# Created by Pearu Peterson, September 2002 from numpy.testing import (assert_, assert_equal, assert_array_almost_equal, assert_array_almost_equal_nulp, assert_array_less) import pytest from pytest import raises as assert_raises from scipy.fftpack import ifft, fft, fftn, ifftn, rfft, irfft, fft2 from numpy import (arange, add, array, asarray, zeros, dot, exp, pi, swapaxes, double, cdouble) import numpy as np import numpy.fft from numpy.random import rand # "large" composite numbers supported by FFTPACK LARGE_COMPOSITE_SIZES = [ 2**13, 2**5 * 3**5, 2**3 * 3**3 * 5**2, ] SMALL_COMPOSITE_SIZES = [ 2, 2*3*5, 2*2*3*3, ] # prime LARGE_PRIME_SIZES = [ 2011 ] SMALL_PRIME_SIZES = [ 29 ] def _assert_close_in_norm(x, y, rtol, size, rdt): # helper function for testing err_msg = "size: %s rdt: %s" % (size, rdt) assert_array_less(np.linalg.norm(x - y), rtol*np.linalg.norm(x), err_msg) def random(size): return rand(*size) def get_mat(n): data = arange(n) data = add.outer(data, data) return data def direct_dft(x): x = asarray(x) n = len(x) y = zeros(n, dtype=cdouble) w = -arange(n)*(2j*pi/n) for i in range(n): y[i] = dot(exp(i*w), x) return y def direct_idft(x): x = asarray(x) n = len(x) y = zeros(n, dtype=cdouble) w = arange(n)*(2j*pi/n) for i in range(n): y[i] = dot(exp(i*w), x)/n return y def direct_dftn(x): x = asarray(x) for axis in range(len(x.shape)): x = fft(x, axis=axis) return x def direct_idftn(x): x = asarray(x) for axis in range(len(x.shape)): x = ifft(x, axis=axis) return x def direct_rdft(x): x = asarray(x) n = len(x) w = -arange(n)*(2j*pi/n) r = zeros(n, dtype=double) for i in range(n//2+1): y = dot(exp(i*w), x) if i: r[2*i-1] = y.real if 2*i < n: r[2*i] = y.imag else: r[0] = y.real return r def direct_irdft(x): x = asarray(x) n = len(x) x1 = zeros(n, dtype=cdouble) for i in range(n//2+1): if i: if 2*i < n: x1[i] = x[2*i-1] + 1j*x[2*i] x1[n-i] = x[2*i-1] - 1j*x[2*i] else: x1[i] = x[2*i-1] else: x1[0] = x[0] return direct_idft(x1).real class _TestFFTBase(object): def setup_method(self): self.cdt = None self.rdt = None np.random.seed(1234) def test_definition(self): x = np.array([1,2,3,4+1j,1,2,3,4+2j], dtype=self.cdt) y = fft(x) assert_equal(y.dtype, self.cdt) y1 = direct_dft(x) assert_array_almost_equal(y,y1) x = np.array([1,2,3,4+0j,5], dtype=self.cdt) assert_array_almost_equal(fft(x),direct_dft(x)) def test_n_argument_real(self): x1 = np.array([1,2,3,4], dtype=self.rdt) x2 = np.array([1,2,3,4], dtype=self.rdt) y = fft([x1,x2],n=4) assert_equal(y.dtype, self.cdt) assert_equal(y.shape,(2,4)) assert_array_almost_equal(y[0],direct_dft(x1)) assert_array_almost_equal(y[1],direct_dft(x2)) def _test_n_argument_complex(self): x1 = np.array([1,2,3,4+1j], dtype=self.cdt) x2 = np.array([1,2,3,4+1j], dtype=self.cdt) y = fft([x1,x2],n=4) assert_equal(y.dtype, self.cdt) assert_equal(y.shape,(2,4)) assert_array_almost_equal(y[0],direct_dft(x1)) assert_array_almost_equal(y[1],direct_dft(x2)) def test_invalid_sizes(self): assert_raises(ValueError, fft, []) assert_raises(ValueError, fft, [[1,1],[2,2]], -5) class TestDoubleFFT(_TestFFTBase): def setup_method(self): self.cdt = np.cdouble self.rdt = np.double class TestSingleFFT(_TestFFTBase): def setup_method(self): self.cdt = np.complex64 self.rdt = np.float32 @pytest.mark.xfail(run=False, reason="single-precision FFT implementation is partially disabled, until accuracy issues with large prime powers are resolved") def test_notice(self): pass class TestFloat16FFT(object): def test_1_argument_real(self): x1 = np.array([1, 2, 3, 4], dtype=np.float16) y = fft(x1, n=4) assert_equal(y.dtype, np.complex64) assert_equal(y.shape, (4, )) assert_array_almost_equal(y, direct_dft(x1.astype(np.float32))) def test_n_argument_real(self): x1 = np.array([1, 2, 3, 4], dtype=np.float16) x2 = np.array([1, 2, 3, 4], dtype=np.float16) y = fft([x1, x2], n=4) assert_equal(y.dtype, np.complex64) assert_equal(y.shape, (2, 4)) assert_array_almost_equal(y[0], direct_dft(x1.astype(np.float32))) assert_array_almost_equal(y[1], direct_dft(x2.astype(np.float32))) class _TestIFFTBase(object): def setup_method(self): np.random.seed(1234) def test_definition(self): x = np.array([1,2,3,4+1j,1,2,3,4+2j], self.cdt) y = ifft(x) y1 = direct_idft(x) assert_equal(y.dtype, self.cdt) assert_array_almost_equal(y,y1) x = np.array([1,2,3,4+0j,5], self.cdt) assert_array_almost_equal(ifft(x),direct_idft(x)) def test_definition_real(self): x = np.array([1,2,3,4,1,2,3,4], self.rdt) y = ifft(x) assert_equal(y.dtype, self.cdt) y1 = direct_idft(x) assert_array_almost_equal(y,y1) x = np.array([1,2,3,4,5], dtype=self.rdt) assert_equal(y.dtype, self.cdt) assert_array_almost_equal(ifft(x),direct_idft(x)) def test_random_complex(self): for size in [1,51,111,100,200,64,128,256,1024]: x = random([size]).astype(self.cdt) x = random([size]).astype(self.cdt) + 1j*x y1 = ifft(fft(x)) y2 = fft(ifft(x)) assert_equal(y1.dtype, self.cdt) assert_equal(y2.dtype, self.cdt) assert_array_almost_equal(y1, x) assert_array_almost_equal(y2, x) def test_random_real(self): for size in [1,51,111,100,200,64,128,256,1024]: x = random([size]).astype(self.rdt) y1 = ifft(fft(x)) y2 = fft(ifft(x)) assert_equal(y1.dtype, self.cdt) assert_equal(y2.dtype, self.cdt) assert_array_almost_equal(y1, x) assert_array_almost_equal(y2, x) def test_size_accuracy(self): # Sanity check for the accuracy for prime and non-prime sized inputs if self.rdt == np.float32: rtol = 1e-5 elif self.rdt == np.float64: rtol = 1e-10 for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES: np.random.seed(1234) x = np.random.rand(size).astype(self.rdt) y = ifft(fft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) y = fft(ifft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) x = (x + 1j*np.random.rand(size)).astype(self.cdt) y = ifft(fft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) y = fft(ifft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) def test_invalid_sizes(self): assert_raises(ValueError, ifft, []) assert_raises(ValueError, ifft, [[1,1],[2,2]], -5) class TestDoubleIFFT(_TestIFFTBase): def setup_method(self): self.cdt = np.cdouble self.rdt = np.double class TestSingleIFFT(_TestIFFTBase): def setup_method(self): self.cdt = np.complex64 self.rdt = np.float32 class _TestRFFTBase(object): def setup_method(self): np.random.seed(1234) def test_definition(self): for t in [[1, 2, 3, 4, 1, 2, 3, 4], [1, 2, 3, 4, 1, 2, 3, 4, 5]]: x = np.array(t, dtype=self.rdt) y = rfft(x) y1 = direct_rdft(x) assert_array_almost_equal(y,y1) assert_equal(y.dtype, self.rdt) def test_invalid_sizes(self): assert_raises(ValueError, rfft, []) assert_raises(ValueError, rfft, [[1,1],[2,2]], -5) # See gh-5790 class MockSeries(object): def __init__(self, data): self.data = np.asarray(data) def __getattr__(self, item): try: return getattr(self.data, item) except AttributeError: raise AttributeError(("'MockSeries' object " "has no attribute '{attr}'". format(attr=item))) def test_non_ndarray_with_dtype(self): x = np.array([1., 2., 3., 4., 5.]) xs = _TestRFFTBase.MockSeries(x) expected = [1, 2, 3, 4, 5] rfft(xs) # Data should not have been overwritten assert_equal(x, expected) assert_equal(xs.data, expected) def test_complex_input(self): assert_raises(TypeError, rfft, np.arange(4, dtype=np.complex64)) class TestRFFTDouble(_TestRFFTBase): def setup_method(self): self.cdt = np.cdouble self.rdt = np.double class TestRFFTSingle(_TestRFFTBase): def setup_method(self): self.cdt = np.complex64 self.rdt = np.float32 class _TestIRFFTBase(object): def setup_method(self): np.random.seed(1234) def test_definition(self): x1 = [1,2,3,4,1,2,3,4] x1_1 = [1,2+3j,4+1j,2+3j,4,2-3j,4-1j,2-3j] x2 = [1,2,3,4,1,2,3,4,5] x2_1 = [1,2+3j,4+1j,2+3j,4+5j,4-5j,2-3j,4-1j,2-3j] def _test(x, xr): y = irfft(np.array(x, dtype=self.rdt)) y1 = direct_irdft(x) assert_equal(y.dtype, self.rdt) assert_array_almost_equal(y,y1, decimal=self.ndec) assert_array_almost_equal(y,ifft(xr), decimal=self.ndec) _test(x1, x1_1) _test(x2, x2_1) def test_random_real(self): for size in [1,51,111,100,200,64,128,256,1024]: x = random([size]).astype(self.rdt) y1 = irfft(rfft(x)) y2 = rfft(irfft(x)) assert_equal(y1.dtype, self.rdt) assert_equal(y2.dtype, self.rdt) assert_array_almost_equal(y1, x, decimal=self.ndec, err_msg="size=%d" % size) assert_array_almost_equal(y2, x, decimal=self.ndec, err_msg="size=%d" % size) def test_size_accuracy(self): # Sanity check for the accuracy for prime and non-prime sized inputs if self.rdt == np.float32: rtol = 1e-5 elif self.rdt == np.float64: rtol = 1e-10 for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES: np.random.seed(1234) x = np.random.rand(size).astype(self.rdt) y = irfft(rfft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) y = rfft(irfft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) def test_invalid_sizes(self): assert_raises(ValueError, irfft, []) assert_raises(ValueError, irfft, [[1,1],[2,2]], -5) def test_complex_input(self): assert_raises(TypeError, irfft, np.arange(4, dtype=np.complex64)) # self.ndec is bogus; we should have a assert_array_approx_equal for number of # significant digits class TestIRFFTDouble(_TestIRFFTBase): def setup_method(self): self.cdt = np.cdouble self.rdt = np.double self.ndec = 14 class TestIRFFTSingle(_TestIRFFTBase): def setup_method(self): self.cdt = np.complex64 self.rdt = np.float32 self.ndec = 5 class Testfft2(object): def setup_method(self): np.random.seed(1234) def test_regression_244(self): """FFT returns wrong result with axes parameter.""" # fftn (and hence fft2) used to break when both axes and shape were # used x = numpy.ones((4, 4, 2)) y = fft2(x, shape=(8, 8), axes=(-3, -2)) y_r = numpy.fft.fftn(x, s=(8, 8), axes=(-3, -2)) assert_array_almost_equal(y, y_r) def test_invalid_sizes(self): assert_raises(ValueError, fft2, [[]]) assert_raises(ValueError, fft2, [[1, 1], [2, 2]], (4, -3)) class TestFftnSingle(object): def setup_method(self): np.random.seed(1234) def test_definition(self): x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] y = fftn(np.array(x, np.float32)) assert_(y.dtype == np.complex64, msg="double precision output with single precision") y_r = np.array(fftn(x), np.complex64) assert_array_almost_equal_nulp(y, y_r) @pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES) def test_size_accuracy_small(self, size): x = np.random.rand(size, size) + 1j*np.random.rand(size, size) y1 = fftn(x.real.astype(np.float32)) y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) assert_equal(y1.dtype, np.complex64) assert_array_almost_equal_nulp(y1, y2, 2000) @pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES) def test_size_accuracy_large(self, size): x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3) y1 = fftn(x.real.astype(np.float32)) y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) assert_equal(y1.dtype, np.complex64) assert_array_almost_equal_nulp(y1, y2, 2000) def test_definition_float16(self): x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] y = fftn(np.array(x, np.float16)) assert_equal(y.dtype, np.complex64) y_r = np.array(fftn(x), np.complex64) assert_array_almost_equal_nulp(y, y_r) @pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES) def test_float16_input_small(self, size): x = np.random.rand(size, size) + 1j*np.random.rand(size, size) y1 = fftn(x.real.astype(np.float16)) y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) assert_equal(y1.dtype, np.complex64) assert_array_almost_equal_nulp(y1, y2, 5e5) @pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES) def test_float16_input_large(self, size): x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3) y1 = fftn(x.real.astype(np.float16)) y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) assert_equal(y1.dtype, np.complex64) assert_array_almost_equal_nulp(y1, y2, 2e6) class TestFftn(object): def setup_method(self): np.random.seed(1234) def test_definition(self): x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] y = fftn(x) assert_array_almost_equal(y, direct_dftn(x)) x = random((20, 26)) assert_array_almost_equal(fftn(x), direct_dftn(x)) x = random((5, 4, 3, 20)) assert_array_almost_equal(fftn(x), direct_dftn(x)) def test_axes_argument(self): # plane == ji_plane, x== kji_space plane1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] plane2 = [[10, 11, 12], [13, 14, 15], [16, 17, 18]] plane3 = [[19, 20, 21], [22, 23, 24], [25, 26, 27]] ki_plane1 = [[1, 2, 3], [10, 11, 12], [19, 20, 21]] ki_plane2 = [[4, 5, 6], [13, 14, 15], [22, 23, 24]] ki_plane3 = [[7, 8, 9], [16, 17, 18], [25, 26, 27]] jk_plane1 = [[1, 10, 19], [4, 13, 22], [7, 16, 25]] jk_plane2 = [[2, 11, 20], [5, 14, 23], [8, 17, 26]] jk_plane3 = [[3, 12, 21], [6, 15, 24], [9, 18, 27]] kj_plane1 = [[1, 4, 7], [10, 13, 16], [19, 22, 25]] kj_plane2 = [[2, 5, 8], [11, 14, 17], [20, 23, 26]] kj_plane3 = [[3, 6, 9], [12, 15, 18], [21, 24, 27]] ij_plane1 = [[1, 4, 7], [2, 5, 8], [3, 6, 9]] ij_plane2 = [[10, 13, 16], [11, 14, 17], [12, 15, 18]] ij_plane3 = [[19, 22, 25], [20, 23, 26], [21, 24, 27]] ik_plane1 = [[1, 10, 19], [2, 11, 20], [3, 12, 21]] ik_plane2 = [[4, 13, 22], [5, 14, 23], [6, 15, 24]] ik_plane3 = [[7, 16, 25], [8, 17, 26], [9, 18, 27]] ijk_space = [jk_plane1, jk_plane2, jk_plane3] ikj_space = [kj_plane1, kj_plane2, kj_plane3] jik_space = [ik_plane1, ik_plane2, ik_plane3] jki_space = [ki_plane1, ki_plane2, ki_plane3] kij_space = [ij_plane1, ij_plane2, ij_plane3] x = array([plane1, plane2, plane3]) assert_array_almost_equal(fftn(x), fftn(x, axes=(-3, -2, -1))) # kji_space assert_array_almost_equal(fftn(x), fftn(x, axes=(0, 1, 2))) assert_array_almost_equal(fftn(x, axes=(0, 2)), fftn(x, axes=(0, -1))) y = fftn(x, axes=(2, 1, 0)) # ijk_space assert_array_almost_equal(swapaxes(y, -1, -3), fftn(ijk_space)) y = fftn(x, axes=(2, 0, 1)) # ikj_space assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -1, -2), fftn(ikj_space)) y = fftn(x, axes=(1, 2, 0)) # jik_space assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -3, -2), fftn(jik_space)) y = fftn(x, axes=(1, 0, 2)) # jki_space assert_array_almost_equal(swapaxes(y, -2, -3), fftn(jki_space)) y = fftn(x, axes=(0, 2, 1)) # kij_space assert_array_almost_equal(swapaxes(y, -2, -1), fftn(kij_space)) y = fftn(x, axes=(-2, -1)) # ji_plane assert_array_almost_equal(fftn(plane1), y[0]) assert_array_almost_equal(fftn(plane2), y[1]) assert_array_almost_equal(fftn(plane3), y[2]) y = fftn(x, axes=(1, 2)) # ji_plane assert_array_almost_equal(fftn(plane1), y[0]) assert_array_almost_equal(fftn(plane2), y[1]) assert_array_almost_equal(fftn(plane3), y[2]) y = fftn(x, axes=(-3, -2)) # kj_plane assert_array_almost_equal(fftn(x[:, :, 0]), y[:, :, 0]) assert_array_almost_equal(fftn(x[:, :, 1]), y[:, :, 1]) assert_array_almost_equal(fftn(x[:, :, 2]), y[:, :, 2]) y = fftn(x, axes=(-3, -1)) # ki_plane assert_array_almost_equal(fftn(x[:, 0, :]), y[:, 0, :]) assert_array_almost_equal(fftn(x[:, 1, :]), y[:, 1, :]) assert_array_almost_equal(fftn(x[:, 2, :]), y[:, 2, :]) y = fftn(x, axes=(-1, -2)) # ij_plane assert_array_almost_equal(fftn(ij_plane1), swapaxes(y[0], -2, -1)) assert_array_almost_equal(fftn(ij_plane2), swapaxes(y[1], -2, -1)) assert_array_almost_equal(fftn(ij_plane3), swapaxes(y[2], -2, -1)) y = fftn(x, axes=(-1, -3)) # ik_plane assert_array_almost_equal(fftn(ik_plane1), swapaxes(y[:, 0, :], -1, -2)) assert_array_almost_equal(fftn(ik_plane2), swapaxes(y[:, 1, :], -1, -2)) assert_array_almost_equal(fftn(ik_plane3), swapaxes(y[:, 2, :], -1, -2)) y = fftn(x, axes=(-2, -3)) # jk_plane assert_array_almost_equal(fftn(jk_plane1), swapaxes(y[:, :, 0], -1, -2)) assert_array_almost_equal(fftn(jk_plane2), swapaxes(y[:, :, 1], -1, -2)) assert_array_almost_equal(fftn(jk_plane3), swapaxes(y[:, :, 2], -1, -2)) y = fftn(x, axes=(-1,)) # i_line for i in range(3): for j in range(3): assert_array_almost_equal(fft(x[i, j, :]), y[i, j, :]) y = fftn(x, axes=(-2,)) # j_line for i in range(3): for j in range(3): assert_array_almost_equal(fft(x[i, :, j]), y[i, :, j]) y = fftn(x, axes=(0,)) # k_line for i in range(3): for j in range(3): assert_array_almost_equal(fft(x[:, i, j]), y[:, i, j]) y = fftn(x, axes=()) # point assert_array_almost_equal(y, x) def test_shape_argument(self): small_x = [[1, 2, 3], [4, 5, 6]] large_x1 = [[1, 2, 3, 0], [4, 5, 6, 0], [0, 0, 0, 0], [0, 0, 0, 0]] y = fftn(small_x, shape=(4, 4)) assert_array_almost_equal(y, fftn(large_x1)) y = fftn(small_x, shape=(3, 4)) assert_array_almost_equal(y, fftn(large_x1[:-1])) def test_shape_axes_argument(self): small_x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] large_x1 = array([[1, 2, 3, 0], [4, 5, 6, 0], [7, 8, 9, 0], [0, 0, 0, 0]]) y = fftn(small_x, shape=(4, 4), axes=(-2, -1)) assert_array_almost_equal(y, fftn(large_x1)) y = fftn(small_x, shape=(4, 4), axes=(-1, -2)) assert_array_almost_equal(y, swapaxes( fftn(swapaxes(large_x1, -1, -2)), -1, -2)) def test_shape_axes_argument2(self): # Change shape of the last axis x = numpy.random.random((10, 5, 3, 7)) y = fftn(x, axes=(-1,), shape=(8,)) assert_array_almost_equal(y, fft(x, axis=-1, n=8)) # Change shape of an arbitrary axis which is not the last one x = numpy.random.random((10, 5, 3, 7)) y = fftn(x, axes=(-2,), shape=(8,)) assert_array_almost_equal(y, fft(x, axis=-2, n=8)) # Change shape of axes: cf #244, where shape and axes were mixed up x = numpy.random.random((4, 4, 2)) y = fftn(x, axes=(-3, -2), shape=(8, 8)) assert_array_almost_equal(y, numpy.fft.fftn(x, axes=(-3, -2), s=(8, 8))) def test_shape_argument_more(self): x = zeros((4, 4, 2)) with assert_raises(ValueError, match="when given, axes and shape arguments" " have to be of the same length"): fftn(x, shape=(8, 8, 2, 1)) def test_invalid_sizes(self): with assert_raises(ValueError, match="invalid number of data points" r" \(\[1, 0\]\) specified"): fftn([[]]) with assert_raises(ValueError, match="invalid number of data points" r" \(\[4, -3\]\) specified"): fftn([[1, 1], [2, 2]], (4, -3)) class TestIfftn(object): dtype = None cdtype = None def setup_method(self): np.random.seed(1234) @pytest.mark.parametrize('dtype,cdtype,maxnlp', [(np.float64, np.complex128, 2000), (np.float32, np.complex64, 3500)]) def test_definition(self, dtype, cdtype, maxnlp): x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype) y = ifftn(x) assert_equal(y.dtype, cdtype) assert_array_almost_equal_nulp(y, direct_idftn(x), maxnlp) x = random((20, 26)) assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp) x = random((5, 4, 3, 20)) assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp) @pytest.mark.parametrize('maxnlp', [2000, 3500]) @pytest.mark.parametrize('size', [1, 2, 51, 32, 64, 92]) def test_random_complex(self, maxnlp, size): x = random([size, size]) + 1j*random([size, size]) assert_array_almost_equal_nulp(ifftn(fftn(x)), x, maxnlp) assert_array_almost_equal_nulp(fftn(ifftn(x)), x, maxnlp) def test_invalid_sizes(self): with assert_raises(ValueError, match="invalid number of data points" r" \(\[1, 0\]\) specified"): ifftn([[]]) with assert_raises(ValueError, match="invalid number of data points" r" \(\[4, -3\]\) specified"): ifftn([[1, 1], [2, 2]], (4, -3)) class FakeArray(object): def __init__(self, data): self._data = data self.__array_interface__ = data.__array_interface__ class FakeArray2(object): def __init__(self, data): self._data = data def __array__(self): return self._data class TestOverwrite(object): """Check input overwrite behavior of the FFT functions.""" real_dtypes = (np.float32, np.float64) dtypes = real_dtypes + (np.complex64, np.complex128) fftsizes = [8, 16, 32] def _check(self, x, routine, fftsize, axis, overwrite_x): x2 = x.copy() for fake in [lambda x: x, FakeArray, FakeArray2]: routine(fake(x2), fftsize, axis, overwrite_x=overwrite_x) sig = "%s(%s%r, %r, axis=%r, overwrite_x=%r)" % ( routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x) if not overwrite_x: assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig) def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes, fftsize, overwrite_x): np.random.seed(1234) if np.issubdtype(dtype, np.complexfloating): data = np.random.randn(*shape) + 1j*np.random.randn(*shape) else: data = np.random.randn(*shape) data = data.astype(dtype) self._check(data, routine, fftsize, axis, overwrite_x=overwrite_x) @pytest.mark.parametrize('dtype', dtypes) @pytest.mark.parametrize('fftsize', fftsizes) @pytest.mark.parametrize('overwrite_x', [True, False]) @pytest.mark.parametrize('shape,axes', [((16,), -1), ((16, 2), 0), ((2, 16), 1)]) def test_fft_ifft(self, dtype, fftsize, overwrite_x, shape, axes): overwritable = (np.complex128, np.complex64) self._check_1d(fft, dtype, shape, axes, overwritable, fftsize, overwrite_x) self._check_1d(ifft, dtype, shape, axes, overwritable, fftsize, overwrite_x) @pytest.mark.parametrize('dtype', real_dtypes) @pytest.mark.parametrize('fftsize', fftsizes) @pytest.mark.parametrize('overwrite_x', [True, False]) @pytest.mark.parametrize('shape,axes', [((16,), -1), ((16, 2), 0), ((2, 16), 1)]) def test_rfft_irfft(self, dtype, fftsize, overwrite_x, shape, axes): overwritable = self.real_dtypes self._check_1d(irfft, dtype, shape, axes, overwritable, fftsize, overwrite_x) self._check_1d(rfft, dtype, shape, axes, overwritable, fftsize, overwrite_x) def _check_nd_one(self, routine, dtype, shape, axes, overwritable_dtypes, overwrite_x): np.random.seed(1234) if np.issubdtype(dtype, np.complexfloating): data = np.random.randn(*shape) + 1j*np.random.randn(*shape) else: data = np.random.randn(*shape) data = data.astype(dtype) def fftshape_iter(shp): if len(shp) <= 0: yield () else: for j in (shp[0]//2, shp[0], shp[0]*2): for rest in fftshape_iter(shp[1:]): yield (j,) + rest if axes is None: part_shape = shape else: part_shape = tuple(np.take(shape, axes)) for fftshape in fftshape_iter(part_shape): self._check(data, routine, fftshape, axes, overwrite_x=overwrite_x) if data.ndim > 1: self._check(data.T, routine, fftshape, axes, overwrite_x=overwrite_x) @pytest.mark.parametrize('dtype', dtypes) @pytest.mark.parametrize('overwrite_x', [True, False]) @pytest.mark.parametrize('shape,axes', [((16,), None), ((16,), (0,)), ((16, 2), (0,)), ((2, 16), (1,)), ((8, 16), None), ((8, 16), (0, 1)), ((8, 16, 2), (0, 1)), ((8, 16, 2), (1, 2)), ((8, 16, 2), (0,)), ((8, 16, 2), (1,)), ((8, 16, 2), (2,)), ((8, 16, 2), None), ((8, 16, 2), (0, 1, 2))]) def test_fftn_ifftn(self, dtype, overwrite_x, shape, axes): overwritable = (np.complex128, np.complex64) self._check_nd_one(fftn, dtype, shape, axes, overwritable, overwrite_x) self._check_nd_one(ifftn, dtype, shape, axes, overwritable, overwrite_x)