, 0, 1, 0], [0, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]]) """ from .csr import csr_matrix if self.nnz == 0: return csr_matrix(self.shape, dtype=self.dtype) else: M,N = self.shape idx_dtype = get_index_dtype((self.row, self.col), maxval=max(self.nnz, N)) row = self.row.astype(idx_dtype, copy=False) col = self.col.astype(idx_dtype, copy=False) indptr = np.empty(M + 1, dtype=idx_dtype) indices = np.empty_like(col, dtype=idx_dtype) data = np.empty_like(self.data, dtype=upcast(self.dtype)) coo_tocsr(M, N, self.nnz, row, col, self.data, indptr, indices, data) x = csr_matrix((data, indices, indptr), shape=self.shape) if not self.has_canonical_format: x.sum_duplicates() return x def tocoo(self, copy=False): if copy: return self.copy() else: return self tocoo.__doc__ = spmatrix.tocoo.__doc__ def todia(self, copy=False): from .dia import dia_matrix self.sum_duplicates() ks = self.col - self.row # the diagonal for each nonzero diags, diag_idx = np.unique(ks, return_inverse=True) if len(diags) > 100: # probably undesired, should todia() have a maxdiags parameter? warn("Constructing a DIA matrix with %d diagonals " "is inefficient" % len(diags), SparseEfficiencyWarning) #initialize and fill in data array if self.data.size == 0: data = np.zeros((0, 0), dtype=self.dtype) else: data = np.zeros((len(diags), self.col.max()+1), dtype=self.dtype) data[diag_idx, self.col] = self.data return dia_matrix((data,diags), shape=self.shape) todia.__doc__ = spmatrix.todia.__doc__ def todok(self, copy=False): from .dok import dok_matrix self.sum_duplicates() dok = dok_matrix((self.shape), dtype=self.dtype) dok._update(zip(zip(self.row,self.col),self.data)) return dok todok.__doc__ = spmatrix.todok.__doc__ def diagonal(self, k=0): rows, cols = self.shape if k <= -rows or k >= cols: return np.empty(0, dtype=self.data.dtype) diag = np.zeros(min(rows + min(k, 0), cols - max(k, 0)), dtype=self.dtype) diag_mask = (self.row + k) == self.col if self.has_canonical_format: row = self.row[diag_mask] data = self.data[diag_mask] else: row, _, data = self._sum_duplicates(self.row[diag_mask], self.col[diag_mask], self.data[diag_mask]) diag[row + min(k, 0)] = data return diag diagonal.__doc__ = _data_matrix.diagonal.__doc__ def _setdiag(self, values, k): M, N = self.shape if values.ndim and not len(values): return idx_dtype = self.row.dtype # Determine which triples to keep and where to put the new ones. full_keep = self.col - self.row != k if k < 0: max_index = min(M+k, N) if values.ndim: max_index = min(max_index, len(values)) keep = np.logical_or(full_keep, self.col >= max_index) new_row = np.arange(-k, -k + max_index, dtype=idx_dtype) new_col = np.arange(max_index, dtype=idx_dtype) else: max_index = min(M, N-k) if values.ndim: max_index = min(max_index, len(values)) keep = np.logical_or(full_keep, self.row >= max_index) new_row = np.arange(max_index, dtype=idx_dtype) new_col = np.arange(k, k + max_index, dtype=idx_dtype) # Define the array of data consisting of the entries to be added. if values.ndim: new_data = values[:max_index] else: new_data = np.empty(max_index, dtype=self.dtype) new_data[:] = values # Update the internal structure. self.row = np.concatenate((self.row[keep], new_row)) self.col = np.concatenate((self.col[keep], new_col)) self.data = np.concatenate((self.data[keep], new_data)) self.has_canonical_format = False # needed by _data_matrix def _with_data(self,data,copy=True): """Returns a matrix with the same sparsity structure as self, but with different data. By default the index arrays (i.e. .row and .col) are copied. """ if copy: return coo_matrix((data, (self.row.copy(), self.col.copy())), shape=self.shape, dtype=data.dtype) else: return coo_matrix((data, (self.row, self.col)), shape=self.shape, dtype=data.dtype) def sum_duplicates(self): """Eliminate duplicate matrix entries by adding them together This is an *in place* operation """ if self.has_canonical_format: return summed = self._sum_duplicates(self.row, self.col, self.data) self.row, self.col, self.data = summed self.has_canonical_format = True def _sum_duplicates(self, row, col, data): # Assumes (data, row, col) not in canonical format. if len(data) == 0: return row, col, data order = np.lexsort((row, col)) row = row[order] col = col[order] data = data[order] unique_mask = ((row[1:] != row[:-1]) | (col[1:] != col[:-1])) unique_mask = np.append(True, unique_mask) row = row[unique_mask] col = col[unique_mask] unique_inds, = np.nonzero(unique_mask) data = np.add.reduceat(data, unique_inds, dtype=self.dtype) return row, col, data def eliminate_zeros(self): """Remove zero entries from the matrix This is an *in place* operation """ mask = self.data != 0 self.data = self.data[mask] self.row = self.row[mask] self.col = self.col[mask] ####################### # Arithmetic handlers # ####################### def _add_dense(self, other): if other.shape != self.shape: raise ValueError('Incompatible shapes.') dtype = upcast_char(self.dtype.char, other.dtype.char) result = np.array(other, dtype=dtype, copy=True) fortran = int(result.flags.f_contiguous) M, N = self.shape coo_todense(M, N, self.nnz, self.row, self.col, self.data, result.ravel('A'), fortran) return matrix(result, copy=False) def _mul_vector(self, other): #output array result = np.zeros(self.shape[0], dtype=upcast_char(self.dtype.char, other.dtype.char)) coo_matvec(self.nnz, self.row, self.col, self.data, other, result) return result def _mul_multivector(self, other): result = np.zeros((other.shape[1], self.shape[0]), dtype=upcast_char(self.dtype.char, other.dtype.char)) for i, col in enumerate(other.T): coo_matvec(self.nnz, self.row, self.col, self.data, col, result[i]) return result.T.view(type=type(other)) def isspmatrix_coo(x): """Is x of coo_matrix type? Parameters ---------- x object to check for being a coo matrix Returns ------- bool True if x is a coo matrix, False otherwise Examples -------- >>> from scipy.sparse import coo_matrix, isspmatrix_coo >>> isspmatrix_coo(coo_matrix([[5]])) True >>> from scipy.sparse import coo_matrix, csr_matrix, isspmatrix_coo >>> isspmatrix_coo(csr_matrix([[5]])) False """ return isinstance(x, coo_matrix)