""" Collection of physical constants and conversion factors. Most constants are in SI units, so you can do print '10 mile per minute is', 10*mile/minute, 'm/s or', 10*mile/(minute*knot), 'knots' The list is not meant to be comprehensive, but just convenient for everyday use. """ """ BasSw 2006 physical constants: imported from CODATA unit conversion: see e.g., NIST special publication 811 Use at own risk: double-check values before calculating your Mars orbit-insertion burn. Some constants exist in a few variants, which are marked with suffixes. The ones without any suffix should be the most common ones. """ import math as _math from .codata import value as _cd import numpy as _np # mathematical constants pi = _math.pi golden = golden_ratio = (1 + _math.sqrt(5)) / 2 # SI prefixes yotta = 1e24 zetta = 1e21 exa = 1e18 peta = 1e15 tera = 1e12 giga = 1e9 mega = 1e6 kilo = 1e3 hecto = 1e2 deka = 1e1 deci = 1e-1 centi = 1e-2 milli = 1e-3 micro = 1e-6 nano = 1e-9 pico = 1e-12 femto = 1e-15 atto = 1e-18 zepto = 1e-21 # binary prefixes kibi = 2**10 mebi = 2**20 gibi = 2**30 tebi = 2**40 pebi = 2**50 exbi = 2**60 zebi = 2**70 yobi = 2**80 # physical constants c = speed_of_light = _cd('speed of light in vacuum') mu_0 = _cd('vacuum mag. permeability') epsilon_0 = _cd('vacuum electric permittivity') h = Planck = _cd('Planck constant') hbar = h / (2 * pi) G = gravitational_constant = _cd('Newtonian constant of gravitation') g = _cd('standard acceleration of gravity') e = elementary_charge = _cd('elementary charge') R = gas_constant = _cd('molar gas constant') alpha = fine_structure = _cd('fine-structure constant') N_A = Avogadro = _cd('Avogadro constant') k = Boltzmann = _cd('Boltzmann constant') sigma = Stefan_Boltzmann = _cd('Stefan-Boltzmann constant') Wien = _cd('Wien wavelength displacement law constant') Rydberg = _cd('Rydberg constant') # mass in kg gram = 1e-3 metric_ton = 1e3 grain = 64.79891e-6 lb = pound = 7000 * grain # avoirdupois blob = slinch = pound * g / 0.0254 # lbf*s**2/in (added in 1.0.0) slug = blob / 12 # lbf*s**2/foot (added in 1.0.0) oz = ounce = pound / 16 stone = 14 * pound long_ton = 2240 * pound short_ton = 2000 * pound troy_ounce = 480 * grain # only for metals / gems troy_pound = 12 * troy_ounce carat = 200e-6 m_e = electron_mass = _cd('electron mass') m_p = proton_mass = _cd('proton mass') m_n = neutron_mass = _cd('neutron mass') m_u = u = atomic_mass = _cd('atomic mass constant') # angle in rad degree = pi / 180 arcmin = arcminute = degree / 60 arcsec = arcsecond = arcmin / 60 # time in second minute = 60.0 hour = 60 * minute day = 24 * hour week = 7 * day year = 365 * day Julian_year = 365.25 * day # length in meter inch = 0.0254 foot = 12 * inch yard = 3 * foot mile = 1760 * yard mil = inch / 1000 pt = point = inch / 72 # typography survey_foot = 1200.0 / 3937 survey_mile = 5280 * survey_foot nautical_mile = 1852.0 fermi = 1e-15 angstrom = 1e-10 micron = 1e-6 au = astronomical_unit = 149597870700.0 light_year = Julian_year * c parsec = au / arcsec # pressure in pascal atm = atmosphere = _cd('standard atmosphere') bar = 1e5 torr = mmHg = atm / 760 psi = pound * g / (inch * inch) # area in meter**2 hectare = 1e4 acre = 43560 * foot**2 # volume in meter**3 litre = liter = 1e-3 gallon = gallon_US = 231 * inch**3 # US # pint = gallon_US / 8 fluid_ounce = fluid_ounce_US = gallon_US / 128 bbl = barrel = 42 * gallon_US # for oil gallon_imp = 4.54609e-3 # UK fluid_ounce_imp = gallon_imp / 160 # speed in meter per second kmh = 1e3 / hour mph = mile / hour mach = speed_of_sound = 340.5 # approx value at 15 degrees in 1 atm. Is this a common value? knot = nautical_mile / hour # temperature in kelvin zero_Celsius = 273.15 degree_Fahrenheit = 1/1.8 # only for differences # energy in joule eV = electron_volt = elementary_charge # * 1 Volt calorie = calorie_th = 4.184 calorie_IT = 4.1868 erg = 1e-7 Btu_th = pound * degree_Fahrenheit * calorie_th / gram Btu = Btu_IT = pound * degree_Fahrenheit * calorie_IT / gram ton_TNT = 1e9 * calorie_th # Wh = watt_hour # power in watt hp = horsepower = 550 * foot * pound * g # force in newton dyn = dyne = 1e-5 lbf = pound_force = pound * g kgf = kilogram_force = g # * 1 kg # functions for conversions that are not linear def convert_temperature(val, old_scale, new_scale): """ Convert from a temperature scale to another one among Celsius, Kelvin, Fahrenheit, and Rankine scales. Parameters ---------- val : array_like Value(s) of the temperature(s) to be converted expressed in the original scale. old_scale: str Specifies as a string the original scale from which the temperature value(s) will be converted. Supported scales are Celsius ('Celsius', 'celsius', 'C' or 'c'), Kelvin ('Kelvin', 'kelvin', 'K', 'k'), Fahrenheit ('Fahrenheit', 'fahrenheit', 'F' or 'f'), and Rankine ('Rankine', 'rankine', 'R', 'r'). new_scale: str Specifies as a string the new scale to which the temperature value(s) will be converted. Supported scales are Celsius ('Celsius', 'celsius', 'C' or 'c'), Kelvin ('Kelvin', 'kelvin', 'K', 'k'), Fahrenheit ('Fahrenheit', 'fahrenheit', 'F' or 'f'), and Rankine ('Rankine', 'rankine', 'R', 'r'). Returns ------- res : float or array of floats Value(s) of the converted temperature(s) expressed in the new scale. Notes ----- .. versionadded:: 0.18.0 Examples -------- >>> from scipy.constants import convert_temperature >>> convert_temperature(np.array([-40, 40]), 'Celsius', 'Kelvin') array([ 233.15, 313.15]) """ # Convert from `old_scale` to Kelvin if old_scale.lower() in ['celsius', 'c']: tempo = _np.asanyarray(val) + zero_Celsius elif old_scale.lower() in ['kelvin', 'k']: tempo = _np.asanyarray(val) elif old_scale.lower() in ['fahrenheit', 'f']: tempo = (_np.asanyarray(val) - 32) * 5 / 9 + zero_Celsius elif old_scale.lower() in ['rankine', 'r']: tempo = _np.asanyarray(val) * 5 / 9 else: raise NotImplementedError("%s scale is unsupported: supported scales " "are Celsius, Kelvin, Fahrenheit, and " "Rankine" % old_scale) # and from Kelvin to `new_scale`. if new_scale.lower() in ['celsius', 'c']: res = tempo - zero_Celsius elif new_scale.lower() in ['kelvin', 'k']: res = tempo elif new_scale.lower() in ['fahrenheit', 'f']: res = (tempo - zero_Celsius) * 9 / 5 + 32 elif new_scale.lower() in ['rankine', 'r']: res = tempo * 9 / 5 else: raise NotImplementedError("'%s' scale is unsupported: supported " "scales are 'Celsius', 'Kelvin', " "'Fahrenheit', and 'Rankine'" % new_scale) return res # optics def lambda2nu(lambda_): """ Convert wavelength to optical frequency Parameters ---------- lambda_ : array_like Wavelength(s) to be converted. Returns ------- nu : float or array of floats Equivalent optical frequency. Notes ----- Computes ``nu = c / lambda`` where c = 299792458.0, i.e., the (vacuum) speed of light in meters/second. Examples -------- >>> from scipy.constants import lambda2nu, speed_of_light >>> lambda2nu(np.array((1, speed_of_light))) array([ 2.99792458e+08, 1.00000000e+00]) """ return _np.asanyarray(c) / lambda_ def nu2lambda(nu): """ Convert optical frequency to wavelength. Parameters ---------- nu : array_like Optical frequency to be converted. Returns ------- lambda : float or array of floats Equivalent wavelength(s). Notes ----- Computes ``lambda = c / nu`` where c = 299792458.0, i.e., the (vacuum) speed of light in meters/second. Examples -------- >>> from scipy.constants import nu2lambda, speed_of_light >>> nu2lambda(np.array((1, speed_of_light))) array([ 2.99792458e+08, 1.00000000e+00]) """ return c / _np.asanyarray(nu)