""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from scipy.spatial import distance from scipy import sparse import pytest from sklearn.utils._testing import assert_array_equal from sklearn.neighbors import NearestNeighbors from sklearn.cluster import DBSCAN from sklearn.cluster import dbscan from sklearn.cluster.tests.common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): # Tests the DBSCAN algorithm with a similarity array. # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert n_clusters_1 == n_clusters db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert n_clusters_2 == n_clusters def test_dbscan_feature(): # Tests the DBSCAN algorithm with a feature vector array. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert n_clusters_1 == n_clusters db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert n_clusters_2 == n_clusters def test_dbscan_sparse(): core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8, min_samples=10) core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10) assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) @pytest.mark.parametrize('include_self', [False, True]) def test_dbscan_sparse_precomputed(include_self): D = pairwise_distances(X) nn = NearestNeighbors(radius=.9).fit(X) X_ = X if include_self else None D_sparse = nn.radius_neighbors_graph(X=X_, mode='distance') # Ensure it is sparse not merely on diagonals: assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1) core_sparse, labels_sparse = dbscan(D_sparse, eps=.8, min_samples=10, metric='precomputed') core_dense, labels_dense = dbscan(D, eps=.8, min_samples=10, metric='precomputed') assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_sparse_precomputed_different_eps(): # test that precomputed neighbors graph is filtered if computed with # a radius larger than DBSCAN's eps. lower_eps = 0.2 nn = NearestNeighbors(radius=lower_eps).fit(X) D_sparse = nn.radius_neighbors_graph(X, mode='distance') dbscan_lower = dbscan(D_sparse, eps=lower_eps, metric='precomputed') higher_eps = lower_eps + 0.7 nn = NearestNeighbors(radius=higher_eps).fit(X) D_sparse = nn.radius_neighbors_graph(X, mode='distance') dbscan_higher = dbscan(D_sparse, eps=lower_eps, metric='precomputed') assert_array_equal(dbscan_lower[0], dbscan_higher[0]) assert_array_equal(dbscan_lower[1], dbscan_higher[1]) @pytest.mark.parametrize('use_sparse', [True, False]) @pytest.mark.parametrize('metric', ['precomputed', 'minkowski']) def test_dbscan_input_not_modified(use_sparse, metric): # test that the input is not modified by dbscan X = np.random.RandomState(0).rand(10, 10) X = sparse.csr_matrix(X) if use_sparse else X X_copy = X.copy() dbscan(X, metric=metric) if use_sparse: assert_array_equal(X.toarray(), X_copy.toarray()) else: assert_array_equal(X, X_copy) def test_dbscan_no_core_samples(): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 for X_ in [X, sparse.csr_matrix(X)]: db = DBSCAN(min_samples=6).fit(X_) assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) assert_array_equal(db.labels_, -1) assert db.core_sample_indices_.shape == (0,) def test_dbscan_callable(): # Tests the DBSCAN algorithm with a callable metric. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert n_clusters_1 == n_clusters db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert n_clusters_2 == n_clusters def test_dbscan_metric_params(): # Tests that DBSCAN works with the metrics_params argument. eps = 0.8 min_samples = 10 p = 1 # Compute DBSCAN with metric_params arg db = DBSCAN(metric='minkowski', metric_params={'p': p}, eps=eps, min_samples=min_samples, algorithm='ball_tree').fit(X) core_sample_1, labels_1 = db.core_sample_indices_, db.labels_ # Test that sample labels are the same as passing Minkowski 'p' directly db = DBSCAN(metric='minkowski', eps=eps, min_samples=min_samples, algorithm='ball_tree', p=p).fit(X) core_sample_2, labels_2 = db.core_sample_indices_, db.labels_ assert_array_equal(core_sample_1, core_sample_2) assert_array_equal(labels_1, labels_2) # Minkowski with p=1 should be equivalent to Manhattan distance db = DBSCAN(metric='manhattan', eps=eps, min_samples=min_samples, algorithm='ball_tree').fit(X) core_sample_3, labels_3 = db.core_sample_indices_, db.labels_ assert_array_equal(core_sample_1, core_sample_3) assert_array_equal(labels_1, labels_3) def test_dbscan_balltree(): # Tests the DBSCAN algorithm with balltree for neighbor calculation. eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert n_clusters_1 == n_clusters db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert n_clusters_2 == n_clusters db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert n_clusters_3 == n_clusters db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert n_clusters_4 == n_clusters db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert n_clusters_5 == n_clusters def test_input_validation(): # DBSCAN.fit should accept a list of lists. X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception @pytest.mark.parametrize( "args", [{'eps': -1.0}, {'algorithm': 'blah'}, {'metric': 'blah'}, {'leaf_size': -1}, {'p': -1}] ) def test_dbscan_badargs(args): # Test bad argument values: these should all raise ValueErrors with pytest.raises(ValueError): dbscan(X, **args) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert type(pickle.loads(s)) == obj.__class__ def test_boundaries(): # ensure min_samples is inclusive of core point core, _ = dbscan([[0], [1]], eps=2, min_samples=2) assert 0 in core # ensure eps is inclusive of circumference core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) assert 0 in core core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2) assert 0 not in core def test_weighted_dbscan(): # ensure sample_weight is validated with pytest.raises(ValueError): dbscan([[0], [1]], sample_weight=[2]) with pytest.raises(ValueError): dbscan([[0], [1]], sample_weight=[2, 3, 4]) # ensure sample_weight has an effect assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]) # points within eps of each other: assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]) # and effect of non-positive and non-integer sample_weight: assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]) # for non-negative sample_weight, cores should be identical to repetition rng = np.random.RandomState(42) sample_weight = rng.randint(0, 5, X.shape[0]) core1, label1 = dbscan(X, sample_weight=sample_weight) assert len(label1) == len(X) X_repeated = np.repeat(X, sample_weight, axis=0) core_repeated, label_repeated = dbscan(X_repeated) core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) core_repeated_mask[core_repeated] = True core_mask = np.zeros(X.shape[0], dtype=bool) core_mask[core1] = True assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) # sample_weight should work with precomputed distance matrix D = pairwise_distances(X) core3, label3 = dbscan(D, sample_weight=sample_weight, metric='precomputed') assert_array_equal(core1, core3) assert_array_equal(label1, label3) # sample_weight should work with estimator est = DBSCAN().fit(X, sample_weight=sample_weight) core4 = est.core_sample_indices_ label4 = est.labels_ assert_array_equal(core1, core4) assert_array_equal(label1, label4) est = DBSCAN() label5 = est.fit_predict(X, sample_weight=sample_weight) core5 = est.core_sample_indices_ assert_array_equal(core1, core5) assert_array_equal(label1, label5) assert_array_equal(label1, est.labels_) @pytest.mark.parametrize('algorithm', ['brute', 'kd_tree', 'ball_tree']) def test_dbscan_core_samples_toy(algorithm): X = [[0], [2], [3], [4], [6], [8], [10]] n_samples = len(X) # Degenerate case: every sample is a core sample, either with its own # cluster or including other close core samples. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) assert_array_equal(core_samples, np.arange(n_samples)) assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) # With eps=1 and min_samples=2 only the 3 samples from the denser area # are core samples. All other points are isolated and considered noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) assert_array_equal(core_samples, [1, 2, 3]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # Only the sample in the middle of the dense area is core. Its two # neighbors are edge samples. Remaining samples are noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) assert_array_equal(core_samples, [2]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # It's no longer possible to extract core samples with eps=1: # everything is noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) assert_array_equal(core_samples, []) assert_array_equal(labels, np.full(n_samples, -1.)) def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): # see https://github.com/scikit-learn/scikit-learn/issues/4641 for # more details X = np.eye(10) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert len(set(labels)) == 1 X = np.zeros((10, 10)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert len(set(labels)) == 1 def test_dbscan_precomputed_metric_with_initial_rows_zero(): # sample matrix with initial two row all zero ar = np.array([ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0], [0.0, 0.0, 0.1, 0.1, 0.0, 0.0, 0.3], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1], [0.0, 0.0, 0.0, 0.0, 0.3, 0.1, 0.0] ]) matrix = sparse.csr_matrix(ar) labels = DBSCAN(eps=0.2, metric='precomputed', min_samples=2).fit(matrix).labels_ assert_array_equal(labels, [-1, -1, 0, 0, 0, 1, 1])