""" Testing that skewed axes properly work. """ from contextlib import ExitStack import itertools import matplotlib.pyplot as plt from matplotlib.testing.decorators import image_comparison from matplotlib.axes import Axes import matplotlib.transforms as transforms import matplotlib.axis as maxis import matplotlib.spines as mspines import matplotlib.patches as mpatch from matplotlib.projections import register_projection # The sole purpose of this class is to look at the upper, lower, or total # interval as appropriate and see what parts of the tick to draw, if any. class SkewXTick(maxis.XTick): def draw(self, renderer): with ExitStack() as stack: for artist in [self.gridline, self.tick1line, self.tick2line, self.label1, self.label2]: stack.callback(artist.set_visible, artist.get_visible()) needs_lower = transforms.interval_contains( self.axes.lower_xlim, self.get_loc()) needs_upper = transforms.interval_contains( self.axes.upper_xlim, self.get_loc()) self.tick1line.set_visible( self.tick1line.get_visible() and needs_lower) self.label1.set_visible( self.label1.get_visible() and needs_lower) self.tick2line.set_visible( self.tick2line.get_visible() and needs_upper) self.label2.set_visible( self.label2.get_visible() and needs_upper) super(SkewXTick, self).draw(renderer) def get_view_interval(self): return self.axes.xaxis.get_view_interval() # This class exists to provide two separate sets of intervals to the tick, # as well as create instances of the custom tick class SkewXAxis(maxis.XAxis): def _get_tick(self, major): return SkewXTick(self.axes, None, major=major) def get_view_interval(self): return self.axes.upper_xlim[0], self.axes.lower_xlim[1] # This class exists to calculate the separate data range of the # upper X-axis and draw the spine there. It also provides this range # to the X-axis artist for ticking and gridlines class SkewSpine(mspines.Spine): def _adjust_location(self): pts = self._path.vertices if self.spine_type == 'top': pts[:, 0] = self.axes.upper_xlim else: pts[:, 0] = self.axes.lower_xlim # This class handles registration of the skew-xaxes as a projection as well # as setting up the appropriate transformations. It also overrides standard # spines and axes instances as appropriate. class SkewXAxes(Axes): # The projection must specify a name. This will be used be the # user to select the projection, i.e. ``subplot(111, # projection='skewx')``. name = 'skewx' def _init_axis(self): # Taken from Axes and modified to use our modified X-axis self.xaxis = SkewXAxis(self) self.spines['top'].register_axis(self.xaxis) self.spines['bottom'].register_axis(self.xaxis) self.yaxis = maxis.YAxis(self) self.spines['left'].register_axis(self.yaxis) self.spines['right'].register_axis(self.yaxis) def _gen_axes_spines(self): spines = {'top': SkewSpine.linear_spine(self, 'top'), 'bottom': mspines.Spine.linear_spine(self, 'bottom'), 'left': mspines.Spine.linear_spine(self, 'left'), 'right': mspines.Spine.linear_spine(self, 'right')} return spines def _set_lim_and_transforms(self): """ This is called once when the plot is created to set up all the transforms for the data, text and grids. """ rot = 30 # Get the standard transform setup from the Axes base class Axes._set_lim_and_transforms(self) # Need to put the skew in the middle, after the scale and limits, # but before the transAxes. This way, the skew is done in Axes # coordinates thus performing the transform around the proper origin # We keep the pre-transAxes transform around for other users, like the # spines for finding bounds self.transDataToAxes = (self.transScale + (self.transLimits + transforms.Affine2D().skew_deg(rot, 0))) # Create the full transform from Data to Pixels self.transData = self.transDataToAxes + self.transAxes # Blended transforms like this need to have the skewing applied using # both axes, in axes coords like before. self._xaxis_transform = (transforms.blended_transform_factory( self.transScale + self.transLimits, transforms.IdentityTransform()) + transforms.Affine2D().skew_deg(rot, 0)) + self.transAxes @property def lower_xlim(self): return self.axes.viewLim.intervalx @property def upper_xlim(self): pts = [[0., 1.], [1., 1.]] return self.transDataToAxes.inverted().transform(pts)[:, 0] # Now register the projection with matplotlib so the user can select # it. register_projection(SkewXAxes) @image_comparison(['skew_axes'], remove_text=True) def test_set_line_coll_dash_image(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection='skewx') ax.set_xlim(-50, 50) ax.set_ylim(50, -50) ax.grid(True) # An example of a slanted line at constant X ax.axvline(0, color='b') @image_comparison(['skew_rects'], remove_text=True) def test_skew_rectangle(): fix, axes = plt.subplots(5, 5, sharex=True, sharey=True, figsize=(8, 8)) axes = axes.flat rotations = list(itertools.product([-3, -1, 0, 1, 3], repeat=2)) axes[0].set_xlim([-3, 3]) axes[0].set_ylim([-3, 3]) axes[0].set_aspect('equal', share=True) for ax, (xrots, yrots) in zip(axes, rotations): xdeg, ydeg = 45 * xrots, 45 * yrots t = transforms.Affine2D().skew_deg(xdeg, ydeg) ax.set_title('Skew of {0} in X and {1} in Y'.format(xdeg, ydeg)) ax.add_patch(mpatch.Rectangle([-1, -1], 2, 2, transform=t + ax.transData, alpha=0.5, facecolor='coral')) plt.subplots_adjust(wspace=0, left=0.01, right=0.99, bottom=0.01, top=0.99)