from numbers import Number import operator import os import threading import contextlib import numpy as np # good_size is exposed (and used) from this import from .pypocketfft import good_size _config = threading.local() _cpu_count = os.cpu_count() def _iterable_of_int(x, name=None): """Convert ``x`` to an iterable sequence of int Parameters ---------- x : value, or sequence of values, convertible to int name : str, optional Name of the argument being converted, only used in the error message Returns ------- y : ``List[int]`` """ if isinstance(x, Number): x = (x,) try: x = [operator.index(a) for a in x] except TypeError as e: name = name or "value" raise ValueError("{} must be a scalar or iterable of integers" .format(name)) from e return x def _init_nd_shape_and_axes(x, shape, axes): """Handles shape and axes arguments for nd transforms""" noshape = shape is None noaxes = axes is None if not noaxes: axes = _iterable_of_int(axes, 'axes') axes = [a + x.ndim if a < 0 else a for a in axes] if any(a >= x.ndim or a < 0 for a in axes): raise ValueError("axes exceeds dimensionality of input") if len(set(axes)) != len(axes): raise ValueError("all axes must be unique") if not noshape: shape = _iterable_of_int(shape, 'shape') if axes and len(axes) != len(shape): raise ValueError("when given, axes and shape arguments" " have to be of the same length") if noaxes: if len(shape) > x.ndim: raise ValueError("shape requires more axes than are present") axes = range(x.ndim - len(shape), x.ndim) shape = [x.shape[a] if s == -1 else s for s, a in zip(shape, axes)] elif noaxes: shape = list(x.shape) axes = range(x.ndim) else: shape = [x.shape[a] for a in axes] if any(s < 1 for s in shape): raise ValueError( "invalid number of data points ({0}) specified".format(shape)) return shape, axes def _asfarray(x): """ Convert to array with floating or complex dtype. float16 values are also promoted to float32. """ if not hasattr(x, "dtype"): x = np.asarray(x) if x.dtype == np.float16: return np.asarray(x, np.float32) elif x.dtype.kind not in 'fc': return np.asarray(x, np.float64) # Require native byte order dtype = x.dtype.newbyteorder('=') # Always align input copy = not x.flags['ALIGNED'] return np.array(x, dtype=dtype, copy=copy) def _datacopied(arr, original): """ Strict check for `arr` not sharing any data with `original`, under the assumption that arr = asarray(original) """ if arr is original: return False if not isinstance(original, np.ndarray) and hasattr(original, '__array__'): return False return arr.base is None def _fix_shape(x, shape, axes): """Internal auxiliary function for _raw_fft, _raw_fftnd.""" must_copy = False # Build an nd slice with the dimensions to be read from x index = [slice(None)]*x.ndim for n, ax in zip(shape, axes): if x.shape[ax] >= n: index[ax] = slice(0, n) else: index[ax] = slice(0, x.shape[ax]) must_copy = True index = tuple(index) if not must_copy: return x[index], False s = list(x.shape) for n, axis in zip(shape, axes): s[axis] = n z = np.zeros(s, x.dtype) z[index] = x[index] return z, True def _fix_shape_1d(x, n, axis): if n < 1: raise ValueError( "invalid number of data points ({0}) specified".format(n)) return _fix_shape(x, (n,), (axis,)) def _normalization(norm, forward): """Returns the pypocketfft normalization mode from the norm argument""" if norm is None: return 0 if forward else 2 if norm == 'ortho': return 1 raise ValueError( "Invalid norm value {}, should be None or \"ortho\".".format(norm)) def _workers(workers): if workers is None: return getattr(_config, 'default_workers', 1) if workers < 0: if workers >= -_cpu_count: workers += 1 + _cpu_count else: raise ValueError("workers value out of range; got {}, must not be" " less than {}".format(workers, -_cpu_count)) elif workers == 0: raise ValueError("workers must not be zero") return workers @contextlib.contextmanager def set_workers(workers): """Context manager for the default number of workers used in `scipy.fft` Parameters ---------- workers : int The default number of workers to use Examples -------- >>> from scipy import fft, signal >>> x = np.random.randn(128, 64) >>> with fft.set_workers(4): ... y = signal.fftconvolve(x, x) """ old_workers = get_workers() _config.default_workers = _workers(operator.index(workers)) try: yield finally: _config.default_workers = old_workers def get_workers(): """Returns the default number of workers within the current context Examples -------- >>> from scipy import fft >>> fft.get_workers() 1 >>> with fft.set_workers(4): ... fft.get_workers() 4 """ return getattr(_config, 'default_workers', 1)