import pytest from sklearn.base import clone from sklearn.base import ClassifierMixin from sklearn.base import is_classifier from sklearn.datasets import make_classification from sklearn.datasets import make_regression from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.svm import LinearSVC, LinearSVR, SVC, SVR from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.ensemble import StackingClassifier, StackingRegressor from sklearn.ensemble import VotingClassifier, VotingRegressor @pytest.mark.parametrize( "X, y, estimator", [(*make_classification(n_samples=10), StackingClassifier(estimators=[('lr', LogisticRegression()), ('svm', LinearSVC()), ('rf', RandomForestClassifier())])), (*make_classification(n_samples=10), VotingClassifier(estimators=[('lr', LogisticRegression()), ('svm', LinearSVC()), ('rf', RandomForestClassifier())])), (*make_regression(n_samples=10), StackingRegressor(estimators=[('lr', LinearRegression()), ('svm', LinearSVR()), ('rf', RandomForestRegressor())])), (*make_regression(n_samples=10), VotingRegressor(estimators=[('lr', LinearRegression()), ('svm', LinearSVR()), ('rf', RandomForestRegressor())]))], ids=['stacking-classifier', 'voting-classifier', 'stacking-regressor', 'voting-regressor'] ) def test_ensemble_heterogeneous_estimators_behavior(X, y, estimator): # check that the behavior of `estimators`, `estimators_`, # `named_estimators`, `named_estimators_` is consistent across all # ensemble classes and when using `set_params()`. # before fit assert 'svm' in estimator.named_estimators assert estimator.named_estimators.svm is estimator.estimators[1][1] assert estimator.named_estimators.svm is estimator.named_estimators['svm'] # check fitted attributes estimator.fit(X, y) assert len(estimator.named_estimators) == 3 assert len(estimator.named_estimators_) == 3 assert (sorted(list(estimator.named_estimators_.keys())) == sorted(['lr', 'svm', 'rf'])) # check that set_params() does not add a new attribute estimator_new_params = clone(estimator) svm_estimator = SVC() if is_classifier(estimator) else SVR() estimator_new_params.set_params(svm=svm_estimator).fit(X, y) assert not hasattr(estimator_new_params, 'svm') assert (estimator_new_params.named_estimators.lr.get_params() == estimator.named_estimators.lr.get_params()) assert (estimator_new_params.named_estimators.rf.get_params() == estimator.named_estimators.rf.get_params()) # check the behavior when setting an dropping an estimator estimator_dropped = clone(estimator) estimator_dropped.set_params(svm='drop') estimator_dropped.fit(X, y) assert len(estimator_dropped.named_estimators) == 3 assert estimator_dropped.named_estimators.svm == 'drop' assert len(estimator_dropped.named_estimators_) == 3 assert (sorted(list(estimator_dropped.named_estimators_.keys())) == sorted(['lr', 'svm', 'rf'])) for sub_est in estimator_dropped.named_estimators_: # check that the correspondence is correct assert not isinstance(sub_est, type(estimator.named_estimators.svm)) # check that we can set the parameters of the underlying classifier estimator.set_params(svm__C=10.0) estimator.set_params(rf__max_depth=5) assert (estimator.get_params()['svm__C'] == estimator.get_params()['svm'].get_params()['C']) assert (estimator.get_params()['rf__max_depth'] == estimator.get_params()['rf'].get_params()['max_depth']) @pytest.mark.parametrize( "Ensemble", [StackingClassifier, VotingClassifier, StackingRegressor, VotingRegressor] ) def test_ensemble_heterogeneous_estimators_type(Ensemble): # check that ensemble will fail during validation if the underlying # estimators are not of the same type (i.e. classifier or regressor) if issubclass(Ensemble, ClassifierMixin): X, y = make_classification(n_samples=10) estimators = [('lr', LinearRegression())] ensemble_type = 'classifier' else: X, y = make_regression(n_samples=10) estimators = [('lr', LogisticRegression())] ensemble_type = 'regressor' ensemble = Ensemble(estimators=estimators) err_msg = "should be a {}".format(ensemble_type) with pytest.raises(ValueError, match=err_msg): ensemble.fit(X, y) @pytest.mark.parametrize( "X, y, Ensemble", [(*make_classification(n_samples=10), StackingClassifier), (*make_classification(n_samples=10), VotingClassifier), (*make_regression(n_samples=10), StackingRegressor), (*make_regression(n_samples=10), VotingRegressor)] ) def test_ensemble_heterogeneous_estimators_name_validation(X, y, Ensemble): # raise an error when the name contains dunder if issubclass(Ensemble, ClassifierMixin): estimators = [('lr__', LogisticRegression())] else: estimators = [('lr__', LinearRegression())] ensemble = Ensemble(estimators=estimators) err_msg = r"Estimator names must not contain __: got \['lr__'\]" with pytest.raises(ValueError, match=err_msg): ensemble.fit(X, y) # raise an error when the name is not unique if issubclass(Ensemble, ClassifierMixin): estimators = [('lr', LogisticRegression()), ('lr', LogisticRegression())] else: estimators = [('lr', LinearRegression()), ('lr', LinearRegression())] ensemble = Ensemble(estimators=estimators) err_msg = r"Names provided are not unique: \['lr', 'lr'\]" with pytest.raises(ValueError, match=err_msg): ensemble.fit(X, y) # raise an error when the name conflicts with the parameters if issubclass(Ensemble, ClassifierMixin): estimators = [('estimators', LogisticRegression())] else: estimators = [('estimators', LinearRegression())] ensemble = Ensemble(estimators=estimators) err_msg = "Estimator names conflict with constructor arguments" with pytest.raises(ValueError, match=err_msg): ensemble.fit(X, y) @pytest.mark.parametrize( "X, y, estimator", [(*make_classification(n_samples=10), StackingClassifier(estimators=[('lr', LogisticRegression())])), (*make_classification(n_samples=10), VotingClassifier(estimators=[('lr', LogisticRegression())])), (*make_regression(n_samples=10), StackingRegressor(estimators=[('lr', LinearRegression())])), (*make_regression(n_samples=10), VotingRegressor(estimators=[('lr', LinearRegression())]))], ids=['stacking-classifier', 'voting-classifier', 'stacking-regressor', 'voting-regressor'] ) def test_ensemble_heterogeneous_estimators_all_dropped(X, y, estimator): # check that we raise a consistent error when all estimators are # dropped estimator.set_params(lr='drop') with pytest.raises(ValueError, match="All estimators are dropped."): estimator.fit(X, y)