import numpy as np from numpy.testing import assert_allclose from scipy import ndimage from scipy.ndimage import _ctest from scipy.ndimage import _ctest_oldapi from scipy.ndimage import _cytest from scipy._lib._ccallback import LowLevelCallable FILTER1D_FUNCTIONS = [ lambda filter_size: _ctest.filter1d(filter_size), lambda filter_size: _ctest_oldapi.filter1d(filter_size), lambda filter_size: _cytest.filter1d(filter_size, with_signature=False), lambda filter_size: LowLevelCallable(_cytest.filter1d(filter_size, with_signature=True)), lambda filter_size: LowLevelCallable.from_cython(_cytest, "_filter1d", _cytest.filter1d_capsule(filter_size)), ] FILTER2D_FUNCTIONS = [ lambda weights: _ctest.filter2d(weights), lambda weights: _ctest_oldapi.filter2d(weights), lambda weights: _cytest.filter2d(weights, with_signature=False), lambda weights: LowLevelCallable(_cytest.filter2d(weights, with_signature=True)), lambda weights: LowLevelCallable.from_cython(_cytest, "_filter2d", _cytest.filter2d_capsule(weights)), ] TRANSFORM_FUNCTIONS = [ lambda shift: _ctest.transform(shift), lambda shift: _ctest_oldapi.transform(shift), lambda shift: _cytest.transform(shift, with_signature=False), lambda shift: LowLevelCallable(_cytest.transform(shift, with_signature=True)), lambda shift: LowLevelCallable.from_cython(_cytest, "_transform", _cytest.transform_capsule(shift)), ] def test_generic_filter(): def filter2d(footprint_elements, weights): return (weights*footprint_elements).sum() def check(j): func = FILTER2D_FUNCTIONS[j] im = np.ones((20, 20)) im[:10,:10] = 0 footprint = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) footprint_size = np.count_nonzero(footprint) weights = np.ones(footprint_size)/footprint_size res = ndimage.generic_filter(im, func(weights), footprint=footprint) std = ndimage.generic_filter(im, filter2d, footprint=footprint, extra_arguments=(weights,)) assert_allclose(res, std, err_msg="#{} failed".format(j)) for j, func in enumerate(FILTER2D_FUNCTIONS): check(j) def test_generic_filter1d(): def filter1d(input_line, output_line, filter_size): for i in range(output_line.size): output_line[i] = 0 for j in range(filter_size): output_line[i] += input_line[i+j] output_line /= filter_size def check(j): func = FILTER1D_FUNCTIONS[j] im = np.tile(np.hstack((np.zeros(10), np.ones(10))), (10, 1)) filter_size = 3 res = ndimage.generic_filter1d(im, func(filter_size), filter_size) std = ndimage.generic_filter1d(im, filter1d, filter_size, extra_arguments=(filter_size,)) assert_allclose(res, std, err_msg="#{} failed".format(j)) for j, func in enumerate(FILTER1D_FUNCTIONS): check(j) def test_geometric_transform(): def transform(output_coordinates, shift): return output_coordinates[0] - shift, output_coordinates[1] - shift def check(j): func = TRANSFORM_FUNCTIONS[j] im = np.arange(12).reshape(4, 3).astype(np.float64) shift = 0.5 res = ndimage.geometric_transform(im, func(shift)) std = ndimage.geometric_transform(im, transform, extra_arguments=(shift,)) assert_allclose(res, std, err_msg="#{} failed".format(j)) for j, func in enumerate(TRANSFORM_FUNCTIONS): check(j)